Inspection and Maintenance of Rails in Relatively High Slope Region of Thailand

- 1. Mechanical Properties and Microstructure of Rail Steels
- 2. Corrosion map for rail tracks and fastening system
- 3. Failure Analysis of Railways in Northen Line
- 4. Digital Platform for Rail Maintenance Database

Collaborators

- NSTDA (Project Investigator)
- State Railways of Thailand
- Department of Rail Transport

Location for Case Study : Lampang Province in the Northern Region of Thailand.

1. Mechanical Properties and Microstructure of Rail Steels Used in Thailand

Recommended General Standard for New Rail Acceptance for Surface Grinding and Storing

Corrosion and decarburization were observed on the running surface

- Corrosion pits on the contact surface could act as a stress concentrator and can be the starting point for cracks, especially under cyclic loads.
- A decarburized layer with a ferrite network was found at the contact surface.
- EN 13674: The maximum amount of decarburization allowed on rail, defined as a complete ferrite network at the surface, is 0.5mm.
- Therefore, there should be storage requirements, such as a roof or a rust-proof coating, etc., and the degraded layer removed.

Redesignation of the Location for Microstructural Analysis

Cross-section of the rail head showing the areas for preparing tensile strength and microstructure test samples (in mm) designed by SRT. It should be redesigned to cover the contact surface.

- preparing the tensile test sample
- Area for removing the material for preparing the microstructure analysis sample

© NSTDA 2023 www.nstda.or.th

ศูนย์วิจัยเทคโนโลยีระบบรางและการขนส่งสมัยใหม่

2. Corrosion map for rail tracks and fastening system

Crevice corrosion sensor (Lab Prototype)

0.5

0.4

-EIS-fill-2%NaCl

Corrosion rate [mmpy]

Relevant steel grades (900A, R260)

Bi-electrode sensor

fill: fill the crevice with NaCl 2%wt solution (solution dry up) im: immerse sensor in NaCl 2%wt solution (always in contact with NaCl)

Corrosion rate of fill = 0.5 x (corrosion rate of im)

Severe corrosion inside the crevice area

Exposure test (1 year)

• Crevice corrosion sensor

Relevant steel grades (900A, R260)

- Weather data
 Monitor Cl-
 - Monitor Cland SO₂

Corrosion current density (I corr) and corrosion rate from EIS measurement

Mae Jang Station

Exposure test (1 year)

• Crevice corrosion sensor

Sensor output

Average corrosion rate [mmpy]

Average crevice corrosion rate for 4 months was **30X** faster than general corrosion rate in marine test site.

Scribe through sealant layer, top and contact surfaces

Sample4

Sample5

Sample 6

Sample1

• Failure of railway in northern Line

At gauge side near the rail head, (White Etching Layer: WEL), cracks and materials deformation were found.

At position c, cracks were found at decarburization area. Crack propagated along ferrite phase.

Hardness at deformation area and WEL higher than normal area.

Summary

- The location where severe wear occurs on the gauge side is typically the point of contact between the wheel and the rail.
- Deformation and WEL, high hardness phase was found at wear area.
- Crack initiated at deformation area and crack propagated along ferrite phase

Sample #3

Deformation was found at fish plate hole

Chevron marks indicated that crack initiated from fish plate hole

Deformation

Hardness at crack origin and deformation area higher than UIC 900A standard.

Summary

- Crack initiated from fish plate hole.
- Deformation was found at fish plate hole.
- Hardness at crack origin and deformation area higher than UIC 900A standard.

Thank You

Smart manufacturing and maintenance technology research team Railways and Modern Transportation Research Group National Metal and Materials Technology Centre National Science and Technology Development Agency