-
Simple, Efficient, and Cost-Effective Multiplex Genotyping with Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Hemoglobin Beta Gene Mutations
- Back
Metadata
Document Title
Simple, Efficient, and Cost-Effective Multiplex Genotyping with Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Hemoglobin Beta Gene Mutations
Author
Thongnoppakhun W, Jiemsup S, Yongkiettrakul S, Kanjanakorn C, Limwongse C, Wilairat P, Vanasant A, Rungroj N, Yenchitsomanus PT
Name from Authors Collection
Scopus Author ID
16646138100
Affiliations
Mahidol University; Mahidol University; Mahidol University; National Science & Technology Development Agency - Thailand; National Center Genetic Engineering & Biotechnology (BIOTEC)
Type
Article
Source Title
JOURNAL OF MOLECULAR DIAGNOSTICS
ISSN
1525-1578
Year
2009
Volume
11
Issue
13
Open Access
Green Published, Bronze
Publisher
ELSEVIER SCIENCE INC
DOI
10.2353/jmoldx.2009.080151
Format
Abstract
A number of common mutations in the hemoglobin 13 (HBB) gene cause beta-thalassemia, a monogenic disease with high prevalence in certain ethnic groups. As there are 30 HBB variants that cover more than 99.5% of HBB mutant alleles in the Thai population, an efficient and cost-effective screening method is required. Three panels of multiplex primer extensions, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were developed. The first panel simultaneously detected 21 of the most common HBB mutations, while the second panel screened nine additional mutations, plus seven of the first panel for confirmation; the third panel was used to confirm three HBB mutations, yielding a 9-Da mass difference that could not be clearly distinguished by the previous two panels. The protocol was both standardized using 40 samples of known genotypes and subsequently validated in 162 blind samples with 27 different genotypes (including a normal control), comprising heterozygous, compound heterozygous, and homozygous beta-thalassemia. Results were in complete agreement with those from the genotyping results, conducted using three different methods overall. The method developed here permitted the detection of mutations missed using a single genotyping procedure. The procedure should serve as the method of choice for HBB genotyping due to its accuracy, sensitivity, and cost-effectiveness, and can be applied to studies of other gene variants that are potential disease biomarkers. (J mol Diagn 2009, 11:334-346; DOI: 10.2353/jmoldx.2009.080151)
Industrial Classification
Knowledge Taxonomy Level 1
Knowledge Taxonomy Level 2
Knowledge Taxonomy Level 3
Funding Sponsor
National Center for Genetic Engineering and Biotechnology; National Science and Technology [BT-B-02-MM-SU-4904]; The Thailand Research Fund
License
Copyright
Rights
Publisher
Publication Source
WOS