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Abstract
InSb/Alxln1−xSb superlattices (SLs) are grown bymolecular beam epitaxy on (001) InSb substrate and
Raman scattering spectroscopy of the samples undermagnetic field is investigated. Al contents in
AlInSb of the samples are varied. All samples are characterized by atomic forcemicroscopy (AFM),
X-ray diffraction andRaman scattering spectroscopy. The Raman spectroscopy is done by using
excitation laser with 633 nmwavelength and 2μmbeam spot under appliedmagneticfield from0 to
170mT. BothTO and LORaman peaks from InSb are detected from all samples. There are Raman
peak shift of both TOand LOby appliedmagneticfield. Strongermagnetic effect is found in LO than
TOphononmodes.We attribute this effect to the symmetry breaking of the InSb/AlInSb interfaces
since the observed roughness of the top InSb layer can qualitatively correlate with the shift.

1. Introduction

In the last decades, III-V compound superlattices (SLs) and quantumnanostructures have beenwidely
investigated as they are promising structures for novel electronic and optoelectronic device applications [1, 2].
Among them, antimonide-basedmaterial systems namely InSb, GaSb, AlSb, InGaSb, AlGaSb have been
explored for their basic properties of various substrates (GaAs, InAs, GaSb, and InSb) [3–14]. Structural
characteristics of both nearly lattice-matched such as InAs/GaSb andmanymismatched systems are reported
alongwith their fabrication details as they are the prerequisites for the successful realization of novel nano-
devices.

Concerning the device applications of InSb-based systems, InSb/AlInSb SLs or quantumnanostructures can
be utilized for realizing high performance optoelectronic devices operating in infraredwavelength range [8, 9,
15–22]. It has also been demonstrated that InSb can be used asHall bar formagnetic field sensing since the room
temperature (RT) electronmobility in InSb is highest among all III-V compounds [23–25]. Typically, two-
dimensional electron gas is formed in the high-electronmobility structure based on thismaterial. However, the
magneto-optical properties of InSb/AlInSb SLs in visible range have not beenwell investigated.

Recently, we have observed a small but noticeable Raman scattering peak shifts of samples containing
nanostructures [9]. In anotherwork [26], the Raman peak shift is observed in free-standing InSb nanowire
sample. The observed results for InSb nanowires [26] and nano-stripes [9] are less obvious as compared to other
material systems [27, 28].We thus investigate the InSb/AlInSb SLs. In this work, we report on the realization
andRaman peak shifts of InSb/AlxIn1−xSb SLs. TheAl content x is varied and the shifts of both LO andTOpeaks
are observed in all Al-contained samples.We have qualitatively explained the origin of these shifts to the
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interface inhomogeneity of the InSb/AlInSb interface as the roughness of InSb top layer can be correlated to the
interface.

2. Sample preparation

InSb/AlxIn1−xSb×5 SL samples are grownon (001) InSb substrates bymolecular beam epitaxy (MBERIBER
Compact 21TM) equippedwith an antimony (Sb) valved cracker cell. The In andAl sources are conventional
effusion cells. The overall growth process wasmonitored in situ by reflection high energy electron diffraction
(RHEED) observation. Prior to the growth, the substrate is pre-heated at 200 °C for 1 h in the preheating
chamber. After preheating, it is transferred into theMBE growth chamber and the de-oxidation process is
performed. By RHEEDobservation, the surface is de-oxidized at 380 °C.Tominimize the surface roughness
after de-oxidation process, 200 nm thick InSb buffer layer with In growth rate of 0.12monolayer per second
(ML/s) is grownon the InSb substrate at de-oxidized temperature 380 °C.Then, AlxIn1−xSb (10 nm) layer is
grown and followed by InSb (5 nm) layer for complete one period of InSb/AlInSb SL. TheAl content x in AlInSb
is varied from0.1 to 0.2 and 0.5 adjusted by the temperature of Al effusion cell in the range of∼1010 to∼1120 °C
for the targeted amount of Al composition. The SL active region is composed offive periods-InSb (5 nm)/
AlInSb (10 nm). Finally, 200-nm-thick InSb layer is grown at the topmost of the SL structure as the capping
layer. The substrate temperature and In growth rate are fixed at 380 °C, 0.12 ML s−1 for overallMBE growth
process. The schematic diagramof InSb/AlInSb SL structure is shown infigure 1(a).

The surfacemorphology of the grown samples is characterized by the atomic forcemicroscopy (AFM, Seiko
SPA-400) in dynamic forcemode in air. Crystalline quality, layer thickness and the lattice parameter variation
relating to III-V compound composition are probed by anX-ray diffractometer (HR-XRDRigakuTTRAX III)
operated at 50 kV. TheRaman spectroscopy (Reinshaw inViaTM) is performed by employing 633-nmexcitation
laser at RT. Figure 1(b) shows the arrangement of the sample and electromagnet in themicro-Raman
spectroscopy setup. In order to investigate the effect ofmagnetic field on the Raman spectra, the external
magnetic field


B is increased from0 to 32 , 64 , 89 , 122 , 144 and 170millitesla (mT). Themagnetic field is

controlled by the applied voltage to an electromagnet. Calibrationwith a commercialmagnetometer is
performed before and after the experiment. Themagnetic field


B is applied in zdirection.

Figure 1. (a) Schematic diagramof the InSb/AlxIn1−xSb SL structure grown on (001) InSb substrate. One period of SL structure
consists of 5-nm-thick InSb and 10-nm-thickAlInSb layers. (b) Schematic view of the sample and electromagnet arrangement in the
micro-Raman spectroscopy setup. The externalmagneticfield


B is applied along z axis. The red linewith arrows showing the 633-nm

laser using to excite the Raman signals. The blue lines with arrows show the Raman scatterings from the sample. The signal is collected
by the 50×objective lens.
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3. Results and discussion

The surfacemorphology of the topmost InSb layer is observed byAFM. Figures 2(a)–(c) shows the typical InSb
surfaces from the samples having Al content x=0.1, 0.2, and 0.5.Holes and elongated trends are observed on
the surface of the sample with x=0.1. The similar trends get longer and showdensely on the x=0.2 sample.
The roughness of x=0.5 sample gets higher showing corrugated and stepped surface. The RMS roughness
values of the top InSb surfaces of the samples with x=0.1, 0.2 and 0.5 are 1.33, 2.09 and 2.42 nm, respectively,
by probing the 1×1μm2 surface area. This roughness can be related to the interface roughness of underneath
InSb/AlInSb SLs and itmight relate to the degree of Raman peak shifts, which are shownbelow.

HR-XRD analysis is carried out to investigate the crystalline quality, layer thickness and III-V compound
composition in the InSb/AlxIn1−xSb SL structure. The samples are diffracted by x-ray beamwithwavelength of
1.5406 Å (CuKα1) at 0.02° step. Figure 3(a) shows the overall XRDpatterns in log (normalized) scale of the three
samples with various x and InSb substrate (reference) at the diffraction angle 2θ range between 20° and 80°. InSb
peaks from (200) reflection at 2θ∼28° and (400) reflection at 2θ∼57° are observed [11, 17].Magnified view of
XRDpatterns are shown infigure 3(b). The (400) reflection peak of InSb is observed at 2θ∼56.79°. The
reflections at 2θ∼57°–59° can be assigned to the central diffraction peaks frommixtures of epitaxial InSb and
AlxIn1−xSb layers. The diffraction angle 2θ calculation is done by using typical Bragg Law. To evaluate the
behaviour ofmaterial composition in the investigated SLs, we calculate the diffraction angle 2θ of SL in two
models; one for AlInSb peak and one for InSb/AlInSbmixture peak. The calculated and experimental results are
described in table 1. The experimental results of central 2θ reflections are extracted by the function of Lorentzfit.
The result fromXRD showsmonotonic shift and broadening of the InSb/AlxIn1−xSb peakwhen the aluminium
content increases (from0.1 to 0.5). The former is due to the increase of the Al content xwhile the latter is from
the roughness increment. This deliberate growth of SLwith low structural quality (high roughness) is done in
order to probe themagnetic field induced Raman peak shift, which is shown below.

TheRaman spectroscopy is performed to study the strain characteristics of the InSb/AlInSb SL structure,
and the relation between themagnetic fieldB and theRaman frequency shift. To investigate the effect of external
appliedB on the Raman spectrum,B is increased from0 to 32, 64, 89, 122, 144 and 170mTwhile the excitation
laserwavelength isfixed at 633 nm.B is aligned along in the z direction. The beam spot size of excitation laser is
∼2 μmby employing the 50×objective lens, and the signal is scannedwith the acquisition time of 20 s.
Figure 4(a) shows the Raman scattering spectrumof SL (x=0.1)measuredwithoutB. The three peaks
corresponding to the Sb cluster,first and second order InSb are observed at∼140, 170–200 and 370–385 cm−1,
respectively [9, 11–14, 29]. Since the vicinity of laser beam spot is∼2 μm,B interactingwith laser beam
excitation is limited.With limited area of interaction, however, the evolution of the Raman shift as the function
ofB is occurred in all samples as shown infigures 4(b)–(d). The strong first order InSb peak is focussed to study
the Raman peak shift.WhenB increases from0 to 170mT, the blue-shift of transverse optical (TO) and
longitudinal optical (LO) phonon peaks of InSb is observed. The broadRaman scattering features at lower values
ofB is the resultants from the contributing of TO and LOphonon peaks, and the LOphonon peak is getting
stronger and clearly split fromTOmode at higher values ofB.We speculate that the lattice vibration or
polarization of LOphonons ismore strongly affected by the externalmagnetic field than that of TOphonons.

Raman frequency shift as the function ofB is summarized as shown infigure 5 for the investigated samples.
The peak-positions of LO andTOphononmodes are extracted by fittingwith theGaussian function. The values

Figure 2. 3×3 μm2AFM images of top InSb layers grown on InSb/AlxIn1−xSb SL having Al contents x of (a) 0.1, (b) 0.2 and (c) 0.5.
The arrows show the elongated trends observing on the surface.
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of (LOandTO) phonon peak shifts for InSb/AlInSb SLswith x=0.1, 0.2 and 0.5 are (2.19, 1.59), (2.95, 2.24),
and (4.16, 2.03) cm−1, respectively. The slope of shifting data indicates the sensitivity ofmagnetic effect of each
sample. The samples with x=0.1 and 0.2 show similar results with nearly the same slope and discrepancy
among the LO andTO lines. The general concept of the Raman frequency shift of the optical phonons,Δω, by
the external appliedmagnetic field,B, can be simply expressed as

w gD = B,

where, γ is an empirical constant (in the unit of cm−1/mT). The experimental results indicate that the γLO is
larger at SLwith x=0.5, which can be related to the different lattice vibration due to the lattice parameter
variation by increasing x. In this work, the origin of these shifts can be qualitatively explained as the interface
inhomogeneity of the InSb/AlInSb interface correlating to the surface corrugation of InSb top layer. Since
perfect non-magnetic crystals such as III-V compound semiconductors do not show amagnetic field induced
Raman shift [30]. Further theoretical considerations aswell as explicit atomistic calculations are still needed to
proceed for developing a complete understanding of this phenomenon [30, 31].

Comparison on theRaman peak positions of the three SL sampleswith various x atB=0 up to 170mT, the
red-shift of the Raman scatterings is revealed as x increases. Thefitted TO and LOpeak positions of the three SLs
with x=0.1, 0.2 and 0.5 atB=0mTare obtained at (178.75, 185.79), (176.82, 185.05) and (176.63, 183.50)
cm−1, respectively. The TO and LOpeaks are shifted by 1.93 cm−1 and 0.74 cm−1 when x increases from0.1 to
0.2, and 0.19 cm−1 and 1.55 cm−1 when x increases from0.2 to 0.5, respectively. The possible explanation for

Figure 3.HR-XRDpatterns ofω-2θ scan around InSb (200) and (400) reflections for InSb/AlxIn1−xSb SL (x=0.1, 0.2, 0.5) between
the diffraction angle 2θ of (a) 20°–80° and (b) 56–59° (Magnified view). The lowest XRDpattern of InSb substrate is plotted as the
reference (black line). The patterns are plotted in logarithmic scale and shifted upward for clarity.

Table 1.Comparison of calculated and experimental X-ray diffraction angle 2θ of InSb/AlxIn1−xSb
superlattices with different Al content x .

Calculation

Al content x AlxIn1−xSb peak InSb/AlxIn1−xSb peak Experiment

2θ− (°) 2θ0 (°) 2θ+ (°) 2θ− (°) 2θ0 (°) 2θ+ (°) 2θ0 (°)
0.1 56.45 57.12 57.79 56.34 57.01 57.68 57.12

0.2 56.78 57.45 58.13 56.56 57.23 57.90 57.23

0.5 57.81 58.48 29.16 57.23 57.90 58.58 57.85

2θ−=first satellite peak at negative angle.
2θ0=central diffraction angle.
2θ+=first satellite peak.
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these shifts is that the dislocations generated by the relaxation ofmisfit strain are eliminated at the interfaces in
the SL. The nearby areas have both the compressive and tensile strained regions. In our case, the red-shift of the
Raman phonon peaks can be attributed to the induced tensile strain at the InSb/AlInSb interfacesmanipulated
by the Al composition in the ternary compoundAlInSb.

4. Summary

InSb/AlxIn1−xSb SLswith various Al contents (x=0.1, 0.2 and 0.5) have been prepared on InSb substrates by
MBEThe surface corrugation of top InSb layer is qualitatively analysed byAFM.The samplewith x=0.5 gets
most roughening surface among the investigated samples. XRDmeasurement exhibits the reflections from InSb
and the InSb/AlxIn1−xSbmixture. By comparingwith the calculated values, thematerial intermixing occurs at
the interfaces of SL, and the diffraction peaks aremainly observed from the InSb/AlxIn1−xSbmixture.Micro-
Raman spectroscopy accompanying with external appliedmagnetic fieldB reveals that the influence ofmagnetic
field on the InSb/AlxIn1−xSb SL structure. InSb/Al0.5In0.5Sb SL has the highestmagnetic response of phonons to
the appliedB. The clear blue-shift of TO andLORaman phonon scatterings of SL is observedwhenB=0 up to
170mT. This can be implied to the dissymmetry behaviour of the InSb/AlInSb interfaces which is correlated to
the surface roughness of the top InSb layer.Moreover, the red-shifts of TO and LORaman phonon peaks reveal
the relaxation of tensile strain at the interfaces induced by higher Al composition.

Figure 4. (a)Overall typical Raman scattering spectrum from InSb/Al0.1In0.9Sb SLmeasuredwithoutmagnetic field (B=0). The
Raman scattering peaks fromSb cluster, TO and LOphonon peaks of InSb and 2nd order of InSb are observed. Raman spectra of
InSb/AlxIn1−xSb SLwith (b) x=0.1, (c) x=0.2 and (d) x=0.5measured by applyingB from 0up to 170mT. The blue shift of TO
and LOpeaks of InSb as a function of applied-magnetic field is observed in all investigated samples. The excitation laser wavelength is
fixed at 633 nm. The labels indicate the calibratedB values.
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