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Abstract

InSb/AlIn, ,Sb superlattices (SLs) are grown by molecular beam epitaxy on (001) InSb substrate and
Raman scattering spectroscopy of the samples under magnetic field is investigated. Al contents in
AlInSb of the samples are varied. All samples are characterized by atomic force microscopy (AFM),
X-ray diffraction and Raman scattering spectroscopy. The Raman spectroscopy is done by using
excitation laser with 633 nm wavelength and 2 sm beam spot under applied magnetic field from 0 to
170 mT. Both TO and LO Raman peaks from InSb are detected from all samples. There are Raman
peak shift of both TO and LO by applied magnetic field. Stronger magnetic effect is found in LO than
TO phonon modes. We attribute this effect to the symmetry breaking of the InSb/AlInSb interfaces
since the observed roughness of the top InSb layer can qualitatively correlate with the shift.

1. Introduction

In the last decades, ITI-V compound superlattices (SLs) and quantum nanostructures have been widely
investigated as they are promising structures for novel electronic and optoelectronic device applications [1, 2].
Among them, antimonide-based material systems namely InSb, GaSb, AlSb, InGaSb, AlGaSb have been
explored for their basic properties of various substrates (GaAs, InAs, GaSb, and InSb) [3—14]. Structural
characteristics of both nearly lattice-matched such as InAs/GaSb and many mismatched systems are reported
along with their fabrication details as they are the prerequisites for the successful realization of novel nano-
devices.

Concerning the device applications of InSb-based systems, InSb/AlInSb SLs or quantum nanostructures can
be utilized for realizing high performance optoelectronic devices operating in infrared wavelength range [8, 9,
15-22]. It has also been demonstrated that InSb can be used as Hall bar for magnetic field sensing since the room
temperature (RT) electron mobility in InSb is highest among all III-V compounds [23-25]. Typically, two-
dimensional electron gas is formed in the high-electron mobility structure based on this material. However, the
magneto-optical properties of InSb/AlInSb SLs in visible range have not been well investigated.

Recently, we have observed a small but noticeable Raman scattering peak shifts of samples containing
nanostructures [9]. In another work [26], the Raman peak shift is observed in free-standing InSb nanowire
sample. The observed results for InSb nanowires [26] and nano-stripes [9] are less obvious as compared to other
material systems [27, 28]. We thus investigate the InSb/AlInSb SLs. In this work, we report on the realization
and Raman peak shifts of InSb/AlIn; ,Sb SLs. The Al content x is varied and the shifts of both LO and TO peaks
are observed in all Al-contained samples. We have qualitatively explained the origin of these shifts to the

© 2020 The Author(s). Published by IOP Publishing Ltd
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Figure 1. (a) Schematic diagram of the InSb/Al,In; _,Sb SL structure grown on (001) InSb substrate. One period of SL structure
consists of 5-nm-thick InSb and 10-nm-thick AlInSb layers. (b) Schematic view of the sample and electromagnet arrangement in the
micro-Raman spectroscopy setup. The external magnetic field B isapplied along zaxis. The red line with arrows showing the 633-nm
laser using to excite the Raman signals. The blue lines with arrows show the Raman scatterings from the sample. The signal is collected
bythe 50 X objective lens.

interface inhomogeneity of the InSb/AlInSb interface as the roughness of InSb top layer can be correlated to the
interface.

2.Sample preparation

InSb/AlIn; ,Sb x5 SL samples are grown on (001) InSb substrates by molecular beam epitaxy (MBE RIBER
Compact 21TM) equipped with an antimony (Sb) valved cracker cell. The In and Al sources are conventional
effusion cells. The overall growth process was monitored in situ by reflection high energy electron diffraction
(RHEED) observation. Prior to the growth, the substrate is pre-heated at 200 °C for 1 h in the preheating
chamber. After preheating, it is transferred into the MBE growth chamber and the de-oxidation process is
performed. By RHEED observation, the surface is de-oxidized at 380 °C. To minimize the surface roughness
after de-oxidation process, 200 nm thick InSb buffer layer with In growth rate of 0.12 monolayer per second
(ML/s) is grown on the InSb substrate at de-oxidized temperature 380 °C. Then, Al In, _,Sb (10 nm) layer is
grown and followed by InSb (5 nm) layer for complete one period of InSb/AlInSb SL. The Al content x in AlInSb
is varied from 0.1 to 0.2 and 0.5 adjusted by the temperature of Al effusion cell in the range of ~1010 to ~1120 °C
for the targeted amount of Al composition. The SL active region is composed of five periods-InSb (5 nm)/
AlInSb (10 nm). Finally, 200-nm-thick InSb layer is grown at the topmost of the SL structure as the capping
layer. The substrate temperature and In growth rate are fixed at 380 °C, 0.12 ML s~ ' for overall MBE growth
process. The schematic diagram of InSb/AlInSb SL structure is shown in figure 1(a).

The surface morphology of the grown samples is characterized by the atomic force microscopy (AFM, Seiko
SPA-400) in dynamic force mode in air. Crystalline quality, layer thickness and the lattice parameter variation
relating to III-V compound composition are probed by an X-ray diffractometer (HR-XRD Rigaku TTRAXIII)
operated at 50 kV. The Raman spectroscopy (Reinshaw inVia'™) is performed by employing 633-nm excitation
laser at RT. Figure 1(b) shows the arrangement of the sample and electromagnet in the micro-Raman
spectroscopy setup. In order to investigate the effect of magnetic field on the Raman spectra, the external
magnetic field B isincreased from 0t0 32,64, 89,122, 144 and 170 millitesla (mT). The magnetic field is
controlled by the applied voltage to an electromagnet. Calibration with a commercial magnetometer is
performed before and after the experiment. The magnetic field Bis applied in z direction.
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1um

Figure 2.3 x 3 um? AFM images of top InSb layers grown on InSb/Al,In; _,Sb SL having Al contents x of (a) 0.1, (b) 0.2 and (c) 0.5.
The arrows show the elongated trends observing on the surface.

3. Results and discussion

The surface morphology of the topmost InSb layer is observed by AFM. Figures 2(a)—(c) shows the typical InSb
surfaces from the samples having Al contentx = 0.1,0.2, and 0.5. Holes and elongated trends are observed on
the surface of the sample with x = 0.1. The similar trends get longer and show densely on the x = 0.2 sample.
The roughness of x = 0.5 sample gets higher showing corrugated and stepped surface. The RMS roughness
values of the top InSb surfaces of the samples with x = 0.1,0.2 and 0.5 are 1.33, 2.09 and 2.42 nm, respectively,
by probingthe 1 x 1 um? surface area. This roughness can be related to the interface roughness of underneath
InSb/AlInSb SLs and it might relate to the degree of Raman peak shifts, which are shown below.

HR-XRD analysis is carried out to investigate the crystalline quality, layer thickness and ITI-V compound
composition in the InSb/Al In; _,Sb SL structure. The samples are diffracted by x-ray beam with wavelength of
1.5406 A (CuKay) at 0.02° step. Figure 3(a) shows the overall XRD patterns in log (normalized) scale of the three
samples with various x and InSb substrate (reference) at the diffraction angle 26 range between 20° and 80°. InSb
peaks from (200) reflection at 26 ~28° and (400) reflection at 26 ~57° are observed [11, 17]. Magnified view of
XRD patterns are shown in figure 3(b). The (400) reflection peak of InSb is observed at 26 ~56.79°. The
reflections at 20 ~57°-59° can be assigned to the central diffraction peaks from mixtures of epitaxial InSb and
Al,In; ,Sblayers. The diffraction angle 26 calculation is done by using typical Bragg Law. To evaluate the
behaviour of material composition in the investigated SLs, we calculate the diffraction angle 26 of SL in two
models; one for AlInSb peak and one for InSb/AlInSb mixture peak. The calculated and experimental results are
described in table 1. The experimental results of central 20 reflections are extracted by the function of Lorentz fit.
The result from XRD shows monotonic shift and broadening of the InSb/AlIn; _,Sb peak when the aluminium
content increases (from 0.1 to 0.5). The former is due to the increase of the Al content x while the latter is from
the roughness increment. This deliberate growth of SL with low structural quality (high roughness) is done in
order to probe the magnetic field induced Raman peak shift, which is shown below.

The Raman spectroscopy is performed to study the strain characteristics of the InSb/AlInSb SL structure,
and the relation between the magnetic field B and the Raman frequency shift. To investigate the effect of external
applied B on the Raman spectrum, Bis increased from 0 to 32, 64, 89, 122, 144 and 170 mT while the excitation
laser wavelength is fixed at 633 nm. Bis aligned along in the z direction. The beam spot size of excitation laser is
~2 um by employing the 50 x objective lens, and the signal is scanned with the acquisition time of 20 s.

Figure 4(a) shows the Raman scattering spectrum of SL (x = 0.1) measured without B. The three peaks
corresponding to the Sb cluster, first and second order InSb are observed at ~140, 170-200 and 370-385 cm™ Y,
respectively [9, 11-14, 29]. Since the vicinity of laser beam spot is ~2 um, B interacting with laser beam
excitation is limited. With limited area of interaction, however, the evolution of the Raman shift as the function
of Bis occurred in all samples as shown in figures 4(b)—(d). The strong first order InSb peak is focussed to study
the Raman peak shift. When B increases from 0 to 170 mT, the blue-shift of transverse optical (TO) and
longitudinal optical (LO) phonon peaks of InSb is observed. The broad Raman scattering features at lower values
of Bis the resultants from the contributing of TO and LO phonon peaks, and the LO phonon peak is getting
stronger and clearly split from TO mode at higher values of B. We speculate that the lattice vibration or
polarization of LO phonons is more strongly affected by the external magnetic field than that of TO phonons.

Raman frequency shift as the function of B is summarized as shown in figure 5 for the investigated samples.
The peak-positions of LO and TO phonon modes are extracted by fitting with the Gaussian function. The values

3



10P Publishing

Mater. Res. Express7 (2020) 105007 M Chikumpa et al

@ "~ " T T T T T

- (200) - -
I | InSb/Aly ¢In, sSb

INSb/Al, ,Ing ;Sb

x=0.2

INSb/Al, ;In, ¢Sb

Log Normalized Intensity
Log Normalized Intensity

InSb (ref.) 1 InSb (ref.)

" 1 i 1 " 1 i 1 i 1
20 3 40 5 60 70
26 (°)

1 1 L L I

80 56.0 56.5 57.0 57.5 58.0 58.5 59.0
o

Figure 3. HR-XRD patterns of w-26 scan around InSb (200) and (400) reflections for InSb/AlIn; ,Sb SL (x = 0.1,0.2,0.5) between
the diffraction angle 26 of (a) 20°-80° and (b) 56—59° (Magnified view). The lowest XRD pattern of InSb substrate is plotted as the
reference (black line). The patterns are plotted in logarithmic scale and shifted upward for clarity.

Table 1. Comparison of calculated and experimental X-ray diffraction angle 26 of InSb/Al,In, _,Sb
superlattices with different Al content x .

Calculation
Al content x Al In,;_,Sbpeak InSb/AlLIn,_,Sb peak Experiment
20_(°) 260, (°) 20, (°) 20_(%) 260, (°) 20,.(°) 260, (%)
0.1 56.45 57.12 57.79 56.34 57.01 57.68 57.12
0.2 56.78 57.45 58.13 56.56 57.23 57.90 57.23
0.5 57.81 58.48 29.16 57.23 57.90 58.58 57.85

20_ = firstsatellite peak at negative angle.
26, = central diffraction angle.
20, = firstsatellite peak.

of (LO and TO) phonon peak shifts for InSb/AlInSb SLs with x = 0.1,0.2 and 0.5 are (2.19, 1.59), (2.95, 2.24),
and (4.16,2.03) cm ™', respectively. The slope of shifting data indicates the sensitivity of magnetic effect of each
sample. The samples with x = 0.1 and 0.2 show similar results with nearly the same slope and discrepancy
among the LO and TO lines. The general concept of the Raman frequency shift of the optical phonons, Aw, by
the external applied magnetic field, B, can be simply expressed as

Aw = 1B,

where, 7 is an empirical constant (in the unit of cm ' /mT). The experimental results indicate that the y; o is
larger at SLwith x = 0.5, which can be related to the different lattice vibration due to the lattice parameter
variation by increasing x. In this work, the origin of these shifts can be qualitatively explained as the interface
inhomogeneity of the InSb/AlInSb interface correlating to the surface corrugation of InSb top layer. Since
perfect non-magnetic crystals such as III-V compound semiconductors do not show a magnetic field induced
Raman shift [30]. Further theoretical considerations as well as explicit atomistic calculations are still needed to
proceed for developing a complete understanding of this phenomenon [30, 31].

Comparison on the Raman peak positions of the three SL samples with variousxat B = 0 up to 170 mT, the
red-shift of the Raman scatterings is revealed as x increases. The fitted TO and LO peak positions of the three SLs
withx = 0.1,0.2and 0.5at B = 0 mT are obtained at (178.75, 185.79), (176.82, 185.05) and (176.63, 183.50)
cm™ !, respectively. The TO and LO peaks are shifted by 1.93 cm™ ' and 0.74 cm ™' when x increases from 0.1 to
0.2,and0.19 cm™'and 1.55 cm ™' when x increases from 0.2 to 0.5, respectively. The possible explanation for
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Figure 4. (a) Overall typical Raman scattering spectrum from InSb/Al ;In, ¢Sb SL measured without magnetic field (B = 0). The
Raman scattering peaks from Sb cluster, TO and LO phonon peaks of InSb and 2nd order of InSb are observed. Raman spectra of
InSb/AlIn; ,SbSLwith (b)x = 0.1,(c)x = 0.2and (d) x = 0.5 measured by applying B from 0 up to 170 mT. The blue shift of TO
and LO peaks of InSb as a function of applied-magnetic field is observed in all investigated samples. The excitation laser wavelength is
fixed at 633 nm. The labels indicate the calibrated B values.

these shifts is that the dislocations generated by the relaxation of misfit strain are eliminated at the interfaces in
the SL. The nearby areas have both the compressive and tensile strained regions. In our case, the red-shift of the
Raman phonon peaks can be attributed to the induced tensile strain at the InSb/AlInSb interfaces manipulated
by the Al composition in the ternary compound AlInSb.

4. Summary

InSb/Al,In; ,Sb SLs with various Al contents (x = 0.1,0.2 and 0.5) have been prepared on InSb substrates by
MBE The surface corrugation of top InSb layer is qualitatively analysed by AFM. The sample with x = 0.5 gets
most roughening surface among the investigated samples. XRD measurement exhibits the reflections from InSb
and the InSb/Al,In; ,Sb mixture. By comparing with the calculated values, the material intermixing occurs at
the interfaces of SL, and the diffraction peaks are mainly observed from the InSb/AlIn; ,Sb mixture. Micro-
Raman spectroscopy accompanying with external applied magnetic field B reveals that the influence of magnetic
field on the InSb/Al,In; ,Sb SL structure. InSb/Al, 5Ing 5Sb SL has the highest magnetic response of phonons to
the applied B. The clear blue-shift of TO and LO Raman phonon scatterings of SL is observed when B = 0 up to
170 mT. This can be implied to the dissymmetry behaviour of the InSb/AlInSb interfaces which is correlated to
the surface roughness of the top InSb layer. Moreover, the red-shifts of TO and LO Raman phonon peaks reveal
the relaxation of tensile strain at the interfaces induced by higher Al composition.
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Figure 5. The linear fitting curves of the LO and TO peak shifts Aw by varying applied magnetic field B. The Raman scattering
frequencies as a function of B forInSb /Al In; _,Sb SLwithx = 0.1,0.2and 0.5 are represented by blue, green and red dots.
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