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Abstract: In this work, the two pyridylhydrazone-tethered BODIPY compounds (2 and 3) were
synthesized. These compounds aimed to detect hypochlorous acid (HOCl) species via cyclic tria-
zolopyridine formation. The open forms and the resulting cyclic forms of BODIPYs (2, 3, 4, and 5)
were fully characterized by nuclear magnetic resonance, mass spectrometry, infrared spectroscopy,
and single-crystal X-ray diffraction. These two probes can selectively detect HOCl through a fluores-
cence turn-on mechanism with the limit of detections of 0.21 µM and 0.77 µM for compounds 2 and
3, respectively. This fluorescence enhancement phenomenon could be the effect from C = N isomer-
ization inhibition due to HOCl-triggered triazolopyridine formation. In cell imaging experiments,
these compounds showed excellent biocompatibility toward RAW 264.7 murine live macrophage
cells and greatly visualized endogenous HOCl in living cells stimulated with lipopolysaccharide.

Keywords: fluorescence; chemosensor; hypochlorous Acid; BODIPY; bioimaging

1. Introduction

Hypochlorous acid (HOCl) is an oxidant widely used as a composition in disinfectant
for water supplies, household bleach, and antimicrobial agents. It can partially dissociate
to hypochlorite (OCl-) species in aqueous solution at physiological condition. In addition,
it can be used as disinfectant against COVID-19 (Coronavirus Disease 2019) virus on non-
porous surfaces approved by the Environmental Protection Association (EPA) [1,2]. It is also
one of the essential reactive oxygen species (ROS) in diverse physiological and pathological
processes [3,4]. Typically, endogenous HOCl is generated from hydrogen peroxide and
chloride anions, catalyzed by myeloperoxidase in neutrophils, a type of white blood cells,
as a part of the innate host defense system for invading pathogens and microbes [5–7].
Nevertheless, the excessive HOCl in vivo can cause several diseases linked to oxidative
stress injury, such as aging [8], inflammation [9], neurodegenerative disorders [10], and
cancer [6]. Therefore, the efficient tool for detection and monitoring of HOCl in cellular
level as well as other complex biosystems is of special interest for biological research and
clinical diagnosis.

Various methods have been reported for HOCl sensing, such as electrochemical tech-
niques [11,12], spectrophotometry-based flow injection analysis [13], and test strips based
on chemiluminescence [14]. These methods are simple, cost-effective, highly selective,
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and sensitive toward HOCl/OCl- species. However, those techniques are not applica-
ble for HOCl sensing in biological samples. Currently, fluorescence methods for HOCl
detection using designed molecular probes have attracted high interest due to favorable
spatiotemporal resolution in living systems. HOCl sensors have been developed in many
fluorophores, such as naphthalimides [15–17], rhodamines [18–20], fluoresceins [21–23],
coumarins [24–26], and BODIPYs [27–29]. As seen in the literature, most emissive HOCl
sensors rely on a reaction-based strategy due to the powerful oxidizing nature of HOCl
[30–32]. Those reactions include deformylation [33], deoximation [34,35], oxidation of
thioethers [36–38], oxidation of selenides [39–41], and chlorination of thioesters [42–44].
Recently, Guo’s research team has invented a new reaction based on HOCl-triggered
triazolopyridine formation [45,46]. This reaction has been systematically employed on
the rhodol backbone (Figure 1A) for selective detection of HOCl and even created as a
mitochondria-specific fluorescent probe that could visualize HOCl in living cells and ze-
brafish. In this work, we expanded this HOCl-sensing strategy to the BODIPY derivatives
(Figure 1B) and confirmed their potentials in the imaging of endogenous HOCl in cells.
As BODIPY probes can be simply modified as cancer photo-therapeutic agents [47], the
introduction of HOCl-detection function to BODIPY backbone could lead to a new direc-
tion in the development of new dual-mode probes for cancer imaging and therapy. The
detailed synthesis steps and photophysical properties of these compounds are presented in
this publication.
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Figure 1. HOCl-triggered triazolopyridine formation reactions of the rhodol backbone in the literature
(A) and the BODIPY backbone in this work (B).

2. Materials and Methods
2.1. Materials and Instruments

Compounds 1 and 2 were synthesized according to the reports in the literature [48–50].
2-Hydrazinopyridine, 2-hydrazino-5-iodopyridine, Dess–Martin periodinane, 2,3-dichloro-
5,6-dicyanoquinone (DDQ), 2,4-dimethylpyrrole, sodium hypochlorite, and glacial acetic
acid were purchased from Tokyo Chemical Industry (TCI), Tokyo, Japan; boron trifluoride
diethyl etherate purified by redistillation, and 4-(hydroxymethyl)benzaldehyde dimethyl
acetal were purchased from Sigma-Aldrich, St. Louis, MO, USA; organic solvents, including
dichloromethane (DCM), tetrahydrofuran (THF), and ethanol (ACS grade) were purchased
from Honeywell, Charlotte, NC, USA. 12). All chemicals were used without additional
purifications. Electrospray mass spectra were obtained from a Bruker micrOTOF spectrom-
eter (Bruker, Billerica, MA, USA). At room temperature, NMR spectra were recorded on
a Bruker Avance 500 MHz NMR spectrometer (Bruker, Billerica, MA, USA). The solvent
chemical shifts were recorded and reported in ppm (DMSO-d6 at 2.50 ppm for 1H NMR
and 39.51 ppm for 13C NMR). Data were reported as follows: chemical shift, multiplicity
(s = singlet, d = doublet, t = triplet), coupling constant (J), and the number of protons.
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Fourier transform infrared spectroscopy (FTIR) spectra were acquired from an IRTracer-100
spectrophotometer (SHIMADZU, Kyoto, Japan). The X-ray crystallographic measurement
was performed using a Bruker D8 Venture diffractometer (Bruker, Billerica, MA, USA).
UV-VIS absorption and fluorescence spectra were acquired from a Cary Series UV-Vis-
NIR spectrophotometer (Agilent Tech, Santa Clara, CA, USA) and a Perkin Elmer LS55
fluorescence spectrometer (PerkinElmer, Waltham, MA, USA), respectively.

2.2. Synthetic Procedures

Synthesis of (E)-5,5-difluoro-10-(4-((2-(5-iodopyridin-2-yl)hydrazono)methyl)phenyl)-
1,3,7,9-tetramethyl-5H-4λ4,5λ4-dipyrrolo [1,2-c:2’,1’-f][1,3,2]diazaborinine (3).

A solution of compound 1 (0.57 mmol) and 2-hydrazino-5-iodopyridine (1.14 mmol)
was refluxed in ethanol (10 mL) at 90 ◦C for 5 h in the presence of a catalytic amount of
acetic acid. After solvent evaporation, the obtained solid was washed with cool ethanol
twice. The solid was further purified by column chromatography with DCM as an eluent to
get an orange solid in an 86% yield. 1H NMR (500 MHz, DMSO-d6) δ 11.17 (s, 1H), 8.30 (s,
1H), 8.10 (s, 1H), 7.91 (d, J = 7.1 Hz, 1H), 7.85 (d, J = 7.5 Hz, 2H), 7.40 (d, J = 7.5 Hz, 2H),
7.19 (d, J = 8.6 Hz, 1H), 6.19 (s, 2H). 2.45 (s, 6H), 1.41 (s, 6H). 13C NMR (125 MHz, DMSO-d6)
δ 155.96, 154.95, 153.05, 145.40, 142.67, 141.56, 138.81, 135.96, 134.06, 130.59, 128.31, 126.77,
121.42, 109.11, 79.95, 14.21, 14.14. HRMS (ESI), m/z calcd for C25H24BF2IN5 ([M+H]+):
570.1137, found: 570.1132.

Synthesis of 10-(4-([1,2,4]triazolo[4,3-a]pyridin-3-yl)phenyl)-5,5-difluoro-1,3,7,9-tetramethyl-
5H-4λ4,5λ4-dipyrrolo[1,2-c:2’,1’-f][1,3,2]diazaborinine (4).

Compound 2 (0.49 mmol) was dissolved in 10 mL of THF. After that, 2 mL of 0.5 M
sodium hypochlorite solution was added into the solution, followed by stirring at room
temperature for 4 h. Then, THF was evaporated under reduced pressure and the crude
was extracted with DCM (2 × 10 mL). The organic layer was washed twice with DI water
(2 × 10 mL) and the product was purified by column chromatography with haxance/EtOAc
(1:0 to 0:1) as an eluent to obtain a brown solid in a 37.2% yield. 1H NMR (500 MHz,
DMSO-d6) δ 8.62 (d, J = 6.8 Hz, 1H), 8.08 (d, J = 7.8 Hz, 2H), 7.86 (d, J = 9.2 Hz, 1H),
7.61 (d, J = 7.8 Hz, 2H), 7.44 (t, J = 6.8 Hz, 1H), 7.05 (t, J = 6.8 Hz, 1H), 6.19 (s, 2H), 2.44 (s,
6H), 1.43 (s, 6H). 13C NMR (125 MHz, DMSO-d6) δ 155.18, 150.19, 145.38, 142.76, 140.95,
135.42, 130.55, 128.88, 128.76, 128.11, 127.34, 123.98, 121.57, 115.72, 114.73, 14.24. HRMS
(ESI), m/z calcd for C25H23BF2N5 ([M+H]+): 442.2014, found: 442.2017.

Synthesis of 5,5-difluoro-10-(4-(6-iodo-[1,2,4]triazolo[4,3-a]pyridin-3-yl)phenyl)-1,3,7,9-
tetramethyl-5H-4λ4,5λ4-dipyrrolo[1,2-c:2’,1’-f][1,3,2]diazaborinine (5).

Compound 3 (0.18 mmol) was dissolved in 5 mL of THF. After that, 1.5 mL of
0.5 M sodium hypochlorite solution was added into the solution, followed by stirring
at room temperature for 4 h. Then, THF was evaporated under reduced pressure and the
crude was extracted with DCM (2 x 10 mL). The organic layer was washed twice with
DI water (2 × 10 mL) and the obtained product was purified by column chromatogra-
phy with 1:4 EtOAc/DCM as an eluent to get a brown solid in a 61.1% yield. 1H NMR
(500 MHz, DMSO-d6) δ 8.83 (s, 1H), 8.13 (d, J = 7.7 Hz, 2H), 7.75 (d, J = 9.3 Hz, 1H),
7.64 (d, J = 7.9 Hz, 3H), 6.23 (s, 2H), 2.48 (s, 6H), 1.46 (s, 6H). 13C NMR (125 MHz, DMSO-
d6) δ 155.17, 148.96, 145.02, 142.77, 140.97, 135.71, 135.54, 130.53, 128.88, 128.12, 126.95,
121.54, 116.83, 79.94, 14.32, 14.25. HRMS (ESI), m/z calcd for C25H22BF2IN5 ([M+H]+):
568.0976, found: 568.0985.

2.3. Crystallographic Measurements

Single crystals of compound 4 was obtained by slow evaporation of pentane into its
solution in tetrahydrofuran solvent. The crystallographic measurement was performed
using a Bruker D8 Venture diffractometer with graphite-monochromated Cu-Kα radiation.
The semi-empirical method SADABS was performed for an absorption correction [51] and
the data reduction was carried out by SAINT [52]. Using Olex2 software [53], the crystal
structure was solved by the intrinsic phasing method using SHELXT [54] and refined by
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SHELXL [55], employing a full-matrix least-squares method against F2 with the anisotropic
temperature parameters for all non-hydrogen atoms. All atoms were geometrically placed
and refined using the riding model approximation. Mercury software [56] was used to
provide graphics regarding crystal structure and intermolecular interaction. The crystal-
lographic data of compound 4 were deposited in the Cambridge Crystallographic Data
Center, deposition number (CCDC No.) 2211127.

2.4. Fluorescence Quantum Yields Calculations

Fluorescence quantum yields of the compounds 2, 3, 4, and 5 were measured in MeOH-
5mM Phosphate buffer solution (PBS) (1:1 v/v) using fluorescein in 0.1M NaOH solution as
a standard (Qstd = 0.95) and were calculated based on the Equation (1):

Q = Qstd ×
( Isample

Istd

)
×
(

Astd
Asample

)
×
(

ηsample

ηstd

)2
(1)

where, Q denotes the fluorescence quantum yields, I is the peak area of emission spectra, A
is absorption intensities at the excitation wavelength, and η is the solvent reflective index.

2.5. Theoretical Calculations

To understand the electronic and photophysical properties of the BODIPY compounds,
a Density Functional Theory (DFT) at M062X [57] was performed in an implicit aqueous
solution using a conductor-like polarized continuum model (C-PCM) framework [58,59].
The basis set of 6-311G* was applied for all atoms except the iodine (I) atom. In the case
of I atom, LANL2DZ effective core potential was applied to describe the I core electrons.
The frontier molecular orbitals (FMOs) and HOMO–LUMO energy diagrams were also
calculated. All calculations were performed by the Gaussian 16 program package [60].

2.6. Cell Viability Assay

RAW264.7 cells were seeded into 96-well cell culture plates at 1 × 104/well and
incubated for 24 h before being treated with compounds 2 and 3 at various concentra-
tions (0, 2.5, 5, 10, 20, 30, 50, and 100 µM). The cell viability was measured after 24 h
exposure to the compounds using the standard MTT protocol. In short, the cells were
treated with methylthiazolyldiphenyl-tetrazolium bromide (200 µL, 0.5 mg/mL, Sigma-
Aldrich) for 2 h after being rinsed with PBS three times. Then, culture media were sub-
stituted with DMSO, and cell viability was assessed using a microplate reader (BMG
Labtech/SPECTROstar Nano).

2.7. Cell Culture and Imaging Experiment

Cell culture: Dulbecco’s Modified Eagle Medium/High Glucose (DMEM/HIGH GLU-
COSE, GE Healthcare Life Sciences HyClone Laboratories), supplemented with 10% fetal
bovine serum (FBS, Gibco), and 1% Penicillin-Streptomycin Solution, was used to cultivate
murine macrophage cells (RAW264.7, ATCC) on 75 cm2 culture flasks (CORNING) at 37 ◦C
and 5% CO2 humidified incubator.

Cell imaging: RAW264.7 cells were seeded at a density of 7 × 103 cells per well in
an 8-well Chambered Coverglass with non-removable wells (Nunc Lab-Tek II Chamber
Slide) and incubated for 24 h. For the endogenous HOCl imaging, the RAW 264.7 cells were
stimulated by lipopolysaccharides (LPS). In brief, the RAW cells were incubated with 1 µM
of compounds 2 and 3 in DMEM with 5 % FBS for 30 min followed by incubation with
LPS (5 µg/mL) for 2 h. Then, the cells were washed three times with PBS buffer. For the
exogenous HOCl imaging, the cells were treated with 1 µM of compounds 2 and 3 for 30 min
followed by incubation with NaOCl (20 µM) for another 30 min. After that, the cells were
washed three times with PBS. All the cells were brought to image under Laser Scanning
Confocal Microscope (LSCM, Nikon A1Rsi). Compounds 2 and 3 were excited by a 488 nm
laser. A 60 X oil immersion objective lens was used in these experiments
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3. Results and Discussion
3.1. Synthesis and HOCl Response of BODIPY Probes

The BODIPY probes were synthesized by acid-catalyzed condensation reactions be-
tween the aldehyde-linked BODIPY (1) and 2-hydrazinopyridine/2-hydrazino-5-iodopyridine
yielding compounds 2 and 3, respectively (Scheme 1). The BODIPYs were fully charac-
terized by nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR), and mass
spectrometry (MS) (Figures S1,S2,S7, Supplementary Materials) and the resulting spectra
matched well with the results in the previous literature [50].
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Scheme 1. The synthesis of BODIPY probes.

The HOCl-responsive property of these BODIPY derivatives was then investigated.
Typically, compounds 2 and 3 displayed a poor fluorescence signal due to C = N isomeriza-
tion. The C = N isomerization and rotation could lead to an energy decay phenomenon in
the excited state of the BODIPY compounds resulting in energy loss, and then quenched
the fluorescence emission of the probes [61]. Upon addition of HOCl, the pyridylhydra-
zone unit of 2 and 3 could be converted to 1,2,4-triazolo[4,3-a]pyridine moiety by the
chlorination-induced cyclization [45,46]. The possible reaction mechanism is displayed in
Scheme 2. The Cl+ from HOCl could undergo electrophilic addition at the C = N bond of the
hydrazone unit. The pyridine nitrogen then attacked the chloro-substituted carbon atom
yielding cationic triazolopyridinium cyclic intermediate. The following deprotonation
led to the formation of triazolopyridine structure (1,2,4-triazolo[4,3-a]pyridine) causing
fluorescence enhancement as the C = N isomerization was inhibited. The HOCl-mediated
cyclization products (compounds 4 and 5) were isolated and systematically characterized
by NMR and MS techniques as shown in Figures S3–S6, S8 and S9.
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The structure of compound 4 was further confirmed by single crystal X-ray crys-
tallographic technique. Compound 4 crystallized in the triclinic system containing two
molecules per unit cell. The molecular structure of compound 4 is illustrated in Figure 2a,
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while crystal data and the corresponding refinement detail are tabulated in Table S1.
Within the compound, the BODIPY (C1-C9/N1-N2/B1) moiety, comprised of a central six-
membered and two neighboring five-membered rings, is essentially flat. The minimum and
maximum deviations from the least-squares BODIPY mean plane is 0.000(2) Å for the N2
atom and -0.073(3) Å for B1 atom, respectively. All the C−C and C−N bonds of the BODIPY
group are similar to those reports in the literature [62]. Interestingly, the C5−C14 bond
(1.495(4) Å) is longer than those of other C(sp2) −C(sp2) bonds. This suggests that the
delocalized π-system is disturbed at the position. As observed from the side view of the
molecule of compound 4 (Figure 1b), the phenyl triazolopyridine group is twisted from
the BODIPY plane to reduce the steric effect since the torsion angle between the BODIPY
and the phenyl spacer (C14–C19) mean planes is 80.8◦. This might be the reason for the
disturbance of the π system, resulting in the extension of the C5−C14 bond. Moreover, the
angle between the BODIPY and the triazolopyridine is 63.1◦, which is in agreement with
the values of the compounds with similar structures [62].
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Next, the formation of triazolopyridine unit of the BODIPY probe was investigated
by 1H NMR and Fourier transform infrared (FTIR) spectroscopy using compound 2 as
a model. In the 1H NMR titration experiment demonstrated in Figure 3, the hydrazone
proton resonance (H4) at 8.03 ppm was gradually disappeared upon addition of HOCl,
indicating a deprotonation process. In addition, most of the proton resonances in the
aromatic region, including pyridyl protons (H5, H6, and H7) and phenyl protons (H2 and
H3), were substantially shifted downfield due to an electron withdrawing effect from the
five-membered 1,2,4-triazole ring through π-conjugation. The proton resonance on the
BODIPY ring (H1) was slightly moved downfield due to a minimal electronic effect from
the triazolopyridine moiety. The NMR pattern of the HOCl-titrating product is consistent
with that of compound 4, confirming the abovementioned mechanism.

Fourier transform infrared spectroscopy (FTIR) spectra of compound 2 before and
after HOCl treatment are displayed in Figure S12. According to the FTIR result, the N-H
stretching vibration is found at 3292 cm−1 in 2 without HOCl treatment. After HOCl
addition, the N-H vibration is removed. Moreover, the peaks at 1730 and 1631 cm−1 are
also recognized in the spectrum of compound 4 due to the newly formed C=N bonds
of the triazolopyridine group. This supports the formation of the cyclic structure for
compound 4. The results are in line with the NMR and SC-XRD techniques.
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3.2. Photophysical and HOCl-Sensing Properties of the BODIPY Probes

In order to find the suitable solvent system for HOCl detection, the HOCl-responsive
property of compound 2 was first investigated in water-miscible solvents, such as ace-
tonitrile (ACN), ethanol (EtOH), and methanol (MeOH). As shown in Figure S10, com-
pound 2 demonstrated distinct fluorescence enhancement upon addition of HOCl in MeOH,
while displayed negligible changes in fluorescent intensities in ACN and EtOH. Therefore,
the MeOH solvent is selected as a co-solvent for aqueous media used for HOCl sensing. As
seen in Figure S11, compound 2 displayed drastic fluorescence amplification upon adding
HOCl in 50% DI water-MeOH mixture. Based on this data, the further HOCl-sensing
experiments of the BODIPY probes would be carried out in MeOH-5mM PBS (1:1 v/v)
for the sake of acquiring suitable fluorescent sensitivity and pH control. Gratifyingly,
both compounds 2 and 3 exhibited fast response toward HOCl as their fluorescent signals
reached saturation within 2 min in this solvent system (Figure S14).

Next, the HOCl titrations with compounds 2 and 3 were investigated by absorption
and fluorescence spectroscopy. As seen in Figure 4A,C, upon adding HOCl, the absorption
intensities of compound 2 at 500 nm and 335 nm gradually decreased while the one
at 280 nm constantly increased. Likewise, the absorption intensities of compound 3 at
500 nm and 345 nm decreased while the intensity at 260 nm increased. It is worth noting
that the absorption maximum at 500 nm of compound 3 was slightly redshifted to 506 nm
upon addition of HOCl due to the heavy atom effect from an iodine atom [63]. In the
fluorescent titration studies, both BODIPY compounds showed a considerable fluorescence
enhancement at 512 nm in the presence of HOCl with the small redshift in the case of
compound 3 (Figure 4B,D). These results are consistent with the calculated fluorescence
quantum yield (QY) values demonstrated in Table 1. The QYs of the HOCl-mediated
cyclization products, compounds 4 and 5, are about 10 times and 5 times higher than those
of compounds 2 and 3, respectively. These results suggest a great potential of these BODIPY
derivatives as fluorescence “turn-on” sensors for hypochlorous acid in aqueous media and
biological matrices.
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Figure 4. The changes in the absorption spectra of compound 2 (A) and compound 3 (C), and the
changes in emission spectra of compound 2 (B) and compound 3 (D) (excitation wavelength = 475 nm)
in the presence of various concentrations of HOCl in MeOH-5mM PBS (1:1 v/v) (final concentrations
of BODIPY compounds = 0.2 µM). Error bars represent standard deviation (n = 3).

Table 1. Photophysical properties of compounds 2-5 in MeOH-5mM PBS (1:1 v/v).

Cpd.
Absorption Emission

λmax
(nm)

ε

(M−1cm−1)
λmax

[a]

(nm) Φf
[b]

2 500 8.12 × 104 512 0.08
3 500 7.46 × 104 512 0.16
4 500 6.78 × 104 512 0.79
5 506 5.58 × 104 514 0.77

[a] excitation wavelength = 475 nm. [b] Φf were calculated using fluorescein in 0.1M NaOH solution as a standard.

As displayed in the insets of Figure 5B,D, the emission intensities of compound 2 and
3 showed a satisfactory linear relationship with the concentrations of HOCl added. Based on
these linear regression curves, the limit of detection (LOD) of probes 2 and 3 were calculated
as 0.21 µM and 0.77 µM, respectively, by applying 3σ/m formula, where σ is the standard
deviation (SD) of the fluorescence signal of blank samples while m is the slopes of the linear
curves. Gratifyingly, the LODs of compounds 2 and 3 were comparable to or lower than
the other BODIPY-based HOCl/ClO--sensing probes reported in the literature (Table 2). In
terms of molecular design, compounds 2 and 3 with a pyridylhydrazone unit can effectively
detect HOCl via triazolopyridine formation, which is an “eco-friendly” reaction. They did
not release additional substances, except H2O, upon cyclization, while the other BODIPY
probes (Table 2) that detected HOCl based on the deoximation, the desulfurization, and
the removal of 2,4-dinitrophenyl hydrazine, etc., produced additional by-products to the
sensing systems. It is also worth mentioning that the hypochlorous/hypochlorite detections
of most reported HOCl/ClO--responsive probes were carried out in aqueous solution
with 50% organic water-miscible co-solvents, such as methanol, ethanol, tetrahydrofuran,
acetonitrile, dimethylformamide, etc. [32,64]. Additionally, our developed BODIPY-based
compounds (compounds 2 and 3) exhibited better fluorescence quantum yields (Φf) than the
model compounds, the rhodol-based probes that detected HOCl through a triazolopyridine
formation, after adding HOCl (Table S2). However, those rhodol derivatives showed lower
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limits of detection (LOD) than our BODIPY-based sensors. Therefore, the future research
will focus on lowering the LODs of the BODIPY probes, which could be done by the
introduction of the hydrophilic moiety to the molecules.
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Figure 5. Emission spectra of compound 2 (A) and compound 3 (B) in the presence of various
analytes in MeOH—5 mM PBS (1:1 v/v). Bar charts demonstrating fluorescence intensities at 512 nm
of compound 2 (C) and compound 3 (D) in the presence of various analytes. Comparison of the color
of BODIPY solutions (compound 2 (E) and compound 3 (F)) and the visual emission under UV light
(compound 2 (G) and compound 3 (H)) in the presence of various analytes. [BODIPYs] = 0.2 µM,
[Analytes] = 40 µM. 1: blank, 2: HOCl, 3: H2O2, 4: 1O2, 5: ·OH, 6: ONOO-, 7: tBuOOH, 8: tBuO·,
9: ·O2

−, 10: Ascorbate, 11: L-Cysteine, 12: L-Glutathione, 13: NO3
-, 14: NO2

-, 15: SO4
−, 16: SO3

2−,
17: S2O5

2−, 18: S2O3
2−, 19: HSO4

−, 20: CO3
2−, 21: HCO3

−. Error bars represent standard deviation
(n = 3).

Table 2. Comparison of BODIPY-based sensors (compounds 2 and 3) developed in this work with the
recently reported BODIPY-based fluorescence sensors for HOCl/ClO- determination in the literatures.

HOCl Sensor Working
System [a]

Sensing
Mechanism LOD Ref.
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Subsequently, the selectivity of BODIPY probes 2 and 3 toward HOCl was assessed
in MeOH—5 mM PBS (1:1 v/v). As displayed in Figure 5A–D, the fluorescence emissions
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of compounds 2 and 3 were significantly enhanced upon the addition of HOCl. On the
other hand, the fluorescent signals of 2 and 3 manifested negligible changes after the addi-
tion of other potential competing species, including, hydrogen peroxide (H2O2), singlet
oxygen (1O2), hydroxyl radical (·OH), peroxynitrite ion (ONOO-), tert-butyl hydroperox-
ide (tBuOOH), tert-butoxyl radical (tBuO·), superoxide ion (·O2

−), ascorbate, L-cysteine,
L-glutathione, nitrate ion (NO3

-), nitrite ion (NO2
−), sulfate ion (SO4

2−), sulfite ion (SO3
2−),

disulfite ion (S2O5
2−), thiosulfate ion (S2O3

2−), hydrogen sulfate ion (HSO4
−), carbonate

ion (CO3
2−), and hydrogen carbonate ion (HCO3

−). In addition, the selective visualiza-
tion of HOCl of compounds 2 and 3 over other competitive species was indicated by the
change of the solution color and fluorescent signal, which could be noticed by naked eyes
(Figure 5E–H). Upon adding HOCl, the colors of the solutions were changed from yellow
to brownish orange for 2 and pale pink to orange for 3 (Figure 5E,F), while the bright
green emission was observed for both compounds 2 and 3 under UV light (Figure 5G,H).
In contrast, the colors and weak green fluorescence signals of the BODIPY solutions re-
mained unchanged when the foreign species, including, the abovementioned oxidizers,
reactive oxygen species (ROS), and oxyanions were added. These results suggested that
the triazolopyridine cyclization reactions of the BODIPYs were highly specific toward
hypochlorous acid.

To further evaluate the selective performance these probes toward HOCl, the competi-
tive experiments of 2 and 3 in the presence of HOCl combined with and without various
potential competing chemical species at the same concentration were carried out in an
aqueous methanol solution. As seen in Figure 6, the bar charts clearly indicated that the co-
existence of these analytes does not interfere with the HOCl-mediated cyclization reactions
of the BODIPY probes, as the fluorescence signals were reasonably enhanced. This inci-
dence served as an additional proof for the selectivity of this HOCl-sensing reaction in the
BODIPY backbone without any interfering effect from other oxidizers, ROS, and oxyanions.
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3 (B) in the presence of HOCl with and without various analytes in MeOH—5 mM PBS (1:1 v/v).
[BODIPYs] = 0.2 µM, [HOCl] = 40 µM, [Other analytes] = 40 µM. 1: blank, 2: HOCl, 3: HOCl + H2O2, 4:
HOCl + 1O2, 5: HOCl + ·OH, 6: HOCl + ONOO-, 7: HOCl + tBuOOH, 8: HOCl + tBuO·, 9: HOCl + ·O2

−,
10: HOCl + Ascorbate, 11: HOCl + L-Cysteine, 12: HOCl + L-Glutathione, 13: HOCl + NO3

−,
14: HOCl + NO2

−, 15: HOCl + SO4
2−, 16: HOCl + SO3

2−, 17: HOCl + S2O5
2−, 18: HOCl + S2O3

2−,
19: HOCl + HSO4

−, 20: HOCl + CO3
2−, 21: HOCl + HCO3

−. Error bars represent standard deviation
(n = 3).

In addition, because glutathione (GSH), the major intracellular thiol tripeptide, could
be found in high concentrations in most cells [71,72], we decided to examine the effect of
high GSH levels toward the HOCl-sensing performance of compounds 2 and 3. As seen
in Figures S15A and S16A, 2 and 3 showed negligible changes in fluorescent intensities
in the presence of the high concentrations of GSH from 1 to 10 mM. Moreover, they still
underwent a fluorescence turn-on process upon the addition of HOCl in the presence of
high levels of GSH (1–10 mM), as displayed in Figures S15B and S16B. These results clearly
suggested that the high contents of GSH did not affect the HOCl-detecting ability of these
pyridylhydrazone-tethered BODIPY compounds.
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3.3. Theoretical Calculations

The ground state structures of compounds 2-5 were optimized using M062X/6-311G*
level of theory in the implicit aqueous solution. The frontier molecular orbitals (FMOs) were
elucidated to give a detailed picture of the highest occupied molecular orbitals (HOMOs)
and the lowest unoccupied molecular orbitals (LUMOs) with the isovalue of 0.02, as well
as their energy gaps (HOMO–LUMO energy differences; ∆E) (Figure 7). As depicted
in Figure 7A,B, upon the transformation from compounds 2 and 3 to compounds 4 and
5, both HOMO and LUMO of the cyclization forms (4 and 5) were stabilized due to the
effect from the extended π-conjugation. In the FMOs, all compounds showed that the
electron density distributed solely on the BODIPY backbone in the HOMO, while slightly
moved to phenylene linker in the LUMO. The energy gaps (∆E) of BODIPYs 2-5 are quite
identical with the values of 4.81, 4.79, 4.80, and 4.80 eV, respectively. These calculations
are consistent with the experimental results that all compounds displayed quite similar
absorption maxima.
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3.4. Visualization of HOCl in Living Cells

Before applying compounds 2 and 3 to detect intracellular HOCl, the cytotoxicity
profiles of these compounds were evaluated in a murine live macrophage cell line, RAW
264.7. The RAW cells treated with probes 2 and 3 kept their vitality over 85% at doses as
high as 50 µM by utilizing the standard MTT assay suggesting great biocompatibility of
these compounds. However, when cells are exposed to compounds at a high concentration,
such as 100 µM, the cell survival rate falls to around 70% (Figure S13).

Next, confocal laser scanning microscopic fluorescence imaging experiments were
carried out in murine RAW 264.7 macrophages in the absence and presence of HOCl to
validate the cell permeability and capability of compounds 2 and 3 in the detection of HOCl
in living cells. In the absence of HOCl, the cells treated with 2 and 3 fluoresced faintly
green, as seen in Figure 8A,B. For the detection of endogenous HOCl, the RAW cells were
stimulated with lipopolysaccharide (LPS) to produce HOCl prior to the treatment with
probes 2 and 3 [73]. Gratifyingly, compound 3 showed green emission signals 11 times
higher, while compound 2 demonstrated green fluorescence 2.5 times higher than those in
the cells treated with BODIPYs without LPS stimulation (Figure 8C). For exogenous HOCl
imaging, compounds 2 and 3 displayed green emission signals after the addition of external
HOCl with about 3 times and 8 times higher than those in cells without HOCl treatment,
respectively. Notably, the presence of iodine in 3 could lead to higher hydrophobicity of
the compound resulting in better membrane permeability [74–76]. Additionally, the nuclei
of the living cells were stained with Hoechst 33342 to confirm that the green signals of
2 and 3 were created inside the cells but not inside the nucleuses. The Pearson correlation
coefficient values, which denoted the degree of overlapping, ranged from 0.13 to 0.22 for all
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cases, indicating that the probes did not travel to nucleuses (Figure 8 and Figure S17). These
findings confirmed the potential of probes 2 and 3 as HOCl detection tools in living cells.
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Figure 8. Fluorescence images of compounds 2 and 3 in RAW264.7 cells: (A) fluorescence images of
compounds 2 and (B) compound 3. For the imaging of endogenous HOCl, RAW 264.7 cells were
incubated with 1 µM of the probes for 30 min and then 5 µg/mL of LPS for another 2 h. For the
imaging of exogenous HOCl, RAW 264.7 cells were stained with 1 µM of the probes for 30 min and
then NaOCl (20 µM) for another 30 min. The images were obtained using a laser scanning confocal
microscope (Nikon A1Rsi, 63× oil immersed optics). Scale bar = 20; (C) Quantitative corrected total
cell fluorescence (CTCF) data, which were quantified using ImageJ and represent the mean ± SD
(n = 30). Statistical analysis is based on T-test (* p < 0.05, ** p < 0.01, *** p < 0.001).

4. Conclusions

In summary, the known pyridylhydrazone-linked BODIPY (2) and its iodo-substituted
analogue (3) were successfully proven as highly selective chemosensors for hypochlorous
acid (HOCl) through triazolopyridine cyclization of the pyridylhydrazone moiety. The
single-crystal X-ray diffraction (SC-XRD), the infrared spectroscopic technique, and the
NMR titration experiment confirmed the formation of resulting triazolopyridine-tethered
BODIPY derivatives. In addition, the photophysical studies revealed that these two
probes could efficiently detect HOCl through a fluorescence enhancement mechanism
in MeOH—5 mM PBS (1:1 v/v) with the limit of detections of 0.21 µM and 0.77 µM for 2 and
3, respectively. The DFT calculations disclosed that the change of energy gaps (∆E) between
the open forms and the cyclic forms of the BODIPYs are negligible, which is consistent with
the experimental data. Finally, these two compounds displayed a great biocompatibility
toward RAW 264.7 cells and could efficiently visualize both endogenous and exogenous
HOCl in living cells. It is worth noting that the BODIPY 3, containing iodo substituent,
possesses good cell membrane permeability due to its hydrophobicity.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12110923/s1, Figure S1: 1H NMR spectrum of 3; Figure S2:
13C NMR spectrum of 3; Figure S3: 1H NMR spectrum of 4; Figure S4: 13C NMR spectrum of 4;
Figure S5: 1H NMR spectrum of 5; Figure S6: 13C NMR spectrum of 5; Figure S7: Mass spectrum
of 3; Figure S8: Mass spectrum of 4; Figure S9: Mass sprctrum of 5; Figure S10: Emission intensity
of 2 in acetonitrile (ACN), ethanol (EtOH), and methanol (MeOH) before and after adding HOCl;
Figure S11: Emission intensity of 2 before and after adding HOCl in MeOH-DI water mixture with
various percentages of DI water; Figure S12: FTIR spectra of compound 2 and its HOCl-mediated
cyclization product (compound 4); Figure S13: Cytotoxicity of compounds 2 and 3 were determined
using RAW264.7 cells by MTT assay. Statistical analysis is based on T-test (* p < 0.05, ** p < 0.01,
*** p <0.001); Figure S14: Time courses of HOCl-mediated triazolopyridine cyclization reaction of
2 (A) and 3 (B) (0.2 µM) after addition of HOCl (40 mM) in MeOH-5 mM PBS (1:1 v/v); Figure
S15: A) Bar charts demonstrating fluorescence intensities at 512 nm of the sensor (compound 2) in
the presence of GSH (1–10 mM) B) Bar charts demonstrating fluorescence intensities at 512 nm of
the sensor (compounds 2) in the presence of HOCl and GSH (1–10 mM); Figure S16: A) Bar charts
demonstrating fluorescence intensities at 512 nm of the sensor (compound 3) in the presence of GSH
(1–10 mM) B) Bar charts demonstrating fluorescence intensities at 512 nm of the sensor (compounds
3) in the presence of HOCl and GSH (1–10 mM); Figure S17: Pearson correlation coefficient values
for colocalization of compound 2 or compound 3 and Hoechst 33342 obtained from ImageJ; Table
S1: Crystal data and structure refinement details for compound 4; Table S2: Comparison of BODIPY-
based sensors (compounds 2 and 3) developed in this work with the recently reported rhodol-based
fluorescence sensors for HOCl determination via triazolopyridine formation.
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