-
A nuclear targeting system in Plasmodium falciparum
- Back
Metadata
Document Title
A nuclear targeting system in Plasmodium falciparum
Author
Wittayacom K, Uthaipibull C, Kumpornsin K, Tinikul R, Kochakarn T, Songprakhon P, Chookajorn T
Name from Authors Collection
Affiliations
Mahidol University; National Science & Technology Development Agency - Thailand; National Center Genetic Engineering & Biotechnology (BIOTEC); Mahidol University
Type
Article
Source Title
MALARIA JOURNAL
ISSN
1475-2875
Year
2010
Volume
9
Issue
14
Open Access
Green Published, gold
Publisher
BMC
DOI
10.1186/1475-2875-9-126
Format
Abstract
Background: The distinct differences in gene control mechanisms acting in the nucleus between Plasmodium falciparum and the human host could lead to new potential drug targets for anti-malarial development. New molecular toolkits are required for dissecting molecular machineries in the P. falciparum nucleus. One valuable tool commonly used in model organisms is protein targeting to specific sub-cellular locations. Targeting proteins to specified locations allows labeling of organelles for microscopy, or testing of how the protein of interest modulates organelle function. In recent years, this approach has been developed for various malaria organelles, such as the mitochondrion and the apicoplast. A tool for targeting a protein of choice to the P. falciparum nucleus using an exogenous nuclear localization sequence is reported here. Methods: To develop a nuclear targeting system, a putative nuclear localization sequence was fused with green fluorescent protein (GFP). The nuclear localization sequence from the yeast transcription factor Gal4 was chosen because of its well-defined nuclear localization signal. A series of truncated Gal4 constructs was also created to narrow down the nuclear localization sequence necessary for P. falciparum nuclear import. Transfected parasites were analysed by fluorescent and laser-scanning confocal microscopy. Results: The nuclear localization sequence of Gal4 is functional in P. falciparum. It effectively transported GFP into the nucleus, and the first 74 amino acid residues were sufficient for nuclear localization. Conclusions: The Gal4 fusion technique enables specific transport of a protein of choice into the P. falciparum nucleus, and thus provides a tool for labeling nuclei without using DNA-staining dyes. The finding also indicates similarities between the nuclear transport mechanisms of yeast and P. falciparum. Since the nuclear transport system has been thoroughly studied in yeast, this could give clues to research on the same mechanism in P. falciparum.
Industrial Classification
Knowledge Taxonomy Level 1
Knowledge Taxonomy Level 2
Knowledge Taxonomy Level 3
Funding Sponsor
National Science and Technology Development Agency, Thailand
License
CC BY
Rights
Authors
Publication Source
WOS