<u>Study on bogie strength design</u> <u>considering seismic motion</u>

Masakazu Takagaki

Computational Mechanics Laboratory, Railway Dynamics Division, Railway Technical Research Institute

Contents

- ✓ Research Background
- Evaluation of the force acting on the bogie frame due to seismic motion
- ✓ Strength evaluation and fatigue damage evaluation for bogie frame

Research Background

When strong forces are applied to bogies due to huge earthquakes, they may suffer damage such as cracks or permanent deformation.

 \Rightarrow From the perspective of running safety, it is important to evaluate the strength and damage of bogie frames exposed to seismic motion.

Example of Shinkansen derailment during an earthquake

(2004.10.23) Joetsu Shinkansen
(2011. 3.11) Tohoku Shinkansen
(2016. 4.14) Kyushu Shinkansen
(2022. 3.16) Tohoku Shinkansen (Stopped)

Niigata Chuetsu Earthquake Great East Japan Earthquake Kumamoto Earthquake Fukushima Earthquake

Joetsu Shinkansen derailment accident

Contents

- ✓ Research Background
- Evaluation of the force acting on the bogie frame due to seismic motion
- ✓ Strength evaluation and fatigue damage evaluation for bogie frame

Evaluate of forces acting on each part of a bogie by analysis of vehicle behavior during an earthquake

Evaluating the forces acting on the bogie frame using multibody dynamics simulation

<u>Analysis of forces acting on each part of a bogie by</u> <u>analysis of vehicle behavior during an earthquake</u>

Load applied to bogie frame

Results of vehicle motion simulation

Results of vehicle motion simulation

Contents

- ✓ Research Background
- Evaluation of the force acting on the bogie frame due to seismic motion
- ✓ Strength evaluation and fatigue damage evaluation for bogie frame

Strength evaluation of bogie frame by FEM analysis

Equivalent stress contour diagram

Extraction of evaluation targets related to the effects of seismic motion

A stress analysis of the bogie frame was conducted assuming a load equivalent to the Northern Pacific Coast Earthquake.

High load areas when seismic motion acts

	High load area			
1	Air spring seat	7	Joint of side beam/cross beam (Lower)	
2	Upper surface of cross beam	8	Upper surface of side beam	
3	Edge of Lateral damper seat	9	Lower surface of cross beam (Center)	
4	Joint of connection beam/cross beam(Side)	10	Joint of axle beam/side beam	
5	Joint of connection beam/cross beam(Upper)	11	Axle beam seat	
6	Joint of traction motor seat/cross beam	12	Lower surface of side beam	
Railway Technical Research Institut				

Stress time history of the part where the elastic limit was exceeded

Fatigue damage evaluation of bogie frame

fluctuating stress measured in running tests

Running test overview • Measurement object : Bogie frame of Shinkansen trains • Measurement section : Commercial line • Measurement item :

Fluctuating stress

No	Measurement pint	Max	Min	Stress
		Stress MPa	stress MPa	range MPa
1	Air spring seat	29	-20	49
2	Upper surface of cross beam	19	-16	35
3	Edge of Lateral damper seat	19	-23	42
4	Joint of connection beam/cross beam(Side)	16	-7	23
5	Joint of connection beam/cross beam(Upper)	24	-22	46
6	Joint of support of traction motor/cross beam	34	-35	69
7	Joint of side beam/cross beam (Lower)	40	-33	73
8	Upper surface of side beam	11	-9	20
9	Lower surface of cross beam (Center)	13	-10	23
10	Joint of axle beam/side beam	23	-21	44
11	Axle beam seat	29	-18	47
12	Lower surface of side beam	27	-33	60

Fatigue damage evaluation of bogie frame

Stress frequency distribution in running test

Fatigue damage evaluation for bogie frame

receiving the seismic load

<u>Cumulative damage degree by</u> <u>modified Minor rule</u> $D = \sum \frac{n_i}{N_i}$

Frequency n_i for stress range $\Delta \sigma_i$ Limit fatigue repetition number Ni $D = 1 \Rightarrow$ Fatigue failure

Evaluation of the Effect of Earthquake Motion on Bogie Frames

Cumulative fatigue damage assuming seismic loading

No.	Evaluation point	Degree of damage due to normal running D _n	Degree of damage due to seismic motion D _{eq}	Total Damage D = D _n + D _{eq}
1	Air spring seat	0.1340	0.0288	0.163
2	Upper surface of cross beam	0.0727	0.0192	0.092
3	Edge of Lateral damper seat	0.0367	0.061	0.098
4	Joint of connection beam/cross beam(Side)	0.0123	0.0093	0.022
5	Joint of connection beam/cross beam(Upper)	0.1377	0.0337	0.171
6	Joint of support of traction motor/cross beam	0.1953	0.0274	0.223
7	Joint of side beam/cross beam (Lower)	0.2163	0.0331	0.249
8	Upper surface of side beam	0.0840	0.0088	0.093
9	Lower surface of cross beam (Center)	0.0680	0.0006	0.069
10	Joint of axle beam/side beam	0.0913	0.0256	0.117
11	Axle beam seat	0.1650	0.0165	0.182
12	Lower surface of side beam	0.2060	0.0192	0.225

 The degree of damage during normal driving is assumed to be 20 million km from the time the car is new to the time it is scrapped.

Evaluation of the Effect of seismic Motion on Bogie Frames

Affect of plastic deformation due to seismic force

Center of Axle spring seat	Distance between centers of spring mm	Permanent deformation mm	Manufacture tolerance mm	
①1-2	2000	0.42	0.5	
@3-4	2000	0.39	0.5	
31-4	3202	0.15	1.0	
④ 2-3	3202	0.38	1.0	

Concept of bogie frame design against seismic motion

<u>...Thank you</u> for your kind attention

