-
A single-cycle influenza a virus-based sars-cov-2 vaccine elicits potent immune responses in a mouse model
- Back
Metadata
Document Title
A single-cycle influenza a virus-based sars-cov-2 vaccine elicits potent immune responses in a mouse model
Author
Koonpaew S., Kaewborisuth C., Srisutthisamphan K., Wanitchang A., Thaweerattanasinp T., Saenboonrueng J., Poonsuk S., Jengarn J., Viriyakitkosol R., Kramyu J., Jongkaewwattana A.
Name from Authors Collection
Scopus Author ID
57003681700
Scopus Author ID
25824516500
Scopus Author ID
6508363658
Scopus Author ID
6506977049
Affiliations
Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani12120, Thailand; Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
Type
Article
Source Title
Vaccines
ISSN
2076393X
Year
2021
Volume
9
Issue
8
Open Access
All Open Access, Gold, Green
Publisher
MDPI AG
DOI
10.3390/vaccines9080850
Format
Abstract
The use of virus-vectored platforms has increasingly gained attention in vaccine development as a means for delivering antigenic genes of interest into target hosts. Here, we describe a single-cycle influenza virus-based SARS-CoV-2 vaccine designated as scPR8-RBD-M2. The vaccine utilizes the chimeric gene encoding 2A peptide-based bicistronic protein cassette of the SARS-CoV-2 receptor-binding domain (RBD) and influenza matrix 2 (M2) protein. The C-terminus of the RBD was designed to link with the cytoplasmic domain of the influenza virus hemagglutinin (HA) to anchor the RBD on the surface of producing cells and virus envelope. The chimeric RBD-M2 gene was incorporated in place of the HA open-reading frame (ORF) between the 3′ and 5′ UTR of HA gene for the virus rescue in MDCK cells stably expressing HA. The virus was also constructed with the disrupted M2 ORF in segment seven to ensure that M2 from the RBD-M2 was utilized. The chimeric gene was intact and strongly expressed in infected cells upon several passages, suggesting that the antigen was stably maintained in the vaccine candidate. Mice inoculated with scPR8-RBD-M2 via two alternative prime-boost regimens (intranasal-intranasal or intranasal-intramuscular routes) elicited robust mucosal and systemic humoral immune responses and cell-mediated immunity. Notably, we demonstrated that immunized mouse sera exhibited neutralizing activity against pseudotyped viruses bearing SARS-CoV-2 spikes from various variants, albeit with varying potency. Our study warrants further development of a replication-deficient influenza virus as a promising SARS-CoV-2 vaccine candidate. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Industrial Classification
Knowledge Taxonomy Level 1
Knowledge Taxonomy Level 2
Knowledge Taxonomy Level 3
Funding Sponsor
National Science and Technology Development Agency
License
N/A
Rights
N/A
Publication Source
Scopus