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A B S T R A C T   

Typically, success in the estimation of machine learning is expected to rise with increasing input 
parameters, whereas the noise issue may rarely arise owing to redundant input factors undesir
ably influencing the learning algorithm. The parameters such as overall heat transfer coefficient, 
pressure drop, and overall cost have been determined by two different artificial neural networks 
evaluated by a multi-layer perceptron model. Using the Levenberg-Marquardt training algorithm, 
in the first model input layer, a total of 10 input parameters ρ, np, k1, Re1, fi, Re2, fo, ns, P1 and P2 
have been defined, while the second involves 8 input parameters by subtracting pumping powers 
from the first one, thus the noise issue has been investigated using unnecessary input parameters. 
Overall heat transfer coefficient, tube/annulus sides pressure drops, and overall cost have been 
estimated with deviations of 0.16%, 0.23%, 0.02%, and 0.003% via Model 1, 0.02%, 0.18%, 
0.16%, and 0.15% via Model 2, respectively. Moreover, Model 1 results in the best mean squared 
errors for annulus side pressure drop and overall cost with the values of 2.54E-04 and 1.93E-04, 
correspondingly, whereas Model 2 yields the best values of 1.11E-04 and 1.90E-04 for overall 
heat transfer coefficient and tube side pressure drop, sequentially.  

Nomenclature 

A inner surface area, m2 

ANN artificial neural network 
C pipe element price, USD 
COP coefficient of performance 
CFD computational fluid dynamics 
cp specific heat, J kg− 1K− 1 
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d diameter, m 
f friction factor 
h convective heat transfer coefficient, W m− 2K− 1 

HEX heat exchanger 
HT heat transfer 
HTC heat transfer coefficient, W m− 2K− 1 

k thermal conductivity, W m− 1K− 1 

L tube length, m 
ṁ mass flow rate, kg s− 1 

MLP multi-layer perceptron 
MSE mean squared error 
n number of pipes 
Nu Nusselt number 
P pumping power, W 
Pr Prandtl number 
R coefficient of determination 
Q̇ heat transfer rate, W 
Rf fouling factor, m2 K W− 1 

Re Reynolds number 
T temperature, ◦C 
tm average temperature, ◦C 
U overall heat transfer coefficient, W m− 2K− 1 

X variable 
w flow velocity, m s− 1 

ΔP pressure drop, Pa 
ΔT temperature difference, K 

Greek symbols 
η efficiency, % 
θy amortization period, year 
θh operating period, hour 
μ dynamic viscosity, Pa.s 
ν kinematic viscosity, m2 s− 1 

ρ density, kg m− 3 

φ particle concentration 

Subscripts 
el electric 
exp experimental 
f fluid 
F fouling 
h hydraulic 
i inside 
in inlet 
lm logarithmic 
m mean 
o outside 
out outlet 
p parallel 
pred predicted 
s series 
sum sum 
1 tube side 
2 annulus side  

1. Introduction 

Heat exchangers (HEXs) have commonly benefitted industrial and domestic systems for instance, refrigeration and HVAC, vehicles, 
power cycles, and production plants. The complication in evaluating them is due to their technical types and the physical occurrences 
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taking place during the heat transfer (HT) between the liquid or gas mediums. In most cases, they have been studied numerically, 
analytically, and experimentally in light of the principles of thermodynamics. Their theoretical examinations include more assump
tions and complex equalities; on the other hand, practical approaches are pricey owing to the first investment necessary for estab
lishing an experimental apparatus. To address these problematic points, artificial neural networks (ANN) have been generated for 
simulation, optimization, and estimation of thermal applications having HEXs. 

The appropriate choice of a HEX is a difficult task for engineers. Primarily, the noteworthy factor is to acquire thermal load 
precisely. Afterward, other ones are working pressure, flow rate, and chemical compatibility requirements. In addition to heat transfer 
(HT), these elements comprise the arrangement and substance. The prediction and operation of optimum velocity are two of the 
ignored items of HEX design issues that have a key position in the choice of the instrument concerning first and operative expenses. The 
mean flow velocity in HEXs is rarely evaluated, and hence requires additional and thorough research due to its critical influence on the 
total thermal performance of the system. That is to say, tube diameter is a remarkable input in the HT fundamentals encompassing 
examination of expenditures. The essential target of this work is to recall the effect of several types of pure fluids and their 
nanoparticle-added states on the optimum velocity impacting HT fundamentals, pumping power, and total cost, and to reveal the most 
appropriate and economic nanofluid for HEXs. The key goal of the present investigation is to model several fluids with added 
nanoparticles passing through the pipe side of the double pipe HEX using the procedures of MLP and NLS as beneficial tools of ANN 
structures employing various parametric estimation data. In the following paragraphs, we mention some of the latest numerical in
vestigations related to machine learning methods including ANN analysis. 

ANN derives equations depending on training data that necessitate no definite analytical equalities or application properties. Non- 
linear factors related to the HT practices of HEXs may be derived as a correlation by applying ANN analyses with low deviations [1]. 
Thermal investigations of HEXs utilizing ANN have recently been commonly performed. ANN is becoming popular as a numerical 
solution method that is successfully applied for the analysis of the HT characteristics of HEXs under admissible accuracy. According to 
a review paper by Mohanraj et al. [1], works on the subject can be classified into four main categories: the modeling of HEXs, the 
prediction HEX factors, the characteristics of phase change prediction, and the control of HEXs. In their study, the restrictions of ANN 
usage and the upcoming investigation required on the subject have been revealed. Recently published articles regarding ANN efforts 
for defining the HT characteristics of HEXs are summarized as follows: 

Devi et al. [2] used the plain swirl tape improvement method that is most prevalently utilized in the application of air conditioning 
and air refrigeration systems. They aimed to obtain the Nusselt number (Nu) of a double-pipe HEX with this passive improvement 
technique having various swirl ratios, both experimentally and numerically. Their work focused on the most utilized approximation 
named MLP-ANN having a 3-layer feed-forward neural network applied to find the Nu. Their numerical model’s inputs were the 
Prandtl number (Pr), twist ratios, and Reynolds number (Re), and they obtained 33 experimental data that were evaluated for training. 
Numerical outputs indicated that the Nu determined by the studied MLP-ANN model has a high accuracy and a very low error rate in 
the prediction of the Nu. 

Sharifi et al. [3] emphasized the difficulties of the development of a new correlation for a sophisticated thermal application having 
passive HT enhancement techniques. Their numerical model was a combination of computational fluid dynamics, ANN, and a genetic 
algorithm. For this purpose, they first obtained a 3D computational solution for fluid flow data using the computational fluid dynamics 
(CFD) technique. After verification of the CFD model, they examined the wire coil inserted pipes via the verified model to find the heat 
transfer coefficients (HTCs) and friction factors. Afterward, they selected a comprehensive ANN algorithm for testing the heat ex
changers. In conclusion, to find which kind of heat-exchangers operate more desirably, they employed the optimization method of the 
GA together with the ANN simulation. Outputs disclosing the state of the most suitable helical wire type was determined according to 
HT efficiency values. Researchers also indicated that the improper selection of wire inserts can reduce the efficiency of the heat 
exchanger unexpectedly. 

Moya-Rico et al. [4] suggested a numerical model for ANNs predicting HT characteristics in a triple concentric-tube HEX with 
smooth and enhanced surfaces that include corrugation with various pitch and depth values. They accomplished their ANN simulation 
by evaluating 181 practical data points. According to their analyses, the most proper training option is the Bayesian regulation. They 
examined various ANN configurations, and consequently concluded that the optimum one includes a configuration having two hidden 
layers with 15 and 21 neurons in the first and second layers, in turn. The numerical outputs have been successful in the prediction of 
practical data, whose absolute mean relative error band is less than 1.91% for the HTC and 3.82% for the pressure drop (PD), in turn. 

Verma et al. [5] aimed to determine the HT performance of a suggested 2 m length and 25.4 mm diameter manufactured HEX with 
varied corrugated and smooth tubes. Researchers focused on the details of corrugation to accomplish the maximum HTC and Nu. An 
ANN algorithm for estimating HTC, Nu, and Re was developed with an optimized structure of ANN at 8-10-3. Finally, they calculated 
R2 values calculated as 0.99999 for all investigated outputs. 

Hojjat [6] generated an ANN to determine the thermal and hydrodynamic characteristics in a shell and tube HEX. Nanoparticle 
volumetric proportion, Re, thermal conductivity, and Pr were the inputs, while Nu and PD were the outputs of their numerical model. 
They conducted multi-objective optimization to minimize the total PD and maximize the nanofluids’ Nu in the HEX through a 
non-dominated sorting genetic algorithm structure. Outcomes reveal that the developed ANN structure can estimate the tested 
database with a maximum of 9% and 9.6% deviations for Nu and PD, respectively. 

Taheri et al. [7] researched the alteration of the traditional heat sink, heat pipe structure to enhance HT performance. Their 
experimental model was based on the novel concept of a liquid-cooled heat sink with an MWCNT/water nanofluid for thermal control. 
Their criteria for the evaluation of tested sections include the PCB transient/steady temperature, the time necessary for reaching a 
steady-state regime, the mean thermal resistance of the cooling section, circuit cooling under discontinuing loads, and thermal per
formance. The radial-basis function and multi-layer perceptron (MLP) as ANN methods were beneficial in determining the steady-state 
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temperature of the PCB, applying a proposed cooling section for other working parameters. Consequently, at the maximum used heat 
flux, the highest energy efficiency is achieved at approximately 59.2% for the flow of MWCNT/water nanofluid having a mass con
centration of 0.3%. 

Naphon et al. [8] used CFD and ANN analyses to examine the nanofluids’ jet impingement HT and hydrodynamic behavior in a 
microchannel heat sink. They accomplished this optimization study using the Levenberg-Marquardt backward propagation training 
structure and the Eulerian two-phase approach model for the ANN and CFD models, respectively. They performed a validation study 
through the comparison of ANN and CFD data with measured ones. In the ANN results, most of the data were in the deviation bands of 
±1.5% for both the Nu and PD. They also calculated the largest error for all tests at 1.25%. 

Davoudi and Vaferi [9] discussed the fouling problems that occur on HT surfaces and emphasized the inaccurate obtained results 
from practical studies due to the fouling issues of HEXs. The ANN method was suggested as a solution for estimating the fouling factor. 
Many data points have been evaluated for the improvement study of the ANN model. They enabled the minimization of the numerical 
struggle and maximization of statistical precision via the Bayesian regulation backpropagation method as the best training structure 
and optimum number of hidden neurons. They also predicted fouling factors from practical data and developed an ANN model with 
very high accuracy. 

Duran et al. [10] aimed to create a model for an early design on cost prediction for shell and tube HEXs. They benefitted from the 
ANN technique for accurate estimations, even in cases with no necessary knowledge in the beginning phase of the design. Their results 
indicated that ANN analyses can reduce uncertainties regarding the predicted cost of a shell and tube HEX. 

Some of the studies including passive HT enhancement techniques for HEXs are summarized as follows: 
Noorbakhsh et al. [11] numerically researched the increase in HT in a double tube HEX with a twisted band as a vortex generator. 

They conducted three-dimensional numerical simulations using the finite volume method; they also obtained the spatial discretization 
of the mass, momentum, turbulent dispersion rate, and turbulent kinetic energy formulas with a quadratic upwind scheme. They also 
evaluated the Green-Gauss cell-based method to determine the gradients, and they considered the vortex generator in both channels of 
the HEX. Three different types of nanofluids containing Al2O3, CuO, and SiO2 were accepted as the HT fluid in the inner channel. The 
outcome indicated that the highest thermal performance pertains to the CuO/water nanofluid, which has a 7% increase in thermal 
performance in comparison to water. 

Karouei et al. [12] proposed a helical twin-pipe HEX with a finned, semi-conical section and an advanced turbulator with two holes 
inside. They considered two geometric parameters in the model, namely the angle of the tabulator blades and the number of tabulator 
blades. The results first showed that the best thermal stratification can be obtained at the fin angle of 180◦, and the lowest mass flow 
rate studied, the HTC of the turbulator with the fin angle of 180◦, is higher than the case without the turbulator. 

Noorbakhsh et al. [13] numerically investigated the impact of employing twisted bands with several geometries on both pipes of a 
double tube HEX. They considered cases in which the fluid is water on both sides of the double-pipe HEX discussed in the study. They 
numerically analyzed the effect of geometric parameters such as the number of twisted strips and gap formation on the twisted strip 
with dissimilar aspect ratios. They calculated and evaluated the outlet temperature, pressure drop, Nu, and coefficient of performance 
(COP) for both sides. Their findings showed that increasing the number of twisted bands from a single blade to four blades resulted in a 
3.1% increase in the Nu, a 64% increase in pressure drop, and a 63.9% rise in the COP. 

Karouei et al. [14] numerically investigated the influence of placing an advanced curved turbulator and using two sorts of hybrid 
nanofluids on thermal performance in a helical twin-tube HEX. They used silver, graphene, and multi-walled carbon nanotube-iron 
oxide as nanoparticles, with water preferred as the base fluid. The studied novel turbulator has 12 blades to generate secondary 
flows, and a hole at the tip of the turbulator is assumed. The results of the study showed that using this proposed progressing turbulator 
causes a higher HT rate and that a silver-graphene/water hybrid nanofluid improves thermal performance at a low mass flow rate. 

Karouei and Ajarostaghi [15] numerically investigated HT and fluid flow in a dual coil HEX with a new vortex generator with a 
curved inner channel. The turbulator under consideration consists of a coiled structure and 12 blades to make up swirl flows, and two 
holes have been formed in the semi-conical section of the turbulator. They investigated the influences of the geometric factors of the 
suggested turbulator, involving the radius of the turbulator and its holes. The results showed that the highest efficiency corresponds to 
the situation where the diameter of the turbulator and the radius of the turbulator holes are equivalent to 19 and 3.6 mm, corre
spondingly. In addition, swirl flows created by the turbulator were stated to have a significant effect on HT improvement. 

In this paragraph, we briefly discuss some of the works related to machine learning methods excluding ANN analysis. In his study, 
Sridharan [16] used a basic numerical way to estimate the efficiency of a concentric HEX employing fuzzy logic that included two fuzzy 
interference structures as Mamdani and Sugeno. For this purpose, he obtained 48 sets of practical data under different mass flow rates 
of hot and cold fluids. According to the comparison of practical and estimated outputs, Sugeno-based numerical models were noticed to 
be more predictive than Mamdani-based ones. Some of the recently performed investigations based on ANN analyses of HEXs have 
focused on finding the following: techniques of fouling in HEXs in food production [17]; computational work on hydrothermal at
tributes of a nanofluid in a spiral HEX [18]; nanofluids in the shell and tube cooling HEXs of gasoline material of the residual fluid 
catalytic cracking unit [19]; optimization of ground-source HEXs for buildings employing the Taguchi technique [20]; modeling of a 
helically corrugated coiled tube-in-tube HEX [21]; optimization of helical micro fin pipes depending on exergy destruction minimi
zation [22]; energy and exergy analyses for the impact of the finned coiled wire insert in a circular tube [23]; optimization of a 
double-pipe HEX having nanofluids by ANFIS; and ANN modeling [24] and determination of the HTCs of shell and coiled tube HEXs 
benefitting from computational and experimental techniques [25]. The abovementioned investigations of HEXs and industrial and 
domestic uses of ANN verified that no specific work exists on the handling of ANN for the determination of optimum velocity in a HEX. 
Therefore, this numerical investigation should be a model for future studies and should fill the gap in open sources. It can be noted that 
the present paper should be assessed as a follow-up to the authors’ recently published investigations [26,27]. The primary purpose of 
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the current research should be seen as modeling the single-phase pure and nanofluid flows in a double-pipe HEX in MATLAB by the 
techniques of MLP and NLS, and then evaluating the most influenced factors and generating reliable equations with several groups of 
optimum data for velocity determination [26,27]. The suggested model is thought to help estimate some HEX design parameters of 
other configurations without additional parametric work, owing to the usage of reliable data from the authors’ previous publications 
[26,27]. 

2. Parametric calculation procedure 

2.1. Thermophysical properties 

The used inputs from the numerical models do not include any parameters specifically calculated for nanofluids flowing in the tube 
side; in other words, the database has not been divided into any groups, they have been used as whole groups during ANN analyses. To 
enable content integrity, the procedure for the calculation of thermophysical specifications of nanofluids can be gained from the 
authors’ former studies [26,27]. 

2.2. Heat transfer analysis 

The parametric model methodology has been given between Eqs. (1) and (6) and are valid for the pipe side of the multi-double pipe 
HEX (hairpin type). The HT rate from the hot fluid is determined in Eq. (1). 

Q̇ = ṁ1cp,1
(
T1,in − T1,out

)
(1) 

The number of parallel tubes [28], velocity, and Re is found using Eqs. (2)–(4) respectively. 

np =
ṁ1

πd2
1

4 w1ρ1

(2)  

w1 =
ṁ1

πd2
1

4 npρ1

(3)  

Re1 =
w1d1,i

ν1
(4) 

Convective HTC is obtained using Eq. (5) for non-boiling water during turbulent flow (10<di < 100 mm and L > 1000 mm) [29], 

h1 = 3373(1+ 0.0014tm)w1
0.85 (5)  

where the average temperature is acquired using Eq. (6). 

tm =
T1,in + T1,out

2
(6) 

The formulas from Eqs. (7)–(17) are valid for the annulus side of the investigated HEX. Re, velocity, and hydraulic diameter are 
found in Eqs. (7)–(9), in turn. 

Re2 =
w2d2,h

ν2
(7)  

w2 =
ṁ2

π
[
(d2,i)

2
− (d2,o)

2
]

4 npρ2

(8)  

d2,h =
4
[(πd2

2,i
4

)
−
(πd2

1,o
4

)]

πd2,i + πd1,o
= d2,i − d1,o (9) 

In round tubes and for laminar flow, the Nu is obtained using Eq. (10) as proposed by Hausen [30]. Accordingly, Gnielinski [31]’s 
Nu is given in Eq. (11) for the turbulent flow in round tubes, 

Nu2 = 3.66 +
0.19

(
Re2Pr2

d2,h
L

)0.8

1 + 0.117
(

Re2Pr2
d2,h
L

)0.467 0.1 < Re2Pr2
d2,h

L
< 104 (10)  

Nu2 =

( f2
2

)
(Re2 − 1000)Pr2

1 + 12.7
( f2

2

)1
2
(
Pr2

2
3 − 1

) (11)  

where Eqs. (7) and (12) give Re and friction factor, correspondingly. 
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f2 =(1.58lnRe2 − 3.28)− 2 (12) 

Convective HTC, overall HTC, and logarithmic temperature difference are determined using Eqs. (13)–(15), in that order, 

h2 =Nu2
k2

d2,h
(13)  

Fig. 1. The schematic structure of an MLP network (a), the network structures of two different ANN models developed (b, c).  
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1
Uo

=
1
h1

A2

A1
+ RF,1

A2

A1
+

ln
(

r2
r1

)

2Lk1
A2 + RF,2 +

1
h2

(14)  

where fouling factors are taken as 0.0001 m2K/W. 

ΔTlm =
ΔT1 − ΔT2

ln
(

ΔT1
ΔT2

) (15) 

To compute the total heat transfer area of the HEX, Eq. (16) is used and the total pipe number is gained using Eq. (17). 

Ao =
Q̇

Uo ​ ΔTlm
(16)  

n = ​ nsnp =
A0

πd1,0L
(17)  

2.3. Pressure drop analysis 

Eq. (18) is for the tube side, while Eqs. (19) and (20) are for the annulus side [32]. It should be noted that the m value is assumed for 
laminar and turbulent flows as 0.25 and 0.14, respectively [32], 

ΔP1 = ns

[

fi
L

d1,i

(
μ
μ1

)− m

+ 2.5
]

ρ1w2
1

2
(18)  

ΔP2 = ​ ns

[

fo
L

d2,h

(
μ
μ2

)− m

+ 2.5
]

ρ2w2
2

2
(19)  

where the hydraulic diameter is determined by Eq. (20) and the friction factor [33] is calculated from Eq. (21) for Re < 2300, Eq. (22) 
for 2300 < Re < 20000 and Eq. (23) for Re > 20000. 

d2,h =
π
(

d2
2,i − d2

1,o

)

​ d1,o
(20)  

f =
64
Re

(21)  

f =
0.3164
Re0.25 (22)  

f =
0.184
Re0.2 (23)  

2.4. Cost analysis 

The pumping power is calculated by Eq. (24) for both sides of the HEX taking pump efficiency as 70% individually. 

P =
ṁ ΔP
ρ ​ η (24) 

Annual investment, working, and overall costs [28] are obtained using Eqs. (30)–(32), respectively. 

3. ANN development 

To estimate Uo, ΔP1, ΔP2, and Csum values, we have designed two dissimilar MLP-ANN models. MLP algorithms are among the most 
frequently used ANN algorithms with their robust structures and high learning skills [34–36]. The first layer of MLP networks is the 
input layer in which the training data is introduced to the system. After the input layer, there is a hidden layer that contains the 
numerical parameter named in the neuron [37]. In the final layer, the output layer, the forecast values are obtained. The schematic 
structure of an MLP structure is illustrated in Fig. 1a. In the first model input layer, named Model 1, we have defined a total of 10 input 
parameters ρ, np, k1, Re1, fi, Re2, fo, ns, P1 and P2. In the second model, we have defined 8 input parameters by subtracting P1 and P2 
parameters from the input parameter group. These are the leading factors for the determination of optimum velocity [26,27]. One of 
the significant parameters in the development of ANN models is the ideal optimization and grouping of the data set. While it may be 
possible to have an over-learning situation in ANN models developed with an excessive amount of data, the prediction performance of 
models developed with insufficient data may be low [38]. Therefore, the data set has been classified using the method with a high 
accuracy reported in the literature [39–41]. In the ANN model, designed using a total of 438 data sets, 306 of the data sets have been 
evaluated for training the model, 66 for validation, and 66 for testing. Determining the algorithm to be evaluated in the training of the 
ANN structure is among the significant stages in the training performance of the model. ANN algorithms can be developed using 
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Fig. 2. Error histogram of the ANN models.  
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different training algorithms. There are some investigations on the performance analysis of training algorithms [42]. The 
Levenberg-Marquardt training algorithm, due to its strong functional feature, is one with a high training capability and that is 
frequently used in ANN models [43,44]. Considering all these advantages, we used the Levenberg-Marquardt training algorithm in the 
developed ANN model. Tan-Sig and Purelin transfer functions are used in the hidden and output layers of the MLP network, in turn. 
The transfer functions used are indicated below [45,46]. 

f(x)=
1

1 + exp( − x)
(29)   

purelin(x) = x                                                                                                                                                             (30) 

One of the problems in the generation of ANN structures is to determine the number of neurons to be used in the hidden layer. There 
is no model or mathematical expression in use for calculating the number of neurons [47]. For this reason, as is done in the literature, 
we examined the performance of network models generated with several neuron numbers, and we obtained the maximum estimation 
performance from the model with 15 neurons in the hidden layer. The network structures of two different created ANN models are 
depicted in Fig. 1b. We calculated the mean squared error (MSE) and coefficient of determination (R), which are frequently used, to 
analyze the training and forecast performance of both ANN algorithms, and we evaluated the results. The proportional deviations 
between the outcomes gained from the ANN models and the target data have also been calculated and analyzed. The analytical ex
pressions evaluated are given as [48]: 

MSE=
1
N

∑N

i=1

(
Xtarg(i) − Xpred(i)

)2 (31)  

R=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

∑N
i=1

(
Xtarg(i) − Xpred(i)

)2

∑N
i=1

(
Xtarg(i)

)2

√
√
√
√ (32)  

Deviation ​ (%)=

[
Xtarg − Xpred

Xtarg

]

x ​ 100 (33)  

Fig. 3. MSE values for the developed ANN models.  
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4. Results and discussion 

Tubing is among the most noteworthy subjects in the expenditure of industrial applications. It is a reality that 80% of the cost of 
tools or 20% of fixed assets may be due to the prices of piping in thermal systems. Tube diameter, and thus flow velocity, strongly 
influences the current value of the system in terms of electricity consumption, and the cost of fitting tubes, pumps, and valves. A sample 
model of the comprehensive expenditure method for various fluids with their pure and mixture versions with nanoparticles in liquid 
phase flowing in an inner pipe side of tube-in-tube HEX has been investigated. Pressure drop, in other words, or pumping power rises 
with increasing flow velocity, whereas overall expenditure illustrates a curve. The obvious result is that a minimum expenditure exists 
as a consequence of the parametric calculations for every tested fluid. 

In the current numerical research, the 438 parametric datasets have been formed for the several fluids. It should be noted that water 
has been flowing on the annulus side while the other fluids have been flowing on the inner side. We have determined the proper 
economic working conditions based on the calculation of optimum velocity in the inner tube for the multi-double-pipe HEX (hairpin 
type) [26,27]. 

Artificial intelligence tools that can predict with high accuracy by learning even non-functional relationships between data are 
widely used in almost every field [49]. In the field of artificial intelligence, there are different tools such as ANNs, genetic algorithms, 
particle swarm optimization, fuzzy logic, simulated annealing, intelligent bee algorithm, and hybrid approaches [50]. ANNs, which 
have a very high prediction ability in comparison to traditional mathematical tools, are among the most commonly benefitting 
artificial intelligence methods [51]. The use of the ANN structure is preferred because of its advantages such as its strong structure and 
high learning ability in a great number of experimental data sets. 

The initial step in the performance evaluation of ANN is to check their reliability in training. The error histogram depicting the error 
values obtained through the training stage, which was created for this purpose, is shown in Fig. 2. The main purpose of error histo
grams is to have an idea about the training accuracy of the ANN algorithm by analyzing the error values gained from the training 
stages. As the error histogram illustrated in Fig. 2 is reviewed, we observe that the error values calculated for the training, validation, 
and test data sets are placed around the zero error line. On the other hand, the computational values of the errors in the x-axis are quite 
small, as well. The outcomes acquired from the error histograms demonstrate that the training stages of both developed ANN models 
are finalized in a desired way with small errors. 

In Fig. 3, the MSE values of both ANN models are given for each output parameter. Examination of MSE values is significant for the 
training and estimation validation of network models. There is a linear relationship between the proximity of the MSE values to zero 
and the prediction accuracy of the structure. As the MSE values found for each of the 438 data sets employed in the creation of the ANN 

Fig. 4. The target and ANN outputs for both models.  
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models are reviewed, it is noticed that the MSE values obtained for both models are close to the zero line. It is seen that the MSE values 
calculated for each of the four different parameters are much lower than the MSE values obtained in similar studies in the literature 
[52]. These small values for MSE verify that both created ANN models have low errors and are trained to predict output parameters 
with low error values. 

To examine the forecast accuracy of the ANN structures comprehensively, target and forecast data are displayed on the same graph 
to see the harmony between the data. In Fig. 4, the target data is on the x-axis, and the ANN model outputs are on the y-axis. When the 
situations of the data points are analyzed, all 438 data lie on the zero error line. The fact that the data obtained for both ANN structures 
are taking place on the zero error line indicates that both ANN structures have been developed to estimate output parameters with high 
precision. 

As a consequence of the comprehensive examination of the data obtained because of the calculations made on the training and 
estimation performance of both developed ANN models, we can see that both network structures can be estimated with high precision. 
The determined R values for the created ANN models were above 0.98. The proximity of the R values to 1 is directly proportional to the 
high estimation precision of the ANN structure. In the investigations of ANN in the open sources, it is stated that R values calculated as 
0.8 have satisfactory prediction performance [53]. The R values obtained for the ANN models proposed in this study have higher 
values compared to the values in the literature. These outcomes gained from the R values prove that the developed ANN models are 
ideally trained. As the deviation values determined for the proposed ANN models are analyzed, one can notice that generally very 
slight deviations are obtained. Thus, the maximum deviation is − 0.23%. Considering the deviation values in the literature, we see that 
the deviations of 5% [54,55] and 6.98% [56] are considered ideal. Compared to these given studies, we see that the deviations ob
tained are much lower. By comparing the models generated by various input parameters, we aimed to see which model had higher 
performance and to examine the impact of input factors on outputs. Fig. 5 depicts the computed deviations for all data. As we review 
the figures, we notice that Model 2 can predict with higher accuracy than Model 1 for Uo and ΔP1 values. When the same evaluation is 
made for ΔP2 and Csum values, we see that Model 1 has a higher estimated performance than Model 2. According to the obtained 
results, the pumping powers of the inner and annulus sides of the HEX are found as unnecessary input parameters of ANN analyses 
because the prediction rates of Group 1 input parameters seem satisfactory as shown in Table 1. Normally, it is expected that pre
dictability is supposed to increase as input parameters increase. However, there is a reality that noise issues in the analyses sometimes 
can occur due to unnecessary input parameters affecting the learning algorithm negatively. From this point of view, the noise issue 
begins in Fig. 5b and continues to Fig. 5d. Group 2, having pumping powers that involve pressure drops in their formulas, has less 
predictability than Group 1, but it is supposed to have contrary performance. 

Finally, further discussions, figures, and tables on the HT, PD, and cost analysis of the determination of optimum velocity have not 

Fig. 5. Deviation rates for the ANN models.  
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been provided in the current study. Due to page limitations, they exist in Refs. [26,27]. Only ANN results are presented in the current 
work. 

5. Conclusion 

Tube-in-tube HEXs are the unsophisticated shape of HEXs employed in the industry. Since they are affordable to possess, and they 
require low-cost service, small and medium-sized enterprises usually prefer them. However, they reserve a remarkable place yet have 
low efficiency in comparison to others. In the current work, the temperatures at the tube and annulus side of the HEXs have been found 
identical. Because the fluid flow rate at the annulus side has a fixed value, the heat load is equal to all investigated fluids. Two dis
similar and important physical characteristics happen in this type of HEX: fluid flow in tubes and HT between the fluid and annulus 
wall. Thus, improving the mechanisms occurring through those characteristics enhances HT. Augmenting the thermophysical speci
fications of the tested fluids having nanoparticles to enable a preferable overall HTC can be favored to improve HT. In the current 
situation, considering both annual investment and operation expenditures, determining optimal velocities for the studied fluids given 
the most economical working conditions have been beneficial in data sets of ANN analyses. 

In the present work, two unique ANN models with various input factors are generated, and Uo, ΔP1, ΔP2, and Csum values are 
estimated. ρ, np, k1, Re1, fi, Re2, fo, ns, P1 and P2 values have been described in the input layer of the first model, while P1 and P2 
parameters have been extracted in the second model. There are 15 neurons in the hidden layer of developed MLP networks, and the 
Levenberg-Marquardt procedure is evaluated as the training algorithm. About 70% of the data employed in the ANN models designed 
with a total of 438 data sets were classified for model training, 15% for validation, and 15% for the testing stage. Overall HT coef
ficient, tube, and annulus side pressure drop, and overall cost have been estimated with the deviations of 0.16%, − 0.23%, − 0.02%, and 
− 0.003% via Model 1, 0.02%, − 0.18%, − 0.16%, and − 0.15% via Model 2. The noise issue has also been investigated using unnec
essary input parameters. The ANN model developed from the present work may be widened by adjusting it to other fluids along with 
HEX types, provided that the outcomes are verified by prevalent references in the open sources. 
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