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In this paper, we propose (a) fuzzy multiple objective
linear programming models for the Supplier Selection
and Order Allocation (SSOA) problem under fuzzy
demand and volume/quantity discount environments,
and (b) an analysis of how to select the suitable ag-
gregation operator based on the risk preferences of
decision makers. The aggregation operators under
consideration are additive, maximin, and augmented
operators while the risk preferences are classified as
risk-averse, risk-taking, and risk-neutral ones. The
suitabilities of aggregation operators and risk pref-
erences of decision makers are analyzed by a statis-
tical technique, considering the average and the low-
est satisfaction levels of the supplier selection criteria,
based on numerical examples. Analysis results reveal
that decision makers with different risk preferences
will prefer only some aggregation operators and mod-
els. Moreover, a particular aggregation operator and
model may generate a dominated solution for some sit-
uations. Thus, it should be applied with caution.

Keywords: fuzzy multiple objective linear programming,
aggregation operators, risk preferences of decision mak-
ers, supplier selection and order allocation

1. Introduction

Selecting appropriate suppliers is one of the critical
business decisions faced by purchasing managers, and it
has a long term impact on a whole supply chain. For most
firms, raw material costs account for up to 70% of product
cost as observed in Ghodspour and O’Brien [1]. Thus, the
supplier selection process is an important issue in strate-
gic procurement to enhance the competitiveness of a firm.
Effective selection of appropriate suppliers involves, not
only scanning price lists, but also the requirements of or-
ganizations, which are increasingly important due to high

competition in business markets. Typically, Dickson [2]
indicated that major requirements are meeting customer
demand, reducing cost, increasing product quality, and on
time delivery performance. Hence, supplier selection is a
Multi-Criteria Decision Making problem which includes
both qualitative and quantitative data, and some of which
may be conflicting. For conflicting criteria, decision mak-
ers need to compromise among criteria. To do so, de-
cision criteria are transformed to objective functions or
constraints. The relative importance (weight) of each cri-
terion may be also applied to the model.

Essentially, to prevent a monopolistic supply base, as
well as to meet all the requirements of firms, most firms
have multiple suppliers which lead to the problem of how
many units of each product should be allocated to each
supplier. Thus, it becomes a Supplier Selection and Order
Allocation (SSOA) problem.

Interestingly, to attract large order quantities, suppliers
frequently offer trade discounts. Commonly, volume and
quantity discounts are popular trade-discount strategies.
The quantity discount policy aims to reduce unit cost,
while the volume discount encourages firms to reduce the
total purchasing cost. Both discounts are triggered at a
certain purchasing level. For example, buyers purchase at
$20 per unit (down from $25 per unit) when they purchase
more than 100 units or receive a 10% discount when the
total purchase cost of all products is greater than $1000.
It is interesting to observe that the trade discount compli-
cates the allocation of order quantities placed to suppli-
ers. Thus, determining the different pricing conditions is
a crucial task of decision makers to make the most bene-
ficial buying decision.

Practically, firms try to place an order at the level of
predicted demand to avoid excess inventory. However,
when trade discounts are offered, firms usually purchase
more than the predicted demand, to receive a lower price.
Hence, to optimize the benefits, fuzzy demand is incor-
porated in models. Note that the satisfaction of demand
criteria decreases whenever the order quantity deviates
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Table 1. A comparison of our study and other research works.

Author(s) Fuzzy demand Volume discount Quantity discount Multiple product
Xia and Wu [9] No Yes No Yes
Wang and Yang [10] No No Yes No
Amid et al. [11] Yes No Yes No
Lee et al. [12] No No Yes No
Zhang and Chen [13] Yes No Yes No
Suprasongsin et al. [14] No Yes Yes Yes
Hammami et al. [15] No No Yes No
Ayhan and Kilic [16] No No Yes Yes
Mazdeh et al. [17] No No Yes No
Cebi and Otay [18] Yes No Yes Yes
This model Yes Yes Yes Yes

from the predicted demand. Regarding the issue of un-
certainty (fuzziness), fuzzy set theory (FST), developed
by Zadeh [3], has been extensively used to deal with un-
certain data, like in this case.

During the last decade, we have witnessed many de-
cision techniques for handling multiple criteria decision
making problem. Among several techniques suggested
by Ho et al. [4], the linear weighting programming model
proposed by Wind and Robinson [5], is widely applied to
assess the performances of suppliers. The model is rela-
tively easy to understand and implement. Later, with the
use of pairwise comparisons, an analytical hierarchy pro-
cess (AHP) allows a more accurate scoring method [6].
Generally, this technique decomposes the complex prob-
lem into multiple levels of a hierarchical structure. Sim-
ilarly, Analytic Network Process (ANP), Goal Program-
ming (GP), Neural Network (NN), etc., are also intro-
duced to deal with the multiple criteria decision making
problem.

In addition, a significant issue in the multiple criteria
decision making problem is how to deal with different
weights of criteria. Since, these weights are used in the
model, weight aggregation operators are needed. Until
recently, the most often used weight aggregation operator
is weighted average operator or weighted additive opera-
tor. However, it has some drawbacks. It is not appropriate
with interactive criteria. Thus, decision makers need to
assume that all criteria are independent. This leads to
some bias in making a decision. With the recognition
of limitations, many scholars have developed advanced
aggregation operators, such as the Choquet integral pro-
posed by Schmeider [7] to deal with interactive criteria.
The Ordered Weighted Averaging operator (OWA) intro-
duced by Yager [8] is another popular aggregation oper-
ator used in the multiple criteria decision making prob-
lem. The OWA operator is actually the extension of the
weighted average operator. The fundamental concept of
OWA is that a weight is associated with the order of the
score position, causing a non linear aggregation process.
The Sugeno integral is also a well-known aggregation op-
erator, which can be written in the form of a weighted
max-min function. The weighted max-min function can
be calculated as medians. In other words, it can be said

that the Choquet integral is an extension of the weighted
additive operator, while the Sugeno integral is an exten-
sion of the weighted max-min operator.

To simplify analyses, this paper focuses on the basic
weighted aggregation operators, weighted additive oper-
ator, and weighted max-min operator, together with the
weighted augmented operator. Note that the weighted
augmented operator is the integration of weighted addi-
tive and weighted max-min operators. This paper also as-
sumes that all criteria are independent.

Although several advanced techniques have been pro-
posed to deal with the multiple criteria decision making
problem, little attention has been shown as to which ag-
gregation operator is suitable for a specific risk preference
of a decision maker. Basically, the risk preference of de-
cision makers can be classified into three types, namely,
risk-taking, risk-averse, and risk-neutral. Another issue is
that previous research works related to the SSOA problem
have been conducted based on either volume or quantity
discount, not both of them at the same time, as shown in
Table 1.

Based on these motivations, this paper proposes realis-
tic models with important practical constraints, especially
volume and quantity discount constraints under fuzzy de-
mand. Interestingly, three types of aggregation operators
are applied to the models to determine which operator is
suitable for risk-taking, risk-averse, and risk-neutral deci-
sion makers. The aggregation operators are (1) additive,
(2) maximin, and (3) augmented operators. The models
are developed from Amid et al. [11], Amid et al. [19], and
Feyzan [20], accordingly. In addition, to test the sensi-
tivity of the models, as well as the effect of aggregation
operators, statistical analysis is conducted based on two
performance indicators, namely, the average and the low-
est satisfaction levels.

The rest of this paper is organized as follows. In Sec-
tion 2, related terms are mentioned. Then, six developed
models are presented in Section 3. In Section 4, statistical
experiments are conducted to analyze the performances of
the aggregation operators using MINITAB software. Re-
sults are discussed in Section 5, and some concluding re-
marks are presented in Section 6.
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Table 2. Definition of attitudes toward risk of decision makers.

Indicator/Risk preference Risk-taking Risk-averse Risk-neutral
Average satisfaction level Highest Any value Not lowest
Lowest satisfaction level Any value Highest Not lowest

2. Preliminaries

2.1. Aggregation Operators
To aggregate multiple criteria, many advanced aggre-

gation operators have been proposed. However, in this
paper, three basic types of operators are investigated with
relative importance of criteria.

2.1.1. Additive Aggregation Operator

The weighted additive technique is probably the best
known and widely used method for calculating the to-
tal score when multiple criteria are considered. In 2009,
Amid et al. [11] applied this operator to their model where
the objective function is:

Max
I

∑
i=1

wiλi . . . . . . . . . . . (1)

where wi is the relative importance of criteria i, and λi
is the satisfaction level of criteria i. Note that to deal
with multiple criteria, the dimensions of criteria are trans-
formed to satisfaction levels, which are dimensionless.

2.1.2. Maximin Aggregation Operator

The goal of this operator is to maximize the minimum
satisfaction level. In 2011, Amid et al. [19] introduced
the model based on the maximin operator. In this model,
s represents the smallest value of the criteria-satisfaction
level.

Max s . . . . . . . . . . . . . . (2)

2.1.3. Augmented Aggregation Operator

In 2013, Feyzan [20] proposed this operator in order
to keep the advantages of both the additive and maximin
operators. The objective function is developed as follows.

Max s+
I

∑
i=1

wiλi . . . . . . . . . . (3)

2.2. Performance Indicators
Performance indicators are common tools for measur-

ing the success of a target and are widely used in many
fields. In this paper, a target is the explanation of the
model’s characteristics. The average and the lowest sat-
isfaction levels of the supplier selection criteria are two
characteristics for measuring the effectiveness of the mod-
els. In addition, a statistical technique has been employed
in order to determine the significance of the findings.

2.3. Attitudes Toward Risks of Decision Makers
Real world decision making is usually made by peo-

ple responsible for it. In order to understand how peo-
ple make a decision, we need to know the nature of the
people, so that we can select the most suitable decision
making tool to fit with a particular type of people. In this
paper, attitudes toward risk are used to classify the types
of people. Generally, according to risk perception, people
are classified into three types. Firstly, a risk-taking deci-
sion maker is one who enters into the risk as long as he/she
possibly sees a positive high return. He/She might also be
described as a decision maker who prefers the solution
with relatively high value of average satisfaction levels of
all criteria even though some criteria may have a very low
or zero satisfaction level. The risk-taking decision maker
feels that scarifying a criterion for the betterment of many
other criteria is worth the risk. Secondly, a risk-averse de-
cision maker, on the other hand, prefers to have as much
certainty as possible, in order to reduce the discomfort
level. He/She is very unhappy if the criterion has a very
low or zero degree of satisfaction although many other
criteria have a very high degree of satisfaction or high sat-
isfaction level. Finally, a risk-neutral decision maker has a
moderate opinion about risk. This type of risk preference
decision maker feels that the average satisfaction levels of
all criteria are important, and the lowest degree of satis-
faction is important, too. Therefore, risk-neutral decision
makers do not accept a solution with the lowest average
satisfaction level or the one with the lowest value of the
lowest satisfaction level. The attitudes towards risk of de-
cision makers are summarized in Table 2.

2.4. Pareto-Optimality
A common problem addressed in multiple criteria deci-

sion making is how to compare the conflicting criteria in
order to deliver a compromised Pareto optimal solution.
Before going into details about what a Pareto optimal so-
lution is, let us exemplify some fundamental concepts of
the multiple criteria decision making problem.

Assume that Mr. Beta wants to buy a house. After con-
sidering many houses, he comes up with three choices, as
shown in Table 3. In this case, his goals are to minimize
the price, maximize his satisfaction in house design, and
minimize the school distance of his children.

Based on this general example, we can clearly see that
House B is more preferable than House C. Its price and
distance are lower than House C. In addition, he also likes
the design of the house more than House C. In this situa-
tion, we can say that House B dominates House C. Now
let us consider House A and B. We can observe that both
of them are incomparable since one is not better or worse
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Table 3. A concept of multiple criteria comparison.

Alternatives/Criteria Price Design Distance
($×100000) (Score) (km)

House A 3 3.5 30
House B 3.5 5 20
House C 4 4 25

Environment

Operators

Models

Models

WithWeight

Augmented

Model6

Maximin

Model5

Additive

Model4

WithoutWeight

Augmented

Model3

Maximin

Model2

Additive

Model1

Fig. 1. A combined model diagram.

than the other in all criteria. This is a characteristic of a
Pareto optimal solution or so-called, non-dominated solu-
tion.

In this paper, models are investigated, whether they
generate the Pareto optimal solution or not. This is impor-
tant because if a model’s solution is dominated by other
solutions, we may say that it is not a good model.

3. Model Development

There are six proposed models for the SSOA problem
under fuzzy demand and volume/quantity discount con-
straints. Models under consideration are shown in Fig. 1.

3.1. Problem Description
In this study, decision makers must properly allocate

the order quantities to each supplier so that maximum sat-
isfaction is achieved. Four criteria are considered: (1) to-
tal cost, (2) quality of product, (3) delivery performance,
and (4) preciseness of demand, where relative impor-
tances of criteria (weights) are given. The dominant ef-
fects among criteria are reduced by transforming them
into satisfaction levels, in a range from 0.0 to 1.0. De-
mand of each product is allowed to be fuzzy. As mul-
tiple products are considered, the overall demand satis-
faction level is the least satisfaction level of all products.
The price-discount models were developed from Xia and
Wu [9], Wang and Yang [10], and Suprasongsin et al. [14].
Note that the numerical data are given in Tables 4–14.

3.2. Mathematical Formulation
Let us assume that there are five products and five sup-

pliers under consideration. Supplier k (k = 1, . . . ,K) of-
fers either a volume discount or quantity discount when
product j ( j = 1, . . . ,J) is purchased at a discount level
c (c = 1, . . . ,C). It is also assumed that supplier 3 offers
a volume discount policy, while other suppliers offer a
quantity discount policy.

Indices
i index of criteria i = 1, . . . , I
j index of products j = 1, . . . ,J
k index of suppliers k = 1, . . . ,K
c index of business volume c = 1, . . . ,C

breaks and price breaks’ levels
m index of fuzzy demand m = 1, . . . ,M
n index of demand (d) levels n = 1 if d ≤ M

n = 2 if d ≥ M

Input parameters

dc j predicted demand of product j (units)
h jk capacity of product j from supplier k (units)
u j maximum number of suppliers that can supply

product j (suppliers)
l j minimum number of suppliers that can supply

product j (suppliers)
o jk minimum order quantity of product j supplied

from supplier k (units)
sr jk 1 if supplier k supplies product j

; 0 otherwise (unitless)
r jk minimum fraction of total demand of product j

that has to be purchased from supplier k
according to the agreement (percentage)

pc jk price at discount level c of product j offered
from supplier k ($)

z1 jk unit price of product j offered from supplier k ($)
z2 jk quality score of product j evaluated from

supplier k (score)
z3 jk delivery lateness of product j evaluated from

supplier k (days)
ec jk quantity break point of quantity discount at level

c of product j from supplier k (units)
gck volume discount percentage from

supplier k at discount level c (percentage)
bck dollar break point of volume discount at level c

from supplier k ($)
fk 1 if supplier k offers quantity discount

; 0 otherwise (unitless)
wi weight of criteria i (unitless)
σ weight of fuzzy demand (unitless)
mni minimum value of criteria i ($, score, days)
mdi moderate value of criteria i ($, score, days)
mxi maximum value of criteria i ($, score, days)
bom j boundary of demand level m of product j (units)

Decision variables

xc jkn purchased quantity at discount level c of product
j from supplier k at demand level n (units)

vc jk purchased quantity at discount level c of product
j from supplier k (units) at constant demand

π jk 1 if supplier k supplies product j
; 0 otherwise (unitless)

tc jk total purchasing cost j from supplier k at level c
for quantity discount ($)

ack total purchasing cost j from supplier k at level c
for volume discount ($)

8 Journal of Advanced Computational Intelligence Vol.22 No.1, 2018
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Table 4. Weight sets (wi,σ ).

Factor/Weight Weight set 1 Weight set 2
Cost 31% 38%
Quality 24% 28%
Delivery lateness 13% 11%
Demand 32% 23%

Table 5. Predicted demand (dc j).

Product Predicted demand
1 500
2 30
3 100
4 700
5 2500

Table 6. Narrow (N) and wide (W) demand range (bom j).

Level/Product P1 P2 P3 P4 P5
N W N W N W N W N W

Minimum variation 450 100 25 10 50 20 650 200 2300 1500
Predicted demand 500 500 30 30 100 100 700 700 2500 2500
Maximum variation 550 1000 32 80 160 500 720 1500 3000 5000

Table 7. Unit (List) price, quality score, and delivery lateness for incomplete trade-off (I) and complete trade-off (C); (z1 jk), (z2 jk),
and (z3 jk).

Data P/S S1 S2 S3 S4 S5
I C I C I C I C I C

Unit (List) Price

P1 50 50 40 40 55 55 50 50 45 45
P2 0 0 200 200 0 0 230 230 0 0
P3 70 70 75 75 72 69 0 0 0 0
P4 0 0 0 0 8 8 10 10 5 5
P5 0 0 0 0 0 0 20 20 20 20

Quality score

P1 3 3 5 8 6 6 2 2 4 4
P2 0 0 6 6 0 0 7 7 0 0
P3 5 5 7 7 6 8 0 0 0 0
P4 0 0 0 0 8 8 10 10 5 5
P5 0 0 0 0 0 0 8 8 9 9

Delivery lateness

P1 3 3 1 1 2 2 4 4 3 3
P2 0 0 4 4 0 0 3 3 0 0
P3 2 2 2 2 1 1 0 0 0 0
P4 0 0 0 0 3 3 5 5 4 4
P5 0 0 0 0 0 0 5 5 3 3

Table 8. Limited number of supplier (uj, l j).

No. of supplier P1 P2 P3 P4 P5
Maximum 2 5 3 4 3
Minimum 1 1 1 1 1

Table 9. Break point of volume discount (bck)
and volume discount percentage (gck).

Level Supplier 3
bck gck

1 0 0
2 10000 0.05
3 50000 0.1

Table 10. Available supplier for each product
(sr jk).

P/S S1 S2 S3 S4 S5
1 1 1 1 1 1
2 0 1 0 1 0
3 1 1 1 0 0
4 0 0 1 1 1
5 0 0 0 1 1

Vol.22 No.1, 2018 Journal of Advanced Computational Intelligence 9
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Table 11. Price of each product for quantity discount levels (pc jk).

Level/Supplier S1 S2 S3 S5
P1 P3 P2,4,5 P1 P2 P3 P4-5 P1 P2 P3 P4 P5 P1 P2-3 P4 P5

Level 1 50 70 0 40 200 75 0 50 230 0 32 20 45 0 29 20
Level 2 45 68 0 39 180 74 0 48 220 0 30 18 43 0 28 17
Level 3 43 65 0 38 170 73 0 46 210 0 28 16 42 0 25 14

Table 12. Break point of quantity discount at level (ec jk).

Level/ S1 S2 S4 S5
Supplier P1-5 P1,3,4,5 P2 P1,3,4,5 P2 P1-5
Level 1 0 0 0 0 0 0
Level 2 100 100 50 100 20 100
Level 3 500 500 60 500 30 500

Table 13. Boundaries of each criterion (mni, mdi, mxi).

Criteria i mni mdi mxi Units
z1 (Cost) - 87574 94096 $
z2 (Quality score) 28891 32798 - Score
z3 (Delivery lateness) - 12101 13298 Day

Table 14. Capacity (hjk), minimum order quantity (MOQ (ojk)) and Min % of demand to be purchased (%Demand r jk)).

Data P/S S1 S2 S3 S4 S5

Capacity (hjk)

P1 1000 500 400 1500 700
P2 0 50 0 40 0
P3 300 1000 100 0 0
P4 0 0 500 2000 600
P5 0 0 0 3000 2000

MOQ (ojk)

P1 0 0 0 0 0
P2 0 0 0 0 0
P3 0 10 0 0 0
P4 0 0 0 0 0
P5 0 0 0 100 0

%Demand (r jk)

P1 0 0 0 0 0
P2 0 0 0 0 0
P3 0 0.1 0 0 0
P4 0 0 0 0 0
P5 0 0 0 0 0.05

αck 1 if quantity discount level c is selected for
supplier k; 0 otherwise (unitless)

βck 1 if volume discount level c is selected for
supplier k; 0 otherwise (unitless)

λi satisfaction level of criteria i
; cost, quality and delivery lateness (unitless)

s overall satisfaction level formulated by weighted
maximin model (unitless)

sl the minimum of satisfaction levels of all criteria
(unitless)

γ satisfaction level of fuzzy demand from all
products (unitless)

z jn 1 if demand level n is selected for product j
; 0 otherwise (unitless)

sld j satisfaction level of fuzzy demand of
each product j (unitless)

d jn total demand of product j at level n (units)

The six models and constraints are illustrated as fol-
lows.

3.2.1. Additive Model
In this model, we assume that all criteria are equally

important. The model aims to maximize the average sat-

isfaction levels of all criteria including the achievement
level of fuzzy demand. The objective function is shown
in Eq. (4).

Maximize

∑
i

λi + γ

4
. . . . . . . . . . . . . . . (4)

where λi is the satisfaction level of criterion i, i.e., cost,
quality, and delivery lateness. γ is the satisfaction level of
demand.

Price discount :
In quantity discount constraints, fk is equal to 1.

Eqs. (5) and (6) show that the total purchasing cost (tc jk)
corresponds to the purchased quantity (xc jkn) and unit
price at a particular discount level (pc jk). In addition, only
one quantity level can be selected, as defined by Eq. (7).
fk is equal to 0 when the volume discount policy is used,
as shown in Eq. (8). Eq. (9) indicates that the business
volume (ack) corresponds to the purchased quantity (xc jkn)
and the unit price (z1 jk). Note that only one discount level

10 Journal of Advanced Computational Intelligence Vol.22 No.1, 2018
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can be selected as defined by Eq. (10).

∑
c

tc jk · fk = ∑
c

∑
n

pc jk · xc jkn · fk ∀ j,k . . . (5)

ec−1, jk ·αck · fk ≤ ∑
j

xc jkn · fk

< ec jk ·αck · fk ∀c,k,n . . . (6)

∑
c

αck · fk ≤ 1 ∀k . . . . . . . . . . . (7)

∑
c

ack · (1− fk) = ∑
c

∑
j
∑
n

z1 jk · xc jkn · (1− fk) ∀k(8)

bc−1,k ·βck · (1− fk) ≤ ack · (1− fk)
< bck ·βck · (1− fk) ∀c, j,k (9)

∑
c

βck · (1− fk) ≤ 1 ∀k . . . . . . . . . (10)

Available supplier: A supplier may supply only some
products, but not all of the products.

π jk ≤ sr jk ∀ j,k . . . . . . . . . . . . (11)

Capacity: The total purchasing quantity xc jkn must be
less than the supply capacity h jk and it is active only if
supplier k is selected to supply product j (π jk = 1).

∑
c

∑
n

xc jkn ≤ h jk ·π jk ∀ j,k . . . . . . . (12)

Limited number of suppliers: The number of suppli-
ers cannot exceed the available suppliers.

l j ≤ ∑
k

π jk < u j ∀ j . . . . . . . . . . (13)

Minimum order quantity: The total purchasing
quantity xc jkn must be greater than the required minimum
order quantity of product j from supplier k

o jk ·π jk ≤ ∑
c

∑
n

xc jkn ∀ j,k . . . . . . . (14)

Relationship: The agreement with supplier k that a
firm will purchase product j, at least some percentage of
the total demand from supplier k.

r jk ·∑
n

d jn ≤ ∑
c

∑
n

xc jkn ∀ j,k . . . . . . (15)

Fuzzy demand: Total purchasing quantity xc jkn must
be in a range of minimum bom, j and maximum bom+1, j
demand levels, and only one demand level z jn must be
selected.

bom j · z jn ≤ d jn < bom+1, j · z jn ∀ j,m,n . . . (16)

∑
c

∑
k

xc jkn = d jn ∀ j,n . . . . . . . . . (17)

∑
n

z jn = 1 ∀ j . . . . . . . . . . . . . (18)

Satisfaction level: Eqs. (19)–(21) describe the satis-
faction levels of cost, quality, and delivery lateness crite-
ria. Eqs. (22)–(24) calculate the satisfaction levels of the
fuzzy demand.

λ1 ≤
(

mx1 −∑
c

∑
j
∑
k

tc jk · fk +∑
c

∑
k

ack · (1−gck)

· (1− fk)
)

/(mx1 −md1) . . . . (19)

λ2 ≤
∑
c

∑
j
∑
k

∑
n

z2 jk · xc jkn−mn2

md2 −mn2
. . . . . (20)

λ3 ≤
mx3 −∑

c
∑

j
∑
k

∑
n

z3 jk · xc jkn

mx3 −md3
. . . . . (21)

sld j ≤
bo3 j −∑

n
d jn

bo3 j −bo2 j
∀ j . . . . . . . . (22)

sld j ≤
∑
n

d jn −bo1 j

bo2 j −bo1 j
∀ j . . . . . . . . (23)

γ ≤ sld j ∀ j . . . . . . . . . . . . . (24)

Non-negativity conditions and the range of values:
Eqs. (25)–(27) have non-negativity conditions, and a
range of values.

0 ≤ λi < 1 ∀i . . . . . . . . . . . . . (25)

0 ≤ sld j < 1 ∀ j . . . . . . . . . . . . (26)

0 ≤ γ < 1 . . . . . . . . . . . . . . . (27)

3.2.2. Weighted Additive Model
A basic concept of this model is to assign the relative

importance of criteria to the additive model, and maxi-
mize the average value of all satisfaction levels.

Maximize(
∑

i
wi ·λi

)
+(σ · γ) . . . . . . . . . . (28)

All constraints of this model are illustrated in Eqs. (2)–
(24).

3.2.3. Maximin Model
Different from the additive model, the maximin model

attempts to maximize the minimum satisfaction levels of
all criteria. In this model, all criteria are equally impor-
tant.

Maximize

sl . . . . . . . . . . . . . . . . . . (29)

In this model, the constraints are defined by Eqs. (5)–
(27). Additionally, three non-negativity conditions are
added, as shown in Eqs. (30)–(32).

sl ≤ γ . . . . . . . . . . . . . . . . (30)

sl ≤ λi ∀i . . . . . . . . . . . . . . (31)

0 ≤ sl < 1 . . . . . . . . . . . . . . (32)
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3.2.4. Weighted Maximin Model

This model is adjusted from the maximin model by tak-
ing criteria weights into account. It interesting here to
notice that the equations of satisfaction levels, Eqs. (19)–
(24), are changed to Eqs. (34)–(39).

Maximize

s . . . . . . . . . . . . . . . . . . (33)

For the model constraints, they are subjected to
Eqs. (2)–(15), and Eq. (23), together with the added con-
straints, as follows.

w1 · s ≤
(

mx1 −∑
c

∑
j
∑
k

tc jk · fk +∑
c

∑
k

ack

· (1−gck) · (1− fk)
)

/(mx1 −md1) (34)

w2 · s ≤
∑
c

∑
j
∑
k

∑
n

z2 jk · xc jkn−mn2

md2 −mn2
. . . . (35)

w3 · s ≤
mx3 −∑

c
∑

j
∑
k

∑
n

z3 jk · xc jkn

mx3 −md3
. . . . (36)

σ · sld j ≤
bo3 j −∑

n
d jn

bo3 j −bo2 j
. . . . . . . . . (37)

σ · sld j ≤
∑
n

d jn−bo1 j

bo2 j −bo1 j
∀ j . . . . . . . (38)

s ≤ sld j ∀ j . . . . . . . . . . . . . (39)

0 ≤ s < 1 . . . . . . . . . . . . . . . (40)

3.2.5. Augmented Model

To maximize the average satisfaction levels and the
minimum satisfaction levels of all criteria at the same
time, the objective function is changed to Eq. (41).

Maximize

sl +

(
∑

i
λi + γ

)

4
. . . . . . . . . . . . (41)

All constraints are drawn from the maximin model
Eqs. (5)–(27) and Eqs. (30)–(32).

3.2.6. Weighted Augmented Model

The weighted augmented model is developed from the
augmented model. Therefore, all constraints are the same
as the augmented model.

Maximize

sl +

(
∑

i
wi ·λi +σ · γ

)
. . . . . . . . . (42)

IndependentVariables

WeightSet2

Complete

N

M1-6

W

M1-6

Incomplete

N

M1-6

W

M1-6

WeightSet1

Complete

N

M1-6

W

M1-6

Incomplete

N

M1-6

W

M1-6

Weight

TradeOff

Demand

Model
*Note that W = Wide; N = Narrow; M = Model

Fig. 2. Experimental factors of each data set.

4. Design of Experiment to Statistically Ana-
lyze Effects of Aggregation Operators

To statistically analyze the sensitivities of the optimal
solutions and the advantages of aggregation operators,
five data sets are generated by varying randomly the ca-
pacity, number of suppliers, minimum order quantity, and
relationships with suppliers. In designing the experiment,
independent and dependent variables are defined. Models
investigate how independent variables significantly affect
dependent variables. The experimental results are ana-
lyzed by MINITAB software.

Independent variables: Four independent variables
are considered in this study: (1) two sets of weights as
defined in Table 4, (2) two types of demand ranges (wide
and narrow demand ranges) as defined in Table 6, (3) six
models as shown in Fig. 1, and (4) two types of trade-
offs (Incomplete and Complete trade-offs), as shown in
Table 7. An incomplete trade-off means that there are
some dominant suppliers. For example, supplier 1 is con-
sidered as a dominant supplier if supplier 1 provides the
lowest cost, highest quality, and lowest delivery lateness.
Each data set consists of 48 combinations, as illustrated
in Fig. 2.

Dependent variables: The dependent variables are
the performance indicators and are used as responses in
MINITAB software. The average satisfaction level and
the lowest satisfaction level are two responses in this
study.

5. Results and Discussion

Results are evaluated in four aspects, namely, verifica-
tion of reasonable results, average satisfaction level, low-
est satisfaction level, dominated solution, and how to se-
lect the aggregation operator to match the risk preferences
of decision makers.

5.1. Reasonable Result Verification
From Table 15, it can be seen that the model yields rea-

sonable results, as follows. Product 4 (P4) is supplied by 3
suppliers. If there is only a cost criterion, all units must be
ordered from S5 due to the lowest price offered. As mul-
tiple criteria are concerned, the model is required to make
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Table 15. Optimal purchasing quantity of weighted additive
technique: weight set1, complete trade-off, narrow demand
range.

P/S S1 S2 S3 S4 S5
P1 - 50 - - 450
P2 - - - 30 -
P3 - 10 90 - -
P4 - - 179 471 50
P5 - - - 500 2000

Fig. 3. Grouping for the average satisfaction level.

trade-offs among criteria with respect to assigned weights
from decision makers. As can be seen from Table 4, the
quality score of S4 is greater than S5 (10:5) and the deliv-
ery lateness of S5 is less than S4 (4:5). Thus, to achieve
the highest satisfaction of decision makers, decision mak-
ers purchase P4 at a slightly higher price and gain much
better quality and a slightly worse delivery lateness. In ad-
dition, as the fuzzy demand has the highest weight (32%),
decision makers prefer to purchase at an amount close to
the predicted demand. Hence, the total demand of P4 in
this model is exactly 700 units.

5.2. Level of Average Satisfaction
By means of statistical analysis, a two-level full facto-

rial design of experiment is applied and each insignificant
factor is gradually deleted, beginning with the highest p-
value of interaction factors, until only significant factors
are left. The results show that models with additive op-
erators (Model 1 and 4) have significantly higher aver-
age satisfaction level than those with augmented opera-
tors (Model 3 and 6) and maximin operators (Model 2
and 5) in both weight and without weight’s environments,
as presented by Tukey’s test in Fig. 3. Since the model
and demand range have significant interaction effects, an
interaction plot is shown in Fig. 4. This interaction ef-
fect indicates that, for all models, a wider range of de-
mand provides a higher average satisfaction level than a
narrower one.

5.3. Level of the Lowest Satisfaction
In Fig. 5, the maximin aggregation operator (Model 2)

has a significantly higher lowest satisfaction level than
models based on additive operators (Model 1 and 4). A

Fig. 4. Interaction plot of model and demand range for the
average satisfaction level.

Fig. 5. Grouping for the lowest satisfaction level.

Fig. 6. Interaction plot of model and demand range for the
lowest satisfaction level.

benefit of the maximin operator is to avoid very bad per-
formance. Although the weighted maximin model is de-
veloped using the maximin operator, it provides the low-
est satisfaction level (Lowest satisfaction level = 0.1), in-
stead of the highest satisfaction level (Highest satisfaction
level = 0.4). In addition, the results show that an interac-
tion between the method and the demand range is statis-
tically significant. This is because the model has more
ability to search for a better solution when the demand
range is wider, as presented in Fig. 6.
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Table 16. Dominated solution (weight set 2, complete trade-off, narrow demand range).

Model/Criteria Cost Quality Delivery lateness Demand Dominated solution
Additive 0.99 0.6 0.18 0.57 No
Maximin 0.99 0.46 0.34 0.34 No
Augmented 0.99 0.46 0.34 0.34 No
Weighted additive 1 0.63 0.11 0.6 No
Weighted maximin 0.99 0.33 0.11 0.36 Yes
Weighted augmented 0.99 0.46 0.34 0.34 No

Table 17. Tukey’s group, based on average and lowest satisfaction levels.

Model/Indicator Average satisfaction level (SL) Lowest satisfaction level (SL)
Tukey’s group Average SL Rank Tukey’s group lowest SL Rank

Additive A 0.63 1 B 0.20 2
Weighted additive A B 0.62 1,2 C 0.17 3
Maximin C 0.54 3 A 0.38 1
Weighted maximin D 0.50 - D 0.12 -
Augmented B 0.60 2 A 0.38 1
Weighted augmented B 0.60 2 A 0.38 1

Table 18. Suitable models for different risk preferences of decision makers.

Model/Risk preference Risk-taking Risk-averse Risk-neutral
Additive � - �
Weighted additive � - -
Maximin - � -
Weighted maximin N/A N/A N/A
Augmented - � �
Weighted augmented - � �

5.4. Dominated Solution
A solution is considered a dominated solution when-

ever the satisfaction levels of all criteria are worse than or
the same as those of other solutions. The results show that
all models, except the weighted maximin model, do not
provide any dominated solutions, or we can say that other
models yield the Pareto optimal solutions. As presented
in Table 16, it is noticed that every satisfaction level of
the weighted maximin model is lower than the weighted
additive model. This is because of its algorithm. If the
satisfaction levels of all criteria are equal to their assigned
weights, the weighted maximin model will get the optimal
solution (the sum of all satisfaction levels = 1.0). There
is no effort to strive for a better solution. Thus, there is
a high chance that the weighted maximin model will be
dominated by the others since the sum of satisfaction lev-
els of other models can be greater than one.

5.5. How to Select the Aggregation Operator to
Match the Risk Preferences of Decision Mak-
ers

Since the weighted maximin model is dominated by an-
other model, it is not analyzed in this section. Hence, only
five models are analyzed. As mentioned above, accord-
ing to the characteristics of decision makers based on risk
preference, the risk-taking decision makers focus only on
a high average satisfaction level. They do not mind if

there is a risk to have a zero satisfaction on a certain cri-
terion. From Table 17, we notice that both the additive
and weighted additive models have the highest average SL
and are ranked as the first group. It can be inferred that
the additive and weighted additive models are suitable for
risk-taking decision makers. In other words, we suggest
that the additive aggregation operator is suitable for risk-
taking decision makers. In contrast, the risk-averse deci-
sion makers concentrate on the lowest satisfaction level.
The maximin, augmented, and weighted augmented mod-
els are the best group of the lowest SL. Therefore, they
are suitable for risk-averse decision makers. Finally, risk-
neutral decision makers do not accept a solution with the
worst average SL or the worst lowest SL. Hence, the ad-
ditive, augmented, and weighted augmented models are
recommended for them.

6. Concluding Remarks

In this paper, we have proposed realistic FMOLP mod-
els with volume and quantity discounts under fuzzy de-
mand and how to select a proper aggregation operator and
the model, based on risk preference of decision makers.
The effects of the aggregation operator are statistically an-
alyzed. The results reveal that the solutions are reasonable
with different sets of input parameters. From Table 18,
if all criteria are equally important, results show that the
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additive model is suitable for both risk-taking and risk-
neutral decision makers while the maximin model is sug-
gested for risk-averse decision makers. Finally, the aug-
mented model is suitable for risk-averse and risk-neutral
decision makers. However, when weights of criteria are
different, risk-taking decision makers prefer the weighted
additive model while risk-averse and risk-neutral decision
makers prefer the weighted augmented model. It is also
important here to note that the weighted maximin model
should be applied with caution since it may generate a
dominated solution.
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