-
Mitochondrial superoxide mediates doxorubicin-induced keratinocyte apoptosis through oxidative modification of ERK and Bcl-2 ubiquitination
- Back
Metadata
Document Title
Mitochondrial superoxide mediates doxorubicin-induced keratinocyte apoptosis through oxidative modification of ERK and Bcl-2 ubiquitination
Author
Luanpitpong S, Chanvorachote P, Nimmannit U, Leonard SS, Stehlik C, Wang LY, Rojanasakul Y
Name from Authors Collection
Affiliations
West Virginia University; Chulalongkorn University; National Science & Technology Development Agency - Thailand; National Nanotechnology Center (NANOTEC); Centers for Disease Control & Prevention - USA; National Institute for Occupational Safety & Health (NIOSH); Northwestern University
Type
Article
Source Title
BIOCHEMICAL PHARMACOLOGY
Year
2012
Volume
83
Issue
12
Page
1643-1654
Open Access
Green Accepted
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
DOI
10.1016/j.bcp.2012.03.010
Format
Abstract
Massive apoptosis of keratinocytes has been implicated in the pathogenesis of chemotherapy-induced skin toxicities, but the underlying mechanisms of action are not well understood. The present study investigated the apoptotic effect of doxorubicin (DOX) on HaCaT keratinocytes and determined the underlying mechanisms. Treatment of the cells with DOX induced reactive oxygen species (ROS)generation and a concomitant increase in apoptotic cell death through the mitochondrial death pathway independent of p53. Electron spin resonance and flow cytometry studies showed that superoxide is the primary oxidative species induced by DOX and responsible for the death inducing effect. Ectopic expression of mitochondrial superoxide scavenging enzyme (MnSOD) or treatment with MnSOD mimetic (MnTBAP) inhibited DOX-induced superoxide generation and apoptosis. The mechanism by which superoxide mediates the apoptotic effect of DOX was shown to involve downregulation of Bcl-2 through ubiquitin-proteasomal degradation. Superoxide induces dephosphorylation of Bcl-2 through MAP kinase ERK1/2 inactivation, which promotes ubiquitination of Bcl-2. We also provide evidence for the oxidative modification of ERK1/2 through cysteine sulfenic acid formation. These findings indicate a novel pathway for redox regulation of apoptosis regulatory proteins, which could be important in the understanding of chemotherapy-induced toxicities and development of preventive treatment strategies which are currently lacking. (C) 2012 Elsevier Inc. All rights reserved.
Keyword
Apoptosis | Bcl-2 | Doxorubicin | ERK | Keratinocytes | Reactive oxygen species
Industrial Classification
Knowledge Taxonomy Level 1
Knowledge Taxonomy Level 2
Knowledge Taxonomy Level 3
Funding Sponsor
National Institutes of Health [R01-HL76340-04S1, R01-HL095579]; Thailand Research Fund [RGJ-5.Q.CU/49/A.1]; NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL076340, R01HL095579] Funding Source: NIH RePORTER
License
Copyright
Rights
Publisher
Publication Source
WOS