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Abstract: As a decision support tool, life cycle assessment (LCA) is prone to multiple uncertainties
associated with the data, model structures, and options offered to practitioners. Therefore, to make the
results reliable, consideration of these uncertainties is imperative. Among the various classifications,
parameter, scenario, and model uncertainty are widely reported and well-acknowledged uncertainty
types in LCA. There are several techniques available to deal with these uncertainties; however, each
strategy has its own pros and cons. Furthermore, just a few of the methods have been included
in LCA software, which restricts their potential for wider application in LCA research. This paper
offers a comprehensive framework that concurrently considers parameter, scenario, and model
uncertainty. Moreover, practitioners may select multiple alternatives depending on their needs
and available resources. Based on the availability of time, resources, and technical expertise three
levels—basic, intermediate, and advanced—are suggested for uncertainty treatment. A qualitative
method, including local sensitivity analysis, is part of the basic approach. Monte Carlo sampling
and local sensitivity analysis, both of which are accessible in LCA software, are suggested at the
intermediate level. Advanced sampling methods (such as Latin hypercube or Quasi-Monte Carlo
sampling) with global sensitivity analysis are proposed for the advanced level.

Keywords: life cycle assessment; framework development; uncertainty analysis; sensitivity analysis

1. Introduction

Life cycle assessment (LCA) is among the frequently applied methodologies for evalu-
ating the environmental aspects and impacts of a system (i.e., product, service, or process)
and is often used as a decision support tool [1,2]. It analyzes the environmental repercus-
sions of a system across its complete life cycle and has already been applied in various
fields such as product improvement, eco-labelling, business planning, and policy develop-
ment [3,4]. There are several sources of uncertainty in LCA. For instance, in the different
phases of LCA, methodological choices such as defining the functional unit, selection of
system boundaries, allocation procedures, the particular time horizon, etc. are unavoidable
and result in several types of uncertainty. The treatment of these uncertainties is crucial to
enhance the robustness and credibility of the obtained results.

The data presented in Figure 1 was retrieved from the Scopus using the ‘Article title,
Abstract, Keywords’ search option until 2021 and the defined keywords were ‘life cycle
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assessment’, ‘LCA’, and ‘uncertainty’ with ‘And’ operator. The number of publications in
2022 is not included; however, an upward trend is expected for 2022 for both categories.
From this figure, it can be clearly observed that LCA has been used extensively by the
scientific community during the last three decades, with more than 2000 LCA papers
published annually after 2018. However, only a few of these (not more than 5 to 10 percent)
mentioned the word ‘uncertainty’ in the title, abstract or keywords. Even within these
relatively few studies, some have mentioned uncertainty only in the context of future
direction for further analysis. This indicates that less attention has been paid to uncertainty
calculation by the LCA practitioners.
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Figure 1. A number of LCA studies published annually (Note: Scopus is the data source).

The environmental implications of a system or a product can be evaluated with the
help of LCA while considering the complete life cycle, which includes different stages,
i.e., extraction of raw materials, production, usage, and end-of-life phase [5]. Considering
the complete life cycle and multiple impact categories ensures that environmental improve-
ments can be planned without relegating the negative impacts to other life cycle phases
or other areas of protection. LCA studies usually comply with the general framework
prescribed by the International Organization for Standardization (ISO) in ISO 14040 [6] and
ISO 14044 [5]. Even when studies comply with these standards, differences in normative
choices for the same product system might lead to conflicting outcomes [7]. As a result,
international standards have been criticized as being excessively ambiguous [8,9]. This
flexibility, on the other hand, is required to enable the application of these standards across
diverse systems with varying characteristics. Other reasons for possible differences include
the use of non-representative data, assumptions, and data gaps, all of which have led to
criticism of the reliability of LCA outcomes [10]. The reliability of LCA is also affected by
many other factors, e.g., dependency on data from various unit operations, diverse sources,
several countries, data that is not gathered for LCA purposes, and biased methodological
choices [10,11]. For instance, spatial variability can affect the atmospheric fate factor and
soil sensitivity factor [12]. Furthermore, the presentation of LCA results is usually done
as point estimates, which may lead to faulty decisions based on a misleading sense of
accuracy regarding the environmental profile of a system [13]. Hence, there is a dire need
for practical recommendations to facilitate the LCA practitioners so that the uncertainties
associated with their analyses can be adequately addressed.

In 1992, a workshop by the Society of Environmental Toxicology and Chemistry
(SETAC) first pointed out the importance of uncertainty in LCA in a data quality context
(Fava 1994). Furthermore, a working group (i.e., the SETAC LCA) was founded in the early
1990s by the LCA community on data availability and data quality and recognized the need
of embracing uncertainty [14,15]. The International Organization for Standardization has
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defined uncertainty analysis in ISO 14044 [5] as “a systematic procedure to quantify the
uncertainty introduced in the life cycle inventory (LCI) results due to the cumulative effects
of model imprecision, input uncertainty and data variability”. In general, uncertainty
either refers to the absence of sufficient knowledge or ambiguous information; however, in
comparison, variability represents the quality of data which is heterogeneous in nature [16].
Despite the different meanings, the approaches used to deal with uncertainty and variability
exhibit a large overlap. The standard suggests using probability distributions and ranges to
support LCI conclusions to address uncertainties. LCA studies necessitate a vast quantity
of data and assumptions at each stage of the analysis, making it difficult to identify and
eventually propagate the uncertainty. As a result, a majority of LCA case studies still ignore
uncertainty due to less knowledge/expertise and a lack of resources [17–19].

This quick overview of probable causes of uncertainty demonstrates that an LCA
analysis is susceptible to a number of variables that could compromise the result’s reliability.
Various in-depth studies, such as Lloyd and Ries [20], Igos et al. [18], or Bamber et al. [19] on
uncertainty identification, propagation, and characterization in LCA have been conducted,
but a consistent approach has yet to be developed. Furthermore, the ISO 14040 [6] and
ISO 14044 [5] standards do not provide any guidelines on how to conduct uncertainty
analysis to support the LCA results. Although increasing emphasis has been dedicated
to uncertainty analysis among the LCA community in recent years, there is still a need
for a robust framework. The primary objective of this review is to propose a framework
based on an updated overview of the available approaches for uncertainty treatment
in LCA. Using the proposed stepwise approach, LCA practitioners can make informed
decisions to propagate uncertainty in their analyses according to their available resources
and constraints. The objectives of this study are summarized as follows:

â To summarize the sources and types of uncertainty;
â To list the possible ways to treat uncertainty in LCA;
â To characterize the common and best practices found in the previous literature;
â To discuss the pro and cons of applying the available approaches;
â To propose a tier-wise framework for uncertainty treatment.

2. Methodology

To fulfil the objectives of this study, a systematic literature review approach was
adopted. However, some reference documents were provided in Table 1, focusing on
uncertainty propagation, characterization, and/or reporting methods. Further, related
references were provided in the subsequent sections. The procedure followed in this
article consisted of four steps—questions preparation, literature identification, inclusion or
exclusion criteria, and finally, classification and analysis of the selected studies. All of the
steps are further explained below.

Step 1: Questions preparation

The following research questions were formulated by keeping in view the defined
objectives:

- What are the main classes and types of uncertainty considered in LCA studies?
- What types of methods were chosen for uncertainty treatment in LCA studies?
- What are the pros and cons of using these approaches for uncertainty treatment?
- How was the uncertainty characterized and reported in the literature?
- The answers to these questions are provided in the results and discussion sections.

Step 2: Literature identification

Different databases (i.e., Scopus, ResearchGate, and Google Scholar) were used for the
identification of the literature. The keywords ‘life cycle assessment’ ‘LCA’, and ‘uncertainty’
were searched in the title, abstract and author-specified keywords of the papers to ensure
that the study is conducted from a life cycle perspective.

Step 3: Inclusion or exclusion criteria
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The following criteria were used to include or exclude a study in the review:

- Only reference documents, peer-reviewed research articles (i.e., proposed method-
ologies or methods, and review articles and/or case studies), dissertation, and book
chapters were selected;

- The articles in which uncertainty treatment approaches were not considered were excluded.

Step 4: Classification and analysis

This step included the categorization of considered studies keeping in view the follow-
ing aspects: types of uncertainties (defined and/or applied in the selected studies), methods
used for uncertainty propagation, characterization, and reporting. Furthermore, keywords
related to the questions raised in Step 1 were also searched throughout the papers.

Table 1. Reviewed literature for uncertainty analysis qualification and quantification.

Reference Type Summary of the Content

Huijbregts [21] Methodologies or Methods Proposed a framework and classification of uncertainties.

Huijbregts et al. [22] Case study (article)
Offers a broad approach for quantifying LCA uncertainties
(i.e., parameter, scenario, and model) and illustrates it with
a case study.

ISO 14040 [6] and ISO 14044 [5] Reference documents

Provides a standard definition of uncertainty analysis in
LCA but does not stipulate a framework for treatment while
explicitly mentioning the treatment process as “Either
ranges or probability distributions are used to determine
uncertainty in the results”.

Lloyd and Ries [20] Review article
Surveyed 24 LCA studies that employed quantitative
uncertainty analysis and summarized the available practices
for uncertainty characterization and propagation.

Clavreul et al. [23] Case study

The uncertainties particular to waste in LCA contexts were
presented, as well as numerous approaches for uncertainty
analysis. In addition, a comprehensive methodology for
quantifying the uncertainty was also proposed.

Groen [2] Dissertation An in-depth analysis of variability and uncertainty in the
LCA outcomes, using multiple approaches.

Igos et al. [18] Review article

The approaches for identifying, characterizing, propagating
(uncertainty analysis), understanding the impacts
(sensitivity analysis), and communicating uncertainty were
discussed.

Rosenbaum et al. [15] Book chapter Discusses how to assess, analyze, and convey uncertainties
in LCA contexts.

Mendoza Beltran [17] Dissertation
A deeper picture of the significance of multiple sources of
uncertainty in LCA is offered by highlighting various
sources of uncertainty.

Bamber et al. [19] Review article
Common sources of uncertainty and techniques to address
them were outlined, and their frequency of use was
assessed.

3. Results and Discussion

This section includes the uncertainty classification, propagation, characterization, and
communication of uncertainty in LCA studies. The following aspects of the selected studies
were evaluated: the types of uncertainties, methods used for uncertainty propagation, and
criteria for uncertainty characterization and reporting in LCA. Furthermore, based on the
available information, three tiers have been proposed to incorporate uncertainty analysis
in LCA studies.
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3.1. Uncertainty Classification

Several attempts to include uncertainty in LCA have been made in recent decades,
suggesting that LCA practitioners are becoming more conscious of the topic’s importance
and influence. Numerous classifications have been identified in the literature regarding
uncertainty types, ranging from two or three classes to ten or more [15,24]. In the late 1990s,
Huijbregts [21] proposed a general framework by distinguishing three types in particular:
parameter uncertainty, uncertainty due to normative choices, and model uncertainty as
presented in Table 2.

Table 2. Typologies used in literature to classify the uncertainty.

Author(s) Classification Description

Huijbregts [21]

Parameter uncertainty

Defined as error in parametric quantities, inadequate or
outdated measurements (corresponding to
unrepresentativeness of the data), or no data (generally
corresponding to lack of data).

Scenario uncertainty

Defined as the structuring of several options in order to
compare results for various normative choices connected
with functional units, weighting factors, and/or allocation
procedures, and so on.

Model uncertainty
Model uncertainty is introduced due to emissions
aggregation in the inventory analysis and deriving
characterization factors using linear modeling.

Basset-Mens et al. [25]
Intra-system variability Uncertainty inside a considered system.

Intersystem variability Uncertainty between different systems under consideration.

Clavreul et al. [23]

Epistemic uncertainty The insufficient knowledge, which is simply referred to as
uncertainty.

Stochastic uncertainty Spatial, temporal, and technological unpredictability
(mostly known as variability).

Igos et al. [18]

Quantity uncertainty Further classified into epistemic (lack of data) and ontic
(variability) uncertainty.

Model structure and context
uncertainty

The formulation of alternate scenarios to analyze findings
based on different assumptions is a popular way to
differentiate the two (e.g., allocation procedures, geographic
resolution, or supplier choice).

Björklund [10] extended Huijbregts’ [21] approach by subdividing parameter uncer-
tainty into uncertainties due to data inaccuracy, data gaps, and unrepresentative data. She
further elaborated on additional uncertainty categories (e.g., epistemological uncertainty,
uncertainty due to mistakes, and estimations). Rosenbaum et al. [15] introduced relevance
uncertainty, which is more closely linked to an indicator’s environmental relevance or
representativeness towards an area of protection. However, this is a contribution to the
interpretation side but not the numerical model output. Basset-Mens et al. [25] defined
intra-system variability as uncertainty within a product system and intersystem variability
as uncertainty between different product systems. Clavreul et al. [23] classified uncertainty
as epistemic uncertainty (i.e., the insufficient knowledge which is simply referred to as
uncertainty) and stochastic uncertainty (i.e., spatial, temporal, and technological unpre-
dictability) mostly known as variability in LCA. Igos et al. [18] classified uncertainty into
two main classes: 1) quantity uncertainty, and 2) model structure and context uncertainty.
In short, many studies have investigated uncertainty and classified it by considering differ-
ent perspectives. However, the classification of uncertainty in LCA as parameter, scenario,
and model uncertainties, is generally acknowledged and widely applied [19,20,26].
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3.2. Uncertainty Propagation

Several methods for the treatment of uncertainty have been reported in the surveyed
literature (qualitative such as pedigree, quantitative such as sampling, analytical methods,
etc.). Analytical methods, fuzzy data sets, and stochastic and scenario modeling were
among the different methods identified in a previous survey conducted by Lloyd and
Ries [20]. Bamber et al. [19] surveyed a large LCA dataset to analyze the approaches used
to treat uncertainties in both attributional and consequential LCA. Igos et al. [18] also
made an in-depth discussion on sampling methods, fuzzy logic, analytical and statistical
methods, and sensitivity analysis approaches. This review not only discusses the available
approaches comprehensively in the context of considered classifications of uncertainty but
also tries to fill the information gaps identified in the previous literature.

3.2.1. Parameter Uncertainty

In general, parameter uncertainty (also known as uncertainty in data) refers to the
uncertainty in seen or measured values caused by the stochastic nature of the system, as
well as data quality uncertainty. As noted in the literature reviews conducted by Bamber
et al. [19] and Lloyd and Ries [20], this review also found that the parameter was the
most widely reported uncertainty source while the other key sources of uncertainty were
typically missed. The different methods (i.e., qualitative and quantitative) used to treat
parameter uncertainty including pedigree matrix, sampling methods, analytical methods,
statistical methods, and sensitivity analysis are discussed below.

Pedigree Matrix

This is a qualitative method to propagate parameter uncertainty; the idea was pro-
posed by Weidema and Wesnæs [27] and has since been improved and utilized in re-
search [10,28]. It has also been included in the ecoinvent database [29]. Weidema and
Wesnæs [27] specified five qualities of the dataset (i.e., reliability, completeness, temporal,
geographic, and technical correlations), and Frischknecht et al. [29] added sample size
to this list. Weidema et al. [30] once again omitted the sample size after introducing the
default factors for uncertainty. In this method, data quality indicators are converted to
probability distributions by using a ‘default’ lognormal distribution to describe the data
quality indicator value. Each indicator is further separated into five levels (i.e., with a score
ranging from 1–5), and a predefined uncertainty factor is assigned against each score in
terms of geometric standard deviation [11,29]. A few types of LCA software (i.e., openLCA
and CMLCA) facilitate the propagation of uncertainty using this approach.

Ciroth et al. [11] applied the pedigree method to analyze uncertainties associated with
the empirical outcomes using the ecoinvent database and discovered that the pedigree
approach tended to underestimate inherent uncertainties. Another study, conducted
by Yang et al. [31] to analyze the spatial disparities in intermediate flows of LCI data
considering key crops in the United States with the help of the pedigree approach revealed
that the uncertainty is significantly underrated in the ecoinvent database. Furthermore, by
conducting a survey, Qin et al. [32] also evaluated the level of acceptability of the pedigree
approach as a method of characterizing uncertainty in LCA. Qin et al. [32] also analyzed
uncertainty in the LCI and characterization phases using the pedigree approach. However,
the intended objective and validity of this quantitative use of the pedigree scheme may be
questioned because it only evaluates the dataset quality while disregarding any inherent
uncertainty or dispersion of the data [7]. Furthermore, despite other benefits, the pedigree
system relies on subjective expert judgments, raising questions regarding its legitimacy
and usefulness [32]. On the other hand, despite strong criticisms regarding its reliability
and subjectivity, this approach is still a helpful tool to propagate parameter uncertainty.
The pedigree matrix could be a useful option (especially for data which is only represented
by a single value) to propagate uncertainty.
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Sampling Methods

A quantitative approach can be adopted to address parameter uncertainty by using
sampling methods such as Monte Carlo, Quasi-Monte Carlo, or Latin Hypercube. With
the development of Monte Carlo sampling in the mid-19th century, the use of sampling
methods to propagate uncertainty began [24]. Furthermore, Monte Carlo is one of the
more well-adopted methods used by the LCA community for parameter uncertainty
propagation [18–20]. It randomly changes uncertain parameters; however, the variation is
limited by the distributions specified for the considered parameter. Repeated calculations
provide an expected output value distribution that represents the combined parameter
uncertainty. Latin Hypercube sampling (also known as stratified sampling) operates in
the same way as Monte Carlo sampling with only one difference. In this method, a
parameter uncertainty distribution is split into several non-overlapping intervals, each
with an equal probability. Furthermore, a number is drawn randomly from the predefined
distribution, resulting in more exact random samples and a faster convergence rate than
Monte Carlo. Morris and Mitchell [33] and Tarantola et al. [34] proposed significant
improvements to the original Latin Hypercube method, viz., maximin Latin Hypercube
sampling and Latin supercube sampling. The Quasi-Monte Carlo method uses pseudo-
random numbers for sampling; which is the only exception which makes it different from
Monte Carlo sampling [35]. Quasi-random numbers are deterministic numbers that are
evenly distributed for a particular distribution function [34]. A flowchart to propagate
uncertainty through sampling methods is presented in Figure 2. As indicated in the
figure, after LCA modeling (which includes goal and scope definition, inventory analysis,
impact assessment, and identification of parameter contribution), the process of uncertainty
propagation through the sampling method requires the parameter distribution details. The
uncertainty characterization can further be done based on the data quality or distribution of
the parameters (i.e., significant inputs and outputs). Further discussion on the uncertainty
characterization approaches is presented in Section 3.3.
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In order to achieve representative findings, Monte Carlo sampling (i.e., generally
available in all LCA software) necessitates a large number of simulations (i.e., ranging
from 1000 to 10,000 runs) making this approach time-intensive [18]. On the other hand,
Heijungs [36] recommended that the number of runs employed in simulation should equal
to the sample size used for the input parameters. Furthermore, Heijungs also recommended
that Monte Carlo sampling should not be employed at all if input parameters are evaluated
through the pedigree approach. Furthermore, it is easier to deal with sampling methods
if a correlation among the parameters exists. Bojacá and Schrevens [37] investigated the
correlations between parameters by testing the covariance of the inventory data. In this
study, a multivariate normal distribution was used rather than using a single univariate
distribution for correlated parameters. In essence, sampling methods seem to be a promis-
ing option to operationalize uncertainty analysis in LCA. However, the advanced sampling
methods (i.e., Latin Hypercube sampling or Quasi-Monte Carlo sampling), are employed
less frequently since practitioners have to rely on non-LCA software (i.e., Oracle Crystal
Ball, MATLAB, or SimLab).

Analytical Methods

The Gaussian approximation, proposed by German mathematician Carl Friedrich
Gauss, is the oldest and most well-known mathematical approach for uncertainty propaga-
tion. Morgan and Henrion [38] demonstrated how to obtain a first-order approximation
using the Taylor series expansion of a function that connects model input parameters and
model outputs. At a given point, a function is calculated using derivatives and represented
as a sum of unlimited terms. This method is based on the assumption that all critical inputs
are independent and linear.

Heijungs [39] was the first one to suggest this approach in the LCA context. Ciroth
et al. [40] demonstrated its application to LCA by considering a virtual case. Hong et al. [41]
extended this work by applying it to a real-world problem for the carbon footprint eval-
uation of vehicle parts, in which they compared many scenarios. Hong et al. [41] and
Imbeault-Tétreault et al. [42] used this approach to calculate global warming potential
using lognormal distributions of data and characterization factors. This adaptation is ad-
vantageous as most probability distributions (e.g., in the ecoinvent database) used in LCA
are lognormal. This approach is also incorporated in CMLCA software and Heijungs and
Lenzen [43] applied it using input–output tables. Furthermore, Groen and Heijungs [44]
critically examined the feasibility of different implementation approaches and analyzed
the correlations while considering a general case study. However, analytical methods are
typically limited to linear and continuous models. While comparing sampling and analyti-
cal methods, both approaches used for LCA consistently showed good agreement [41–43].
The main merits of the analytical approach are its simplicity and speed of calculation.
The time-intensive nature of Monte Carlo is a significant issue when it comes to regular
uncertainty assessment in LCA.

Statistical Methods

Bayesian statistics—This approach relies on empirical data, e.g., the available infor-
mation of sample data and a prior distribution. Since the selection of a distribution is also
conditional to the available information or group of experts, the primary function of this
approach is to provide estimates that properly reflect the genuine state of knowledge while
avoiding severe cognitive and motivational biases. As previously indicated, Monte Carlo
sampling is a standard approach for parameter uncertainty propagation. The distributions
of unknown parameters must be given explicitly in traditional Monte Carlo sampling. The
information provided to Monte Carlo simulation may be updated and relevance assessed
by combining it with Bayesian inference. As a result, Bayesian inference is expected to
address the issues resulting from a lack of knowledge, in addition to providing a framework
for integrating judgmental information with observational data to estimate uncertain pa-
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rameters. Bayesian Monte Carlo analysis has not been widely used for life cycle assessment
as compared to the sampling methods and is not included in any LCA software.

Another disadvantage of Bayesian approaches is that they are intrinsically subjective,
as there is a risk of a lack of consistency or replicability, especially if the same study is
conducted by various groups with different expert judgments [45]. A sensitivity analysis,
on the other hand, can be used to determine if such variations have a major influence
on the conclusions; if they do, it is helpful to identify discrepancies in order to enlighten
the decision-maker or to design a study program to gather evidence on which such dis-
agreements can be addressed. Despite its shortcomings, the Bayesian method is more
responsive in dealing with circumstances when data is insufficient or missing, but the level
of knowledge is sufficient to make judgments about prior distributions.

Fuzzy logic—In this method, the uncertainty is operationalized using fuzzy interval
arithmetic by assigning possibility functions to uncertain parameters. To propagate the
uncertainty through possibility functions, lower and upper limit intervals should be known
and disseminated across the model concurrently [46]. This is performed by assigning
a probability of one to the most likely value(s) and a probability of zero to the most
implausible value(s) (outside the lower and upper bounds).

The fuzzy interval arithmetic method was first employed by Weckenmann and
Schwan [47] in LCA contexts, using fuzzy membership functions for inventory data.
Tan [48] formalized this approach for resolving LCA matrixes. This method requires
the type of possibility function, the mean value, and the upper and lower bounds of each
input variable. One of the key merits of the approach is that it requires less information to
provide insight into the output uncertainty, hence it is not computationally intensive. How-
ever, the approach is not yet completely developed, and it has not yet been incorporated
into LCA software. On the other hand, when paired with probability distribution sampling
(i.e., hybrid approach), the dependability and information offered can be improved.

Sensitivity Analysis

A sensitivity analysis is carried out by altering input parameter(s) to analyze the
effect on the output. Sensitivity analysis may be done in two ways: (1) local sensitivity
analysis and (2) global sensitivity analysis. Analyzing the effect of altering one of the input
parameters at a time on the outcomes is known as local sensitivity analysis (LSA). However,
in cases of global sensitivity analysis (GSA), all input parameters change simultaneously to
analyze sensitivity and variation in results. Furthermore, the contribution to the output
variance may be estimated if the distribution functions of the parameters are known.

The local sensitivity analysis (also referred to as perturbation analysis) is the most basic
approach in which the sensitivity of a parameter can be measured [49]. LSA can easily be
implemented using LCA software as there are several options available for altering inputs.
A particular arbitrary value (say ±10% or 20%) can be employed for uncertain parameters,
minimizing the need for extra data collection but causing biases in conclusions owing to
varied uncertainty ranges among inputs. Rather than considering an arbitrary value for
an uncertain parameter, the standard deviation can be a more appropriate option. In LSA,
model linearity is presumed and it deals with a limited set of input domains. Furthermore,
there is a possibility that the parameter correlation and interactions might be overlooked.

On the other hand, global sensitivity can be employed to analyze sensitivity and
variation in results while changing all input parameters simultaneously [50]. A Monte Carlo
sampling-based correlation analysis is a basic GSA method. The slope of the outcomes in
response to the input variables is used to estimate the regression coefficients. The obtained
regression coefficients help to analyze the contribution of uncertain parameter(s) to output
variance. Another option is to use Spearman’s rank correlation coefficients, which compute
correlation coefficients based on the rank of values. This method, which has been employed
in LCA before [51,52], may be used to find correlations in non-linear models. GSA is further
classified as dependent and independent GSA. A standard independent GSA, such as
Sobol indices, can be employed if all of the input parameters are independent. If the input
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parameters are correlated, the LCI data-induced correlation effects must be assessed using
dependent GSA [50]. A decision tree to make the selection easy among sensitivity analysis
is presented in Figure 3.
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In short, there are various approaches available to deal with parameter uncertainty in
LCA; however, each method has its own pros and cons. A brief discussion has already been
provided in the previous part. Here, a comparative discussion among these approaches is
provided in Table 3.

3.2.2. Scenario Uncertainty

Scenario analysis is frequently employed in LCA to investigate uncertain decisions
due to defining multiple scenarios. The sensitivity of the results is demonstrated by the
extent of the variation among the findings of baseline and the alternative option(s) consid-
ered. Scenario uncertainty is influenced by the normative choices available to practitioners
(e.g., geographical scales, functional units, allocation procedures, time horizons, weighting
factors, waste-handling scenarios, etc.). Ylmén et al. [53], for example, conducted a study to
emphasize choice uncertainty in LCA and to limit subjective interpretations of numerical
data that lead to inappropriate judgments. Mendoza Beltran et al. [54] also adopted a
strategy to propagate data uncertainty as well as uncertainty caused by methodological
choices, especially due to the allocation methods used. In this study, Monte Carlo simula-
tions were employed to analyze the data uncertainty and the different allocation methods
were used as a scenario analysis. More representative outputs were obtained through
this approach regarding the overall uncertainty. Furthermore, modeling of each adopted
allocation approach as a separate scenario and simulating a Monte Carlo sampling on each
of them also gave faster results.
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Table 3. Merit and demerit-based consolidated discussion of identified approaches to treat parameter uncertainty.

Approaches Pros Cons

Sampling methods

The sampling methods produce more (directly)
usable information than other methods (i.e.,
fuzzy interval or analytical approaches). Small
and large uncertainty ranges can also be
handled. If correlations exist between
parameters, then it is technically easy to deal
with.

It is time intensive as sometimes hours to days
are required for simulations. More information
related to the parameters (e.g.,
parameters/inputs and distribution type) is
required. Advanced sampling methods (i.e.,
Latin Hypercube sampling, and Quasi-Monte
Carlo sampling) are not available in LCA
software.

Analytical methods

It may require complex mathematical equations,
though uncertainty propagation is efficient and
straightforward to apply with this approach.
Computationally quick. Type of distribution
and input parameters are not required. The
correlation among the parameters can also be
noted.

Fairly inflexible and confined to simple models.
Less broadly applicable than Monte Carlo
sampling method. It only works with small
uncertainty ranges and provides lesser
information than the sampling methods.

Statistical methods

This is preferable to sampling methods in terms
of calculation time. It enables subjective
uncertainty estimations to be addressed using
normal statistical computing processes. When
used with other approaches, it can provide
more information.

This method is not yet fully functional in LCA
and provides less information than analytical
and sampling procedures.

Sensitivity analysis

Local sensitivity analysis is a promising
approach for LCA practitioners just because of
its simplicity and compatibility with LCA
software. Global sensitivity analysis can
provide a robust analysis regarding output
sensitivity by studying the whole input space.

Local sensitivity analysis could be time
extensive if there are many parameters. Global
sensitivity analysis requires a large amount of
data and a long computation time based on the
probability distribution of inputs. Furthermore,
it is not yet operational in LCA software.

Note: Conclusions are based on the information presented in Huijbregts [21], Lloyd and Ries [20], Rosenbaum
et al. [15], Igos et al. [18], and Bamber et al. [19].

3.2.3. Model Uncertainty

In general, environmental interventions are often assumed to respond linearly to
ecological systems in impact evaluations, and intervention thresholds are overlooked.
The creation of characterization factors also contributes to model uncertainty. The choice
and characteristics of the underlying models, as well as the list of substances for which
characterization factors are derived, all contribute to the uncertainty in the impact assess-
ment phase [55]. Model uncertainty cannot be reduced by LCA practitioners owing to the
complexity of the mathematical connections which define the models (including models
for creating emissions and characterization factors) [19], but it should be recognized and
commented on wherever possible. For instance, the uncertainty in impact categories such
as (eco)toxicity is substantially higher (measured in terms of error order of magnitude in
characterization factor) than climate change or eutrophication. This is owing to a better
knowledge of the underlying environmental processes as well as the modeling approaches
that are used for climate change or eutrophication. Practitioners should be aware that
(model, parameter) uncertainty fluctuates according to an indicator’s position in the causa-
tion chain, which connects emissions to damage indicators through midpoints. Comparing
the findings of midpoints and endpoints is a useful approach for a comprehensive study of
model uncertainty, and if outcomes change, a more detailed inquiry must be conducted [15].

3.3. Uncertainty Characterization

Uncertainty can be characterized qualitatively and quantitatively. In the absence of
sufficient uncertainty information, a pragmatic approach (i.e., the Pedigree method) can
be used to characterize uncertainty. For instance, Yang et al. [31] applied it to characterize
the uncertainty qualitatively. Parameter uncertainty can be dealt with qualitatively with
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the help of a pedigree matrix, but its application has also been questioned [7]. On the
other hand, the model or scenario uncertainty cannot be addressed by this approach.
Moreover, the pedigree approach is highly generic in nature and a sector-specific adaptation
is required [31].

For characterization of the uncertainty quantitatively, the variability range can be spec-
ified according to the data representativeness and system stochasticity. There are several
choices available that are commonly used to characterize uncertainty—probability distribution
(random variable occurrence probability), fuzzy intervals or possibility distribution (depicting
an imprecise set of probable values), variance (dispersion), and intervals (defined as lower and
upper bond) [18]. In general, probability distributions have been used to characterize parame-
ter and model uncertainty. On the other hand, the characterization of scenario uncertainty has
been done in the literature through the development of unique scenarios.

Lognormal, normal, uniform, triangular, and gamma distributions are frequently
encountered in literature [20]. However, the probability distribution provides rich informa-
tion, and it also allows statistical treatment in terms of confidence interval or correlation [18].
Most of the studies have applied more than one distribution to avoid bias. For instance,
Ullah et al. [13] applied multiple distributions (i.e., lognormal, Inverse Gaussian, and
generalized extreme value). Henriksson et al. [7] proposed eight-data-point criteria for
determining the kind of probability distribution. If there is not enough data to accurately
explain the distribution, the practitioner could try a few other distributions, as done by
Lacirignola et al. [56].

Qin and Suh [57] conducted a study to determine the best-fit distribution function
for life cycle inventory. It was found that the lognormal distribution was generally used
in ecoinvent for unit processes. Furthermore, from the obtained results, it was revealed
that lognormal distribution is more reliable in terms of overlapping coefficients than the
gamma or Weibull distributions. Qin and Suh [57] also urged the need for distribution
of aggregate LCIs as unit process-based uncertainty analysis will be time-consuming and
might not be necessary for most studies. However, Heijungs et al. [58] asserted that this
results in an overestimation of the uncertainty in final outcomes. In another attempt, Suh
and Qin [59] discovered that considering pre-calculated inventories and related geometric
standard deviations results in a modest underestimate, not an overestimation. On the other
hand, Muller et al. [60] claimed that the choice regarding the distribution types has no
effect at all on comparisons of the product system. However, a default distribution should
be selected for systems under consideration.

3.4. Uncertainty Reporting

In LCA, uncertainty reporting plays an imperative role in ensuring a robust and reliable
analysis. The communication of uncertainty becomes more crucial in terms of unbiased
interpretation from non-experts (such as decision-makers, marketing analysts, and the
general public, etc.), as the LCA results are not limited just to the LCA community. In
general, the uncertainty information can be presented in four different ways which include:
qualitative, descriptive, graphical, and/or numerical. The qualitative method includes
describing sources of uncertainty and their possible impact on outcomes, whereas the
descriptive approach includes presenting central tendencies (i.e., mean, median, or mode)
and variability (i.e., standard deviation) around the central tendency. The graphical method,
on the other hand, is a graphical representation of the available uncertainty information.
Reporting ranges (e.g., lower and upper bounds), probability distributions of outcomes, or
statistical results are examples of numerical methods. The graphical method was the most
common approach used to communicate information related to the uncertainty analysis. To
present their findings, studies employed histograms, error bars, box-and-whisker plots, and
cumulative distribution functions. The types of comparisons used in the selected studies to
compare outcomes ranged from visual inspection to statistical testing. For instance, Ylmén
et al. [53], opted for a visual approach with the help of confidence intervals to demonstrate
the difference between judging deterministic and probabilistic study findings. Allegrini
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et al. [61], on the other hand, communicated uncertainty using error bars and histograms.
Ullah et al. [13] used boxplots and distribution functions to demonstrate their findings.
Statistical analysis results were communicated in tabular form and a descriptive approach
was adopted to convey the effect size of the error in the outcomes. The advantages and
disadvantages of the four methods are summarized in Table 4.

Table 4. Pros and cons of uncertainty communication approaches.

Approach Pros Cons

Qualitative

It enables quick integration of outcomes and
drawn conclusions, particularly for
non-quantitative data, and is easier to
remember for most readers than numerical data.

Many of the terms used to characterize
uncertainty qualitatively are erroneous and
sensitive to human perception and interpretation.

Descriptive
It may also be easily coupled with the results
and conclusions, which is particularly beneficial
when dealing with quantitative data.

This approach is susceptible to several
anomalies while defining the terms clearly, use
them consistently, and link them to numerical
data if available.

Graphical

This has the benefit of presenting a large dataset
in a compact and organized manner, allowing
us to report sufficient uncertainty information
in a short time and on a single graph.

Graphical depictions of uncertainty can be
deceptive, easily misinterpreted, or
unnecessarily intricate at times.

Numerical This method is particularly useful in inner
layers of data, e.g., in a report appendix.

Communicating uncertainties with “false
precision” displaying too many numbers is a
typical error. This technique necessitates a highly
precise quantification of uncertainty, which is
unlikely to be justified in the context of an LCA.

3.5. Uncertainty Management Strategies

Many of the studies have highlighted uncertainty types and agree upon grouping
them as parameter, scenario, and model uncertainties [18–20]. Various uncertainty analysis
approaches have been developed and applied in LCA. However, the selection of approaches
may be influenced by numerous aspects, which include the nature of the model, analysis
needs, analyst expertise (in terms of software), and the resources available (particularly
in terms of time and money). The available approaches for uncertainty treatment are
mentioned under each class of uncertainty (i.e., parameter, scenario, and model) separately.
Therefore, the uncertainty classification for the proposed framework is also considered
as parameter, scenario, and model uncertainty. The three main steps (i.e., uncertainty
propagation, characterization, and reporting) are highlighted in Figure 4; various toolboxes
(i.e., methods and approaches) are listed under these steps for uncertainty propagation,
characterization, and reporting. The highlighted boxes represent the uncertainty types
(i.e., parameter, scenario, and model uncertainty) and their adaptation should be done
according to the recommended approaches presented in the results and discussion section
(see Figure 5) for uncertainty analysis. The red dashed line depicts the repetitive nature of
various LCA phases (i.e., goal and scope definition, inventory analysis, impact assessment,
and interpretation phase).
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The approach for managing (i.e., propagating, characterizing, and communicating)
uncertainty in LCA research can be determined by considering the various circumstances
(i.e., by identifying what is practicable). One of the key limitations to acquiring information
in order to address the uncertainties associated with LCA outcomes is the availability
of time, resources, and levels of expertise. In many scientific disciplines, uncertainty is
managed while considering different tiers, in which complexity and demand for uncer-
tainty assessment increase with each tier (or degree of information). This method has the
advantage of permitting iterative progress and refinement of uncertainty outcomes as the
study advances, from a preliminary estimation and screening to a sophisticated uncertainty
analysis. This systematic selection allows the practitioner to tailor the scope of analysis
according to the available resources, rather than selecting the most complicated method or
disregarding all of them if resources are insufficient.

Rosenbaum et al. [15] presented a tiered approach drafted by the UNEP–SETAC
working group on uncertainty management. The framework provided by Rosenbaum
et al. [15] consists of five basic steps (which were generic in nature). Furthermore, Igos
et al. [18] also recommended three levels for uncertainty treatment in LCA. However, at
the advanced level, the selection of treatment approach was restricted to Latin Hypercube
sampling. Therefore, drawing inspiration from these two frameworks, a tier-wise approach
is recommended in Figure 5 considering three tiers, basic, intermediate, and advanced. The
basic approach includes a qualitative method and local sensitivity analysis. LSA is being
proposed in conjunction with the qualitative method as it may help to identify the critical
input parameters. The intermediate level consists of a Monte Carlo sampling approach cou-
pled with local sensitivity analysis, as both are available in LCA software. In conjunction
with Monte Carlo, LSA is also being proposed so that probability distribution of significant
parameters must be employed (if possible). The advanced treatment approach comprises of
advanced sampling methods (i.e., Latin Hypercube or Quasi-Monte Carlo sampling) paired
with global sensitivity analysis. The reason to place both sampling methods (i.e., Latin
Hypercube or Quasi-Monte Carlo sampling) at the advanced level is that non-LCA soft-
ware is required for both of them. Further statistical analysis should be performed in order
to check the significance of the obtained results. In short, when developing a plan for
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uncertainty management, there might be various levels of sophistication that can be consid-
ered, and the most advanced one is not always required. Even a simple (e.g., qualitative
or semi-quantitative) evaluation is a helpful and crucial first step in pinpointing sources
of uncertainty in an LCA study conclusions when compared to completely disregarding
uncertainty analysis. Ultimately, this process will help us be aware of potential issues and
misconceptions while making an informed decision. It is also worth mentioning that a
multilevel framework for uncertainty assessment can serve as a quick guide for individuals
with distinct expertise. In each instance, there is always a basic minimum that may be
performed without requiring considerable resources for uncertainty management.

4. Conclusions

The integration of uncertainty analysis and increased objectivity are pressing concerns
in the field of LCA without which the credibility and scientific integrity of obtained results
may be compromised. As various essential tools for incorporating uncertainty are now
available, further efforts are required to operationalize these approaches while considering
different levels of expertise and available resources. For this, a tier-wise framework has
been proposed for uncertainty treatment in LCA, allowing practitioners to adopt the
level of sophistication based on their needs and available resources. The lack of time,
funding, and technical expertise were identified as the significant constraints, including
uncertainty considerations which are especially important for robust decision-making.
Parameter, scenario, and model, the well-acknowledged classes of uncertainty in LCA,
were considered in the proposed framework. Among the considered classifications of
uncertainty, model uncertainty was less reported than parameter and scenario uncertainty.

A brief review of the literature revealed that there are a wide number of approaches
available to deal with such kind of uncertainties in LCA; however, there is no consensus
yet on a preferred approach. Furthermore, there are various limitations of the current ap-
proaches considering both methodological and computational aspects. It was also revealed
that only a few of the methods have been integrated into commercially or publicly available
LCA software, which limits their broader use in LCA studies. An inclusive framework is
provided in this study considering parameter, scenario, and model uncertainties, simul-
taneously. At the very basic level, a qualitative method (i.e., pedigree matrix), coupled
with local sensitivity analysis was recommended; this method is already available in most
standard LCA software. Local sensitivity analysis may help to analyze the sensitivity of
results due to scenario and model uncertainty. However, in this approach, the uncertainty
due to the system stochasticity will be overlooked while characterizing the uncertainty
based on data quality. On the other hand, Monte Carlo sampling is frequently used for
parameter uncertainty, it requires information regarding the input parameter and associ-
ated probability distribution. Furthermore, it is computationally intensive and may take
several hours to days for simulations. Therefore, this approach was recommended at the
intermediate level coupled with local sensitivity analysis. Local sensitivity analysis was
recommended in conjunction with Monte Carlo as it may help to identify all the critical
parameters so that their probability distributions could be considered in the analysis (if
available). Furthermore, using this approach, scenario uncertainty can also be addressed
along with parameter uncertainty when defining scenarios, and simulating Monte Carlo
runs on each of them separately can give faster results. Advanced sampling methods
(i.e., Latin Hypercube and Quasi-Monte Carlo) were proposed in conjunction with global
sensitivity analysis at the advanced level as they are not yet available in LCA software, and
an advanced level of expertise is required for implementation. However, advanced sam-
pling has a faster convergence rate than the typical sampling method and global sensitivity
analysis checks the sensitivity of the parameters over the entire input domain. Therefore,
considering the benefits of both advanced sampling methods and global sensitivity analysis
are recommended at the advanced level. The time-intensive nature could be a major limita-
tion in the case of intermediate and advanced levels. Further considerations are provided
below for the sake of a robust analysis:
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- Both quantitative and qualitative characterization of uncertainty should be done by
the LCA practitioners. Furthermore, parameter, scenario, and model uncertainties
should also be reported in the LCA studies. When excluding any type of uncertainty,
justification should be provided.

- Although model uncertainty cannot be propagated as parameter or scenario uncer-
tainty, an assessment of model uncertainty may be commenced by comparing the
outcomes of midpoint and endpoint indicators. If the results vary, a more extensive
investigation should be conducted.

- LCA practitioners should not rely just on a single method (e.g., Monte Carlo sampling
or Latin Hypercube sampling) and indicator (i.e., probability distribution, fuzzy
intervals, variance, and intervals) for uncertainty propagation and characterization,
respectively. Before making the final decision related to the methods or indicators,
multiple options should be employed for the sake of unbiased interpretation.

- Usually, the advanced and reliable approaches are rarely applied by practitioners due
to a lack of knowledge, time, data, or tools. LCA software should be improved and
must include the new methods (not limited to Monte Carlo sampling).

- Various techniques such as histograms, error bars, distribution functions, etc. have
been used for uncertainty communication. As LCA results are not limited only to
the LCA community, uncertainty reporting must be done in a way that is easily
understandable by non-experts as well.
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