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Abstract: Around 1.3 million people worldwide die each year because of road traffic crashes. There
are many reasons which cause accidents, and driving in the wrong direction is one of them. In our
research, we developed an autonomous framework called WrongWay-LVDC that detects wrong-way
driving vehicles from closed-circuit television (CCTV) videos. The proposed WrongWay-LVDC
provides several helpful features such as lane detection, correct direction validation, detecting
wrong-way driving vehicles, and image capturing features. In this work, we proposed three main
contributions: first, the improved algorithm for road lane boundary detection on CCTV (called
improved RLB-CCTV) using the image processing technique. Second is the Distance-Based Direction
Detection (DBDD) algorithm that uses the deep learning method, where the system validates and
detects wrong-driving vehicles. Lastly, the Inside Boundary Image (IBI) capturing feature algorithm
captures the most precise shot of the wrong-way-of-driving vehicles. As a result, the framework can
run continuously and output the reports for vehicles’ driving behaviors in each area. The accuracy of
our framework is 95.23%, as we tested with several CCTV videos. Moreover, the framework can be
implemented on edge devices with real-time speed for functional implementation and detection in
various areas.

Keywords: image processing; deep learning; computer vision; YOLOv4-Tiny; FastMOT; wrong-way
driving; lane detection; Hough transform

1. Introduction
1.1. Statement of Problem

Around 1.3 million people die each year from road traffic crashes [1]. In Thailand,
traffic accidents cause more than 15,000 deaths [2], making Thailand the country with the
highest road traffic accidents in Asia. Compared with the worldwide ranking [3], Thailand’s
road traffic accident ranks 37th with a 30.24 death rate per 100,000 people. According to the
Thai RSC [2], more than 80% of traffic accidents occur from motorcycles that drive against
the traffic law, such as speeding, cutting in front of other vehicles, riding with an excessive
number of passengers, etc. Driving in the wrong direction is one of the most common
misbehaviors throughout Thailand. As the example evidence images [4] shown in Figure 1,
many motorcycles drive in the wrong direction. There are several reasons why people
like to drive in the wrong direction; for instance, most main roads in Thailand have far
U-turns, and the traffic law punishment is not strong enough to scare people not to break it.
For these reasons, Thai traffic police take serious actions by fining motorcyclists, but the
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number of wrong-way drivers is beyond control throughout many areas at different times
of the day.

Figure 1. Image evidence of many motorcycles driving in the wrong direction on Paholyothin road,
in front of Bangkok University.

With the emergence of IoT, many organizations and region governors install CCTV
cameras in their responsible areas for surveillance and evidence recording. Traffic surveil-
lance also obtains merit from CCTV installation. Most CCTV cameras that record road
traffic is likely to be installed and record the videos from the top view angle, from the sky-
walk, or from the electric poles, to allow the camera to record a wide angle of traffic roads.
We will use the benefit of this CCTV camera wide-angle to observe and analyze the rich
details hidden inside the video frame. The CCTV cameras are also installed ambiguously,
which can record the driving behavior on almost every road throughout Thailand. With
the function of CCTV, it would record evidence of law-breaking driving behaviors on the
road. If we could filter out only the moments when vehicles drive in the wrong direction, it
would be great information for the police to evaluate the dangerous level of that area. If the
area has many wrong-way drivers, the police can authorize stricter surveillance, especially
in that area. Therefore, we would like to create a system that can automatically detect
wrong-way driving behavior from CCTV videos in real-time. The system can validate
the correct direction for each road lane by itself. Our system aims for this kind of vehicle
on the road as they mostly appear on the video: motorcycles, cars, and large vehicles
(buses and trucks).

1.2. Wrong-Way Driving Detection

Some potential papers creatively proposed the system for wrong-way driving
detection. The first paper is from Usmankhujaev et al. [5]; they detected the wrong-way-
of-driving cars from CCTV. They explained the three aspects of their research: detection,
tracking, and validation. For vehicle detection, they used YOLOv3 [6] as the detecting
algorithm. In the tracking algorithm, they used the Kalman Filter [7], which can predict
the moving direction of the cars. Their contribution is the Entry-Exit algorithm, which
is an algorithm that helps identify the correct driving direction. They achieved accuracy
up to 91.98% with various lighting conditions. However, the limitation of the Entry-Exit
algorithm is the manual identification in which the user had to manually draw the area of
correct entry and correct exit by themselves, which is a massive amount of labeling.

Monteiro et al. [8] proposed the wrong way driving vehicle algorithm on the highway
road based on the object movement inside the video frame, grouped the movement into
directions, and identified if the moving object is vehicle-based on appearance. As a result,
they showed that the system is robust in various conditions. However, they did not consider
the case where the side road noise may disturb the whole system’s movement.

In another work, Rahman et al. [9] used deep learning to detect vehicles and the
proposed centroid tracking for vehicle tracking. This proposed algorithm can also identify
the moving direction of the vehicle. However, the authors mentioned that this system could
only apply to one road lane.
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Based on literature reviews, we aim to create a system that can resolve those limitations
other papers have found. Therefore, we set our research objectives as follows:

• The system can automatically and efficiently validate the correct direction of vehicles.
• The system can detect wrong-way driving vehicles on multiple lanes.
• The system can report the exact number of wrong and correct driving vehicles from

each lane.
• The system should run at real-time speed.

1.3. IoT amd Embedded System

One of this work’s challenges is providing a real-time speed processing application that
should be practically used in real-life. Assuming that we would like to install the system
onto hundreds of CCTVs, if we let the computation takes place on a single computer where
videos from all CCTVs are input into the system via LAN, this would cause a bottleneck to
the system. On the other hand, if the number of the computer is equal to the number of
CCTV, that would be ideal, but it is not efficient in terms of cost and energy consumption.
In the case of using a cloud computing method, where all videos must be uploaded to the
cloud server using internet connections, it would require a lot of bandwidth to upload
many videos from many different CCTV sources. Pudasaini et al. [10] also mentioned this
in their research as they developed the moving objects detection and tracking algorithm
using the deep learning method. In their research, they showed that using edge devices
can decrease latency time and reduce network bandwidth. Therefore, processing via an
edge device is one of the most efficient approaches for a real-time processing system with
extensive data. Gu et al. proposed Siamese Convolutional Network for object tracking
running on edge-cloud architecture [11], which allows the tracking algorithm to process in
real-time speed and is suitable for IoT devices.

Nowadays, many edge devices can handle heavy processing tasks, such as image
processing and deep learning, with little power consumption in real-time speed. The
device can be installed with a camera to perform image processing and act like a CCTV.
Examples of popular embedded systems are Google Coral [12], Raspberry Pi [13], and
NVIDIA Jetson [14], where each brand has its advantages. In [15], Zualkernan et al. have
compared several brands of edge devices. They show that Raspberry Pi consumes the least
energy, and Jetson provides the fastest result.

Our research focuses on image processing and deep learning for wrong-way driving
detection; therefore, NVIDIA Jetson would be our best choice for embedded systems.
There are many versions for Jetson. Each version has its unique feature, different levels of
computing ability, and power consumption that depends on the intensity of each project. In
our research, we aim to detect the driving direction of the vehicles, which is straightforward
and does not require high computation power. Therefore, we selected the NVIDIA Jetson
Nano Developer Kit [16], the lightest version of Jetson that consumes the least energy
with adequate power for computing. In this research, we developed a framework using
a desktop computer as the main processing unit, and we deployed the framework onto
Jetson Nano which runs as an embedded IoT system.

1.4. Road Lane Detection

To be able to detect the vehicle driving direction on multiple road lanes at the same
time, we need to specify the boundary of each road lane for these given reasons:

• Identify areas of interest to remove the side road noises, such as vehicles parking or
bicycle riding outside the interested road lane.

• Reduce the confusion in the system as we track vehicles on multiple lanes.

The easiest and most accurate method to identify the road boundary of interest is the
manual drawing from users. However, if we plan to install the system on hundreds of
CCTVs, we have to individually draw the lane boundaries of interest for each road lane,
which is troublesome. In this case, an automatic drawing would greatly help identify the
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road boundaries on multiple CCTVs. Therefore, our work created another algorithm that
can automatically identify the road lane boundaries inside the video frame using the image
processing technique.

Many previous works researched how to detect the road lane in the Advanced Driver-
Assistance Systems (ADAS) [16–23]. To summarize the methods used by previous research,
there are two main types of techniques used in those work, which are deep learning-based
and image processing-based approaches. For a deep learning-based technique, the road
lane images must be gathered and trained in the model. According to [17], Liu et al.
proposed the CondLaneNet algorithm to detect the road lane. The algorithm can also
overcome the various conditions of road lines, such as dense lines and forks lines, with
high accuracy of 78.14% in the F1 score. Another deep learning-based method is from [18],
Chen et al. improved the consisting model to become more efficient. They trained the model
with the CUlane dataset. Their model achieved up to 92.20% on F1 for normal scenarios.
The deep learning-based method for lane detection is good for real-time detection and
can return a high accuracy result. However, this method may require a higher computing
performance than the computer vision-based method. Since our computing edge device
has a limited resource for computing ability and we aim for the system to be computed
at a real-time speed; therefore, image processing-based is more suitable for us in the lane
detection algorithm.

There are many previous successful and interesting lane detection algorithms. The first
one is from [19], Andrei et al. aimed to detect if the road is turning to the left or right or going
straight according to video from the front vehicle’s camera in ADAS. They pre-processed
each video frame with the Canny edge detector, Hough transform, and region of interest
identification. In the last step, they try to find the parallelogram lines for drawing the region
of interest instead of a trapezoidal one. As a result, their proposed method can increase
the accuracy of Sharma et al.’s work [20] by 3%. Second, Rakotondrajao et al.’s work [21]
used Inverse Perspective Mapping (IPM) to convert the camera perspective to a bird’s
eye view to detect the four corners of the road lane in ADAS. Franco et al. [22] created
lane detection for ADAS using an embedded system. The system consists of three steps:
pre-processing (reducing the noise), processing (extracting useful information), and post-
processing (interpreting the information using computer vision). Their system uses the
statistical technique to help detect the lane, which is computationally less intensive than
neural networks and suitable for running on an embedded system. In another work by
Ghazali et al. [23], they proposed three steps to detect the road lanes. Beginning with
the selection part, they remove the unnecessary area of the input image. Second, the
pre-processing of images was performed using the proposed H-Maxima method. Lastly,
the system detects straight and curve lines using an improved Hough transform, which
provides a faster and more accurate result than the original Hough transform. In another
research by Farag et al. [24], they introduced a Lane real-time detection (LaneRTD) system
using a computer vision method to detect road lanes in ADAS. Their paper has stated a
clear step for image pre-processing. As a result, the speed of lane detection achieved up to
11 FPS for detecting the lane in challenging videos.

1.5. Evidence Capturing

As we aim to detect the road lane boundaries, validate the correct moving direction
of vehicles inside each road boundary, and detect the wrong-way driving vehicles. We
have considered the case where the users want to gather evidence of the vehicle that drives
in the wrong direction in the form of an image captured from the input video. With this
requirement, we have to ensure that the captured image is clear and that the vehicle arrives
close to the CCTV camera.

1.6. WrongWay-LVDC Framework

With the ideas and proposes for the three objectives, we propose the three systems that
are functioned for each specific task, and each of them will be executed as an autonomous
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pipeline after the previous task is successfully performed. The output from the previous
step will be received as the input for the next step. Therefore, we linked the three systems
as subsequence tasks under an autonomous framework called WrongWay-LVDC, which
stands for Lane detection, direction Validation, Detection of vehicles, and Capture the
images. The three systems that are composed of this framework and are our contribution
to this research are as follow:

• Improved road lane boundary detection from CCTV (improved RLB-CCTV)
• Direction validation and wrong-way driving vehicle detection using Distance-Based

Direction Detection (DBDD)
• Inside Boundary Image Capturing (IBI capturing)

The framework flow for WrongWay-LVDC is shown in Figure 2 below.

Figure 2. WrongWay-LVDC’s framework flow.

Figure 2 shows the framework of our proposed system. The system will detect the
road boundaries using the improved RLB-CCTV algorithm. Then, the wrong-way driving
validation and detection system will validate the correct moving direction of the vehicle
on each detected road boundary using the DBDD algorithm. After the validation, the
system will generate the reference value that will be used to measure the correct driving
direction in each lane, and the detection part will be performed. As the system detects and
tracks each vehicle in each lane in the detection part, it will compare the moving direction
of the vehicle and whether it corresponds to the correct moving direction of each lane.
The accumulating counters will count the number of correct and wrong driving vehicles.
After the detection part ends, the counters will be summarized and shown to the user as a
report so the user can evaluate the traffic of wrong-way driving level. If the intensity of
wrong-way driving is high compared to correct-way driving, that area will be marked as a
dangerous area, and the system will send an alert along with the vehicle counter-report as
an output of the system to the users.

The three proposed sub-systems in the WrongWay-LVDC framework were developed
as a prototype software application using Python [25] programming language. This devel-
oped framework can be tested using command lines in the Linux operating system [26].
The execution pipeline of this framework is shown in Figure 2. It is a one-time execution
system, meaning that once we execute the framework, all sub-systems will be executed after
one another, as shown in the pipeline. More information about the framework execution
steps and versions are explained in detail in Section 2.5. The main idea, input, parameter,
algorithms, and experimental results of our work are explained in the following sections
of this paper. The first sub-system using the proposed improved RLB-CCTV algorithm
is explained in Section 2.2. The second sub-system, the DBDD algorithm, is explained in
Section 2.3. Lastly, the third sub-system, the IBI capturing feature algorithm, is explained
in Section 2.4.

2. Materials and Methods
2.1. Input

The concept of our framework is to receive video inputs from CCTV. Typically, the
CCTV will record video for 24 h a day and record the video periodically with a length of
about one hour per video clip.

After we gather some video data of the road traffic in Thailand, we can observe several
challenging factors to create our road lane detection algorithm. For example, some road is
under construction, the road line color is pale, and the angle of the CCTVs are different.
With the various condition of the road lane we have observed, the road with the unusual
conditions might be our system’s limitation where our system might not be able to detect
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the lane line on those roads properly. Figure 3 shows the images of road lanes that do
not have a clear lane line. Therefore, in this study, we set the research scope to select the
following road conditions for our experiments.

• The road must be a straight line
• The road must have a clear side road line or a clear footpath line
• There should not be any objects blocking the side of the road
• The road must not be under construction
• The road should not have disturbing shadows from the side road objects.

Figure 3. Roads that do not pass the condition (a) The construction is on the left side of the road;
(b) Many vehicles are blocking the side road.

The input videos will be further analyzed, processed, and transformed into two other
forms of inputs: An image input and vehicle information. In Figure 4, we show the system
flow of how our system can generate more data originating from a CCTV video.

Figure 4. System flow on the method to obtain the vehicle information and image.

2.1.1. Image Input

A captured image input is used in the road lane boundary detection algorithm for
the image processing method to detect the road lane. This image input is derived from
extracting the first frame of the input video using the OpenCV library [27] in the Python
programming language.
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2.1.2. Vehicle Information

Vehicle information is a record of each vehicle’s start and stop locations within a video
frame. There are three steps to obtain this input. First, crop the first one minute out of
the main input video. Second, detect and track all vehicles moving inside the video frame
regardless of the road lane. In this work, we use YOLOv4-Tiny for the object detection
algorithm. YOLOv4-Tiny is an enhanced version of YOLOv4 [28]. It is smaller and suitable
for running on small embedded systems. For the tracking algorithm, we chose the FastMOT
algorithm [29]. FastMOT is improved from the Deep SORT tracking algorithm, where it is
revised to be more suitable to run on small devices without bottleneck issues. The technique
of FastMOT is to run the detector and feature extraction every N frame and use KLT to
fill the gap efficiently. After all the vehicle has been tracked, the output will look like the
image shown in Figure 5, where the plot is the summary of all movement vehicles within
the time length of one minute. The orange dots inside the plot graph represent the location
where each vehicle ID first appears inside the video frame or the start points. The blue dots
represent the last location of the vehicle ID that has been tracked before the vehicle left the
video frame or the stop points. The black lines link between the orange and blue dots, which
represent the movement direction of each vehicle. Figure 5 shows that there is one road lane
appearing in this video frame, where most of the vehicle in the lane is driving downward.

Figure 5. Vehicle Information Plotting.

2.2. Improved Road Lane Boundaries Based on CCTV

The first sub-system executed in the WrongWay-LVDC is the improved RLB-CCTV
algorithm. This algorithm is used to automatically detect the road lane boundary based
on the image processing technique. Some previous work tried to perform lane detection
based on image processing methods [19–24]. Most of that research has similar main steps to
achieve the result; pre-processing of images, selecting areas of interest, and making lane line
decisions. Nevertheless, there are many interesting techniques we can adopt and redesign
to suit our research purpose. For example, the technique of Canny edge detection [30] in the
image pre-processing step was used in [19,22,24]. This technique produces an output that
focuses only on the contrast edge of the object inside the image, making the road lane clear,
outstanding, and easy to detect. Another interesting technique is Hough transform [31].
All of the research papers [19–24] use Hough transform to make a decision and draw the
line of the road lane. Another technique is Gaussian Blur [32], which is used in the image
pre-processing step to reduce the image’s excessive noise [19,22,24].

According to the reviewed research, their approaches were designed for ADAS. Our
research has a different purpose as we design for the CCTV camera angle. The setting of
the CCTV camera mostly has a high and center position to view the road at a clear angle.
With this position, the CCTV will see the road aligned vertically, as shown in Figure 6a,b.
Moreover, we also consider another case where the CCTV is installed on the side of the road,
which will make the angle the CCTV see the road aligned horizontally, as shown in Figure 6c.
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Figure 6. Camera view of CCTV (a) vertical orientation; (b) vertical orientation; (c) horizontal orientation.

These two cases of the camera angle have an impact on creating the lane detection
algorithm. In our previous work, we created the road lane boundary detection for CCTV
algorithm (RLB-CCTV) [33], which can only support and detect the vertical road lane in
the video. However, if the road lane lies in the horizontal orientation, the algorithm will
not be able to detect the road lane. With this limitation from our previous work, we have
improved our algorithm to detect the road lane with both orientations. This improved
algorithm will be called improved RLB-CCTV.

The improved RLB-CCTV consists of four main parts: orientation decision, image pre-
processing, identifying areas of interest, and lane line decision. The inputs of this algorithm
are image input and vehicle information. The system flow of the overall algorithm is shown
in Figure 7.

Figure 7. System flow of Improved RLB-CCTV.

2.2.1. Orientation Decision

The first step in the improved RLB-CCTV algorithm is to determine the angular
orientation of the input video, to detect whether the lane is aligned horizontal or vertical.
The pseudocode of this step is represented in Algorithm 1. The input of this step is the
vehicle information, as shown in the examples in Figure 8a–c.

Figure 8. The vehicle information was obtained after detecting and tracking all vehicles in the video for
one minute. (a) Horizontal orientation; (b) Vertical orientation; (c) Vertical orientation with two roads.

As we can see in Figure 8, (a) contains a road lane with a horizontal angle, (b) contains
a vertical angle, and (c) contains the vertical angle with two road lanes. We developed a
method to let the system identify the orientation automatically, and the flow of this method
is shown in Figure 9.
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Figure 9. System Flow of Orientation Decision Step.

Our main idea is to find most of the vehicle’s movement angle and set the road
orientation of that input video accordingly. For each vehicle movement, the information
will compose of the start and stop points, as shown in Figure 10a. To obtain the vehicle
movement vector, the head of the vector must be either the start or stop point depending
on which point has a lower x value on a plot graph, as the pseudocode explained in
Algorithm 1 (lines no. 3 to 9). As shown in Figure 10a, the stop point is plotted lower than
the start point. Therefore, the location of the stop point will be relabeled as P1, and the
location of the start point will be relabeled as P2 in Figure 10b.

Figure 10. Step to obtain the vectors to find the angle (a) Obtain vehicle information as an input;
(b) Set the lower point to be P1 and the upper point to be P2; (c) Draw a vector to the right where the
initial point is P1; (d) Obtain the vehicle movement vector from P1 and P2; (e) Find the angle in degree.

The imaginary horizontal vector is being drawn from P1 point in Figure 10c, and the
segment P1 and P2 will be converted into a vector in Figure 10d as well. With these two
vectors, the angle between them will be found in Figure 10e. All possible vectors and angles
are roughly shown in Figure 11. In this case, we will use the degree system with the range
of 0 degrees to 180 degrees as the direction of the vector that indicates the angle in degree.

Figure 11. All possible vectors and angles.

After we obtain the angle for each vehicle movement in the vehicle information, we
have to set the range of the angle where we will consider it as a horizontal or vertical
orientation. We set the condition as shown in Algorithm 1 on lines 11 and 13.

After finding the angle of all vehicle information, the result is shown in the histogram
plot, where Figure 12a is the histogram result of Figure 8a, Figure 12b is the result of
Figure 8b, and Figure 12c is the result of Figure 8c. The angle result corresponds to the
method we set, the range between 0 and 180, as well as the result of finding the road
orientation, where Figure 12a is a vertical orientation, and Figure 12b is a horizontal
orientation. However, Figure 12c is quite hard to identify with eyes which orientation is it,
but as we compute it with our algorithm, it is a vertical orientation.
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Algorithm 1. Pseudo Code for the Orientation Decision Step

Input: Vehicle Information
Output: Road Orientation
Auxiliary Variables: Horizontal Count, Vertical Count
Initialization: Horizontal Count = 0, Vertical Count = 0
Begin Orientation Decision Algorithm
1 for (Each Vehicle Movement ∈ Vehicle Information) do
2 Start location, Stop location = extract information (Each Vehicle Movement)
3 if (Start location (y) < Stop location(y)) then
4 Point 1 = Start location
5 Point 2 = Stop location
6 else
7 Point 1 = Stop location
8 Point 2 = Start location
9 end if
10 Each Angle = Find Angle (Point 1, Point 2)
11 if (Each Angle ≤ 180) AND (Each Angle > 155) OR (Each Angle ≥ 0) AND (Each Angle < 35) then
12 Horizontal Count = Horizontal Count + 1
13 else if (Each Angle ≥ 35) OR (Each Angle ≤ 155) then
14 Vertical Count = Vertical Count + 1
15 end if
16 end for
17 if Horizontal Orient > Vertical Orient then
18 Road Orientation = Horizontal
19 else
20 Road Orientation = Vertical
21 end if
22 return Road Orientation
End Orientation Decision Algorithm

Figure 12. Angle value histogram plot. (a) Horizontal orientation; (b) Vertical orientation; (c) Vertical
orientation with two lanes.

2.2.2. Image Preprocessing

In this step, the system performs the image pre-processing of the input image to extract
only significant details such as the road lanes and remove the noises inside the image. The
input image is pre-processed using five techniques, as shown in Figure 13. The detail of
each technique is described as follows.

The first step is brightness adjustment. The system checks the brightness level of
the input image by converting the image into grayscale and obtains the average pixel
brightness value using the ImageStat [34] library module in Python. If the input image
has a low brightness level, the output value will be near zero. If the image has a high
brightness level, the output value will be near 255. To increase the image’s brightness, it
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will show some hidden detail that was dimmed and dark. However, the brightness should
be increased according to the original image condition.

Figure 13. System Flow of Image Pre-processing Step.

Increasing the image’s brightness will show some hidden detail that was dimmed
and dark. However, the brightness should be increased according to the original image
condition. If the brightness in the image is already high, we should not increase the
brightness on that image anymore because that will cause brightness exposure. Therefore,
the brightness value will be subtracted by the threshold value that we have set at 130. We
tested several images to ensure that 130 is the adequate brightness level so the image will
not be too bright or too dim. After we find the difference between the brightness value
and the threshold value, we will use that difference value to increase the brightness of
the original image by converting the image into the HSV system [35] and increasing the
brightness according to the difference value we found. The result of brightness adjusting is
shown in Figure 14a–c.

Figure 14. Adjust the brightness on the input image (a) Horizontal orientation; (b) Vertical orientation;
(c) Vertical orientation with two lanes. Apply CLAHE and Gaussian Blur (d) Horizontal orientation;
(e) Vertical orientation; (f) Vertical orientation with two lanes.

The second step is to increase the global contrast of the image by using Contrast
Limited Adaptive Histogram Equalization (CLAHE) [36] to make the road line look clearer.
In the third step, we use Gaussian Blur to exclude some unnecessary small details not to be
drawn in the edge decision step. With the OpenCV library, we have to apply Gaussian Blur
6 times to make the road image cover and hide all small detail. The result of steps two and
three are shown in Figure 14d–f.

The fourth step is to add Histogram Equalization [37] in OpenCV. The image needs
to be converted into grayscale before applying this technique. The results are shown in
Figure 15a–c, respectively. The image’s contrast is increased so that we can see more details
in the image.
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Figure 15. Apply Histogram Equalization. (a) Horizontal orientation; (b) Vertical orientation;
(c) Vertical orientation with two lanes. Apply Canny edge detection (d) Horizontal orientation;
(e) Vertical orientation; (f) Vertical orientation with two lanes.

The fifth step is applying the Canny edge detection [27] to reduce the noise and focus on
the object’s edge. The final output from the image pre-processing step is shown in Figure 15d–f.

2.2.3. Area of Interest

After we have the pre-processed image, we can see that the image still includes some
side road areas where it will not contribute to our algorithm’s purpose. These unwanted
areas will decrease the lane line detection accuracy. The simplest method is to identify the
Area of Interest (AOI). However, each road image has a unique position of AOI, so we
should not fix the AOI for all images. The system flow for this step is shown in Figure 16.

Figure 16. System flow of Area of Interest step.

The vehicle information allows the system to know the location where the vehicles are
likely to drive. The vehicle drives on roads; therefore, the roads are our target AOI. Based
on the assumption, we focus on the area where vehicles are driving inside the video frame,
and that area will be used as the AOI. We use the technique of the convex hull [38], which
draws the lines that connect the dots that are positioned in the outer area of the geometric
shape. We apply the convex hull onto the vehicle information and draw a shape that wraps
around all points (start point and stop points of the vehicles) as shown in Figure 17a–c. The
red line shape is considered as the area where the vehicles appear.
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Figure 17. Apply convex hull to wrap around all start and stop points from vehicle information.
(a) Horizontal orientation; (b) Vertical orientation; (c) Vertical orientation with two lanes. Expand
the edge of the convex hull shape (d) Horizontal orientation; (e) Vertical orientation; (f) Vertical
orientation with two lanes.

However, those areas do not include the road sideline as the vehicle will not drive on
the side road. Then, we need to increment the convex hull shape we drew to be larger by
applying the Buffer points method and drawing a convex hull on the new buffer points. As
a result, the areas are expanded and cover the road line, as shown in Figure 17d–f, where
we will use this area as the AOI. Since we have the AOI area, the next step is to overlay the
AOI area onto the output image from the image pre-processing part by using the technique
of OpenCV called bitwise mask [39]. The bitwise mask will select to keep the part of the
image we want and discard the rest. The result of this step is shown in Figure 18a–c, where
we can see that these two images have a different location and size of the AOI, and the
drawn AOI fit to show the road area only for that image. At this stage, we can see that
Figure 18a has some sideroad noises on the top, similar to Figure 18b, where the top part
of the image still has some noise. To remove those noises, we use the upper and lower
boundary techniques mentioned in [22]. We use the same technique to remove the sky area
of the image. To find the upper and lower boundary, we use the vehicle information that
contains the points (start or stop points) with the highest and lowest y value in the cartesian
coordinate system. These points are used to draw horizontal lines, which refer to as upper
and lower boundaries. We also apply the bitwise mask of the upper and lower boundaries
onto the image. The final result is shown in Figure 18d–f. The noise is removed, and the
image is ready to be used in the lane line decision step using the RLB-CCTV algorithm.
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Figure 18. Apply a bitwise mask between the area of interest and the final output from the image
pre-processing step. (a) Horizontal orientation; (b) Vertical orientation; (c) Vertical orientation with
two lanes. Remove the upper and lower boundaries (d) Horizontal orientation; (e) Vertical orientation;
(f) Vertical orientation with two lanes.

2.2.4. Boundary Detection

In lane line detection, the algorithm we use to detect the line is the Hough transform
algorithm [28]. There is a decision to select the most accurate Hough line; the step of
making this decision is shown in Figure 19. We set the system to draw 12 Hough lines
in one image to ensure all expected lane lines will be drawn. However, some unwanted
Hough line has been drawn along the way, as shown in Figure 20a–c. The red Hough line is
the line where we detect it as an incorrect drawing. We filter those lines based on the lane’s
orientation, which we obtained from the orientation decision. The system will check the
slope value of each line, where the slope is calculated from the two endpoints of the Hough
line. If the orientation is vertical, as shown in Figure 20b or Figure 20c, the blue color upper
and lower boundaries will be drawn, and the endpoints of the Hough lines will meet there.
The slope of the accepted Hough line in the vertical orientation must meet this condition.

|(y value of endpoint 2 − y value of endpoint 1) × 2| > |x value of endpoint 2 − x value of endpoint 1| (1)

If the orientation is horizontal, as shown in Figure 20a, the left and right boundaries
will be drawn, and the endpoints of the Hough lines will be extended to meet the two blue
boundary lines. The slope of the accepted Hough line must meet this condition.

|(x value of endpoint 2 − x value of endpoint 1) × 2| > |y value of endpoint 2 − y value of endpoint 1| (2)

Figure 19. System flow of lane line detection step.

The red Hough line in Figure 20a–c is an example to show the lines that do not meet
the above condition we stated. As an output, the accepted Hough lines are drawn on the
original input image to compare and check the correctness (see Figure 20d–f). We can see
that several accepted lines are drawn on the image. We must remove the duplicated lines;
however, which lines should be removed? If we remove the inner lines and keep only the
most-outer lines, that would work only in the case shown in Figure 20d,e, but would not
work in the case where there is two-way traffic, as shown in Figure 20f.
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Figure 20. Apply Hough transform to draw straight lines on the image. The red lines are the
unwanted Hough lines we received. The green lines are the correct Hough lines we expected
(a) Horizontal orientation; (b) Vertical orientation; (c) Vertical orientation with two lanes. Remove the
unwanted red Hough lines (d) Horizontal orientation; (e) Vertical orientation; (f) Vertical orientation
with two lanes.

In order to design a method that can cover several cases, the next step is to draw the
polygon area from the accepted Hough line. To clearly explain the procedures and the main
idea of the polygon forming method for the car that moves in a vertical orientation, we
can describe it using the pseudocode as shown in Algorithm 2. Please note that this code
shows only one step of many steps used in the improved RLB-CCTV algorithm. First, we
gather the locations of all intersection points between Hough lines and boundary lines. If
the orientation is vertical, we will gather the x value of all intersection points, and if the
orientation is horizontal, we will gather the y value of all intersection points. In the case
of vertical, we represent a list of x values of the intersection points in the upper boundary
using UpperX, where upperxi represents each x value contained in UpperX.

UpperX = [upperx1, upperx2, upperx3, upperx4, . . . , upperxn] (3)

LowerX represents a list of the x values of the intersection points in the upper boundary,
where lowerxi represents each x value contained in LowerX:

LowerX = [lowerx1, lowerx2, lowerx3, lowerx4, . . . , lowerxn] (4)

Both UpperX and LowerX are sorted ascendingly. In the vertical orientation, the
y value of the lower and upper boundaries will be fixed, as the boundary is a horizontal
line. Therefore, the y value is a constant for all intersections of the lower and upper
boundaries. In this case, we assign the y value of the upper boundary as UpperY and the
y value of the lower boundary as LY. To create a four-corner polygon, we select the four
points from the two lists, every two values from each list as the pseudocode shown in
Algorithm 2. Line 7 in Algorithm 2 represents the method of creating the polygon using
Shapely geometry python library [40]. This method requires only four points as corners to
draw a polygon.
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Algorithm 2. Pseudo Code for Polygon Forming in Vertical Orientation

Input: UX, LX, UY, LY
Output: Polygon corners
Auxiliary Variables: Polygon_list
Initialization: Polygon_list = []
Begin Polygon Forming in Vertical Orientation
1 While (element number in UX > 1) do
2 Current_intersect_1 = UX [0]
3 Current_intersect_2 = LX [0]
4 Next_intersect_1 = UX [1]
5 Next_intersect_2 = LX [1]
6 Polygon corners = [[Current_intersect_1, UY], [next_intersect_1, UY], [next_intersect_2, LY], [Current_intersect_2, LY]]
7 Polygon_list.append(Shapely.polygon(Polygon corners))
8 Remove UX [0] from UX
9 Remove LX [0] from LX
10 end while
11 return Polygon_list
End Polygon Forming in Vertical Orientation

In the case of horizontal orientation, the algorithm used to form the polygon for a
horizontal camera angle is similar to the vertical one. We gather the intersection point
between accepted Hough lines and the two left and right vertical boundaries, as shown in
an example in Figure 20d. We gather the x value of all intersection points. LeftY represents
a list of the y values of the intersection point in the left boundary, and leftyi represents each
y value contained in LeftY.

LeftY = [lefty1, lefty2, lefty3, lefty4, . . . , leftyn] (5)

RightY represents a list of the y values of the intersection point in the right boundary
and rightyi represents each y value contained in RightY.

RightY = [righty1, righty2, righty3, righty4, . . . , rightyn] (6)

Similar to the vertical orientation, the intersection x value of the horizontal orientation
case will be constant numbers, represented with LeftX and RightX. The algorithm to form
the polygon for a horizontal orientation, which is a step among many steps inside the
improved RLB-CCTV algorithm, is as shown in the pseudocode in Algorithm 3.

Algorithm 3. Pseudo Code for Polygon Forming in Horizontal Orientation

Input: LeftX, RightX, LeftY, RightY
Output: Polygon corners
Auxiliary Variables: Polygon_list
Initialization: Polygon_list = []
Begin Polygon Forming in Horizontal Orientation
1 While (element number in LeftY > 1) do
2 Cur_intersect_1 = LeftY [0]
3 Cur_intersect_2 = RightY [0]
4 Next_intersect_1 = LeftY [1]
5 Next_intersect_2 = RightY [1]

6
Polygon corners = [[XLeft, Cur_intersect_1], [XLeft, next_intersect_1], [XRight, next_intersect_2], [XRight,

Cur_intersect_2]]
7 Polygon_list.append(Shapely.polygon(Polygon corners))
8 Remove LeftY [0] from LeftY
9 Remove RightY [0] from RightY
10 end while
11 return Polygon_list
End Polygon Forming in Horizontal Orientation
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The images of the plotted polygons are shown in Figure 21a–c. We can see that some
areas in the polygons are not road lanes. We must determine which polygon correctly
covers road areas by performing another method that is overlaying the vehicle information
(start and stop points) onto the image (see Figure 21d–f). It is obvious in Figure 21f that
some area does not have any start or stop points, such as the grass area in the middle of the
two roads. With this observation, we set the conditions for selecting good polygon areas.
The number of points inside each polygon is set as the below equation.

Points = [num_point1, num_point2, num_point3, num_point4, . . . , num_pointn] (7)

Since we know the number of points inside each polygon, next, we will check the
number of points with the given condition. The polygons that have a number of points less
than 20 will be removed. Based on our tests, 20 is an appropriate number for this condition.

Accepted Polygons =
{

Add to accepted polygon list, num point ≥ 20
remove the polygon, num point < 20

(8)

Figure 21. Form polygons; (a) Horizontal orientation; (b) Vertical orientation; (c) Vertical orientation
with two lanes. Overlay start and stop point from vehicle information on the polygons; (d) Horizontal
orientation; (e) Vertical orientation; (f) Vertical orientation with two lanes.

After checking all polygons, we should have polygons representing the road areas.
Sometimes, an area of the road is separated into two areas due to the detection of Hough
transform that detects the road’s centerline. To resolve this issue, we set a condition to
merge two areas next to each other and correctly identify them as one area. The result of
this step is shown in Figure 22a–c.

Figure 22. Final output; (a) Horizontal orientation; (b) Vertical orientation; (c) Vertical orientation
with two lanes.
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2.3. Distance-Based Direction Detection

The detected lane from the improved RLB-CCTV algorithm is used as an input for the
Distance-Based Direction Detection algorithm (DBDD) algorithm. The DBDD algorithm is
the second algorithm in the WrongWay-LVDC framework. This algorithm automatically
detects the correct moving direction of each road lane. Many techniques have been intro-
duced to verify and detect wrong-way driving vehicles [4,7,8]. In our previous research [41],
we introduced the Majority Based Correct Direction Detection (MBCDD), an algorithm that
can validate the correct direction for each road lane and detect the vehicle that drives in the
wrong direction automatically. However, our previously proposed method still has some
areas that need to be improved. MBCDD requires a one-minute cropped input video as
input for validation, differently from DBDD, where it requires vehicle information. Even
though the MBCDD is accurate and fast, in the process of direction validation on the edge
device, it took twice as long compared to the length of the input video. With this flaw, we
tried to improve the algorithm and eventually came up with a more optimal algorithm that
is more suitable to run on an embedded system. This newly proposed algorithm is called the
Distance-Based Direction Detection algorithm (DBDD). DBDD consists of two main parts:
the validation and detection parts, where the overall system flow is shown in Figure 23.

Figure 23. System Flow of DBDD.

In DBDD, the required input is the detected road lane boundary from the improved RLB-
CCTV and the vehicle information. There are five steps to perform this validation in DBDD.

We divide the road lane area into two halves. If the orientation is vertical, the area
will be divided into upper and lower areas. If the orientation is horizontal, the area will be
divided into left and right. The second step is to overlay all the vehicle information onto
the divided areas. As shown in Figure 24a–c, the red dots are the start location of each
vehicle, and the green dots are the stop location of each vehicle. With this information, we
can see vehicles’ start locations (red points), as shown in Figure 24b. Similarly, the stop
location of vehicles tends to end in the lower area. To better visualize, Figure 24d–f were
plotted to show only the start locations, and Figure 24g–i show only the stop locations of
all vehicles. The third step is to make the decision.

We compare the number of dots in each area for each start and stop location. If the
area has more start dots than the stop dots, then the area is the start area. If the area has
more stop dots than the start dots, then the area is the stop area. We color the start area
with green color and stop area with red color as shown in Figure 25a–c. The fourth step
of the validation part is to plot the reference stopping point. Assuming that a vehicle is
driving correctly in Figure 25b, the vehicle start location should start from the upper area
and come down to the stop area. This is the general moving behavior the vehicle should
be. In this step, we set a reference point on the stop area’s side. The reference point only
stores the y value from the cartesian coordinate system, where the y value is obtained from
the location of the further edge of the stop area. This reference point is used to check the
distance between the vehicle’s location and the reference point. The last step is to calculate
the distance and determine if a vehicle is driving in the correct direction or wrong direction.
The distance will be constantly calculated frame by frame as the video is running. The
distance between the start location of each vehicle and the reference point will be kept as
an initial distance value. As the vehicle is moving, the second location of the vehicle will be
updated. The system will calculate the new distance value as well.
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Figure 24. Overlay all points from vehicle information on the areas; (a) Horizontal orientation;
(b) Vertical orientation; (c) Vertical orientation with two lanes. Overlay start points from vehicle
information on the areas (d) Horizontal orientation; (e) Vertical orientation; (f) Vertical orientation
with two lanes. Overlay stop points from vehicle information on the areas; (g) Horizontal orientation;
(h) Vertical orientation; (i) Vertical orientation with two lanes.

Figure 25. Label the area and obtain the stopping reference point; (a) Horizontal orientation with a
stop area on the right; (b) Vertical orientation with a stop area on the bottom; (c) Vertical orientation
with two lanes with opposite driving directions.
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In this stage, the system will compare the old and new distances. If the value decreases,
it means that the vehicle is driving toward the reference point or the vehicle is driving in the
correct direction. However, if the value increases, it means that the vehicle is driving away
from the reference point or the vehicle is driving in the wrong direction. In the third frame
of the video, the new distance value is calculated. The system will compare this distance
value with the first initial distance value to confirm the moving direction of the vehicle.

With the concept of the reference point, we can observe the moving direction of each
vehicle that drives inside the boundary. Moreover, we have considered the case where the
lane boundary could be shorter in length for the shorter computing time of the system and a
higher accuracy rate. The system is designed to track all vehicles inside the boundary and
calculate the distance between each vehicle and the reference point. If the length of the road
is long, the calculation on each vehicle is also longer. We used YOLOv4 Tiny to detect the
vehicles on the road and focused on detecting the vehicle with visible size. There are some far
vehicles that would cause confusion to the detector for the two stated reasons. We cropped the
length of the road boundary by dividing the road into 10 ranges, as shown in Figure 26a,b.

Figure 26. Length of detected road boundary from the improved RLB-CCTV algorithm; (a) Vertical
orientation; (b) Horizontal orientation.

In the range of 3/10 to 7/10 will be the focused section of the DBDD algorithm. We
chose this range of sections based on the result when we tested the sample video on our
proposed system. We remove the range 0/10 to 3/10 because as the vehicle approaches
the camera in the vertical orientation, the discontinued tracking is likely to happen in this
case. We removed the range 7/10 to 10/10 because the far objects are hardly detected. The
remaining range is adequate for the system to detect each vehicle by the time they are
moving, and objects are not too close nor too far. For the horizontal orientation (Figure 26b),
we cropped the range to reduce computation time. As a result, the road boundaries from
Figure 25 are cropped as shown in Figure 27.

Figure 27. The road boundaries are cropped for a range of 3/10 to 7/10; (a) Horizontal orientation;
(b) Vertical orientation; (c) Vertical orientation with two lanes.
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2.4. Inside Boundary Image Capturing Feature

The last sub-system in the WrongWay-LVDC is IBI capturing feature, which cap-
tures the moment where the wrong-way driver appears inside the video frame for illegal
pieces of evidence. After detecting the vehicles that drive in the wrong direction, the
DBDD algorithm will return the summary report containing the counting of the total num-
ber of vehicles driving in each direction. Apart from the summary number, we need to
capture the image of the wrong driving in the act. The challenging part of this algorithm
is the high-speed movement of the vehicles on the road, where we have to find the right
moment to capture the clearest and closest shot of that driving vehicle. The proposed algo-
rithm is called the Inside Boundary Image capturing algorithm (IBI Capture). The benefit
of this algorithm is to identify the individual driver who drives in the wrong direction and
to trace back the evidence of the wrong driving behavior. Noted that in this research, we
do not use the driver’s personal information. The experiment of our research is just to test
the system’s accuracy and clearness only. The system flow for IBI capturing algorithm is
shown in Figure 28.

Figure 28. System flow of IBI capturing algorithm.

There are two moving orientations of the road depending on the location and camera
angle. To create the IBI capturing algorithm, we need to consider both orientations. The
flowchart in Figure 28 shows essential steps and decisions of the proposed IBI capturing
algorithm based on different road angle orientations.

2.4.1. Vertical Orientation

The assumption is the vehicle moves upward and downward along the vertical orien-
tation. The vehicle moves closer to the camera when it moves closer to the lower boundary.
Thus, the system will capture images of the vehicle that drives in the wrong direction when
the vehicle comes closer to the lower boundary.

There are two cases about the vertical orientation that we have concerns about—first,
when the wrong driving vehicle is driving downward whereas the correct driving direction
is upward. The closest moment to capturing the wrong driving vehicle is when the vehicle is
about to leave the lower boundary. Second, when the correct driving direction is downward,
and the wrong-way driving vehicle is driving upward. The closest moment to capturing
the wrong-way driving vehicle is when the vehicle first appears into the lower boundary.
We apply different methods to capture the image based on these two cases.

Using the OpenCV library, the coordinate system will be arranged so that the y-axis
value will be flipped from the normal coordinate, as shown in Figure 29.

Figure 29. Image coordinate system.
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The method to determine if the wrong-way driving vehicle is going to drive upward
or downward is to check with the height of the stopping area reference value and the height
of the lower boundary, as shown in the equation below.

Wrong way driving direction =

{
upward, height o f re f erence point < height o f lower boundary
downward, height o f re f erence point > height o f lower boundary

(9)

In order to find the closest and most precise moment to capture the images, the system
requires the y value of the vehicle’s current location (referred to as CY) and the y value of
the lower boundary (referred to as YL). For the case when the wrong-way-driving vehicle
is driving downward, the system calculates the difference between CY and YL values. The
best moment for image capturing is when the difference value of CY and YL is close to zero,
meaning that the lower part of the vehicle bounding box is lying on or below the lower
boundary line. In such a case, we might not obtain whole components of the vehicles. As
shown in an example in Figure 30a, the motorcycle’s front wheel is being blocked by the
road lane boundary. Therefore, we set a value of 20 pixels to be the maximum difference
value between the CY and YL points to make a screenshot image of the vehicle. The value of
20 pixels has been evaluated as a proper value to leave some distance between the vehicle’s
bounding box and the YL. An example of captured images is shown in Figure 30b.
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Figure 30. (a) The screenshots when the CY bounding box is lower than YL; (b) The screenshots
when the CY bounding box is above YL by 20 pixels.

Or the case where the wrong-way driving vehicle is driving upward, the system
captures the first frame where the vehicle appears and is detected as wrong-way driving.
This screenshot is shown in Figure 31.

Figure 31. The screenshots when the wrong-way driving vehicle is driving upward.

2.4.2. Horizontal Orientation

The method for capturing the image in the horizontal orientation selects the frame
where the bounding box of the detection is the biggest. The example screenshot of the
vehicle driving in the wrong direction in horizontal orientation is shown in Figure 32.
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Figure 32. The screenshots when capturing vehicles driving in the wrong direction in the vertical
oriented video.

2.5. Framework’s Version

The main purpose of our framework is to let each algorithm and feature executed
automatically after one another. Nevertheless, there are some concerns about the system’s
performance when it encounters some unusual scenarios. However, we try to design
the system so it works best and can provide accurate results even if some unwanted
conditions are present. To make it possible, we improved our framework so the user can
manually draw and validate the road lane boundary in addition to using the RLB-CCTV and
DBDD algorithms. The workflow of the improved framework is shown in Figure 33.

Figure 33. System flow for different framework’s versions.

3. Results

We performed many experiments on a number of videos. Based on the outputs, we
observed many interesting results, and the more detailed explanations are described in
different aspects in the following sections.

3.1. Object Detection

Our image data set were collected based on various locations and times. The cameras
were set to capture images on several skywalks around Bangkok and Pathum Thani
province. The sample of captured images is shown in Figure 34. We obtained a total of
437 images for our experiments. To detect the various kind of vehicles on the road, we
annotated the objects into three classes: motorcycles, cars, and large vehicles.

As we prepared the dataset and the label, we trained the model with YOLOv4-Tiny.
We divided the augmented data set for the trained and validation sets as 80% and 20%,
respectively. The total number of images used for the trained model is 1068 images. The
result and accuracy of the model after training for motorcycles, cars, and large vehicles are
shown in Table 1.

Table 1. Accuracy of the YOLOv4 Tiny model.

Parameters
AP

mAP
Motorcycle Car Big Vehicle

Results 71.89% 78.0% 86.25% 78.71%
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Figure 34. Labeling the dataset with three classes: Motorcycle, car, and large vehicle.

We decided to use YOLOv4 TinyDue due to the requirement that we need a fast
algorithm to deploy on an embedded system. However, YOLOv4 Tiny has a trade-off
with accuracy compared to other algorithms such as YOLOv4 or YOLOv3. According
to Song et al. [42], they used YOLOv3 and achieved up to 87.88% accuracy for mAP.
Roszyk et al. [43] obtained the average accuracy of 0.557 for mAP50. Although YOLOv4
or YOLOv3 can provide higher accuracy, these algorithms are inappropriate for real-time
detection on an embedded system deployment because of the slow detections. Thus, we
select YOLOv4 Tiny, which works best for real-time detection with acceptable high accuracy.

3.2. Result of the Framework

Based on our experimental results, we discovered a high number of motorcycles
driving in the wrong direction. The system captured the images from the video in various
ranges (e.g., 2 to 5 min). It is important to note that the angle of our captured videos was
limited due to the angles of CCTVs on the skywalk. Some angles of the video show the
vehicles driving vertically while some are driving horizontally. We used ten videos for our
experiments.

3.2.1. Improved RLB-CCTV Algorithm

After collecting several videos from many locations, we tested the videos with our
proposed algorithm to detect the road lane boundary. Some video contains one road, and
some contain two roads. Our system returned satisfactory results of road lane boundary
detections. Some of the results are shown in Figure 35.
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Figure 35. Output images with road boundaries using the improved RLB-CCTV algorithm.

3.2.2. DBDD Algorithm

In the DBDD algorithm, there are two steps to proceed: validation and detection steps.
First, we show the result of the system after validating the correct moving direc-tion by
finding the start, stop areas, and reference points. Table 2 shows the result from the DBDD
validation step, where it shows the information on the number of the start and stop points
in each area.

As we use this configuration from the validation step and run the video to let the
system determines the moving direction of each vehicle driving inside the lane boundary.
The advantage of DBDD over our last proposed system MBCDD is that DBDD requires
a shorter video length in the validation step on an embedded system. Both algorithms
have similar accuracy as we tested them with the same dataset. However, after we tested
the system on edge devices, MBCDD returned a lower performance than DBDD in the
validation step. For testing on the Jetson Nano, DBDD requires only short videos (one
minute at maximum) for the validation step to correctly validate the correct moving
direction of vehicles in each lane. On the other hand, MBCDD requires a thrice longer
length of video than DBDD to validate the correct vehicles’ moving directions. Based on
the testing results, we can see the advantage of DBDD and its performance on edge devices.

The next step after the validation step is the detection step. In the detection step, the
system determines and detects each lane for the correct and wrong-way driving of vehicles.
The algorithm is shown in Table 3. We tested the system on both a personal computer and
an embedded system (Jetson Nano). The results of detection are quite similar and close to
the ground truth. There was some slight error in detection due to the accuracy of the object
detection and tracking system. We evaluated the accuracy of our proposed system using ten
videos; the accuracies were 95.225% when running on a personal computer and 94.663% on
Jetson Nano, respectively. The limited resources on the Jetson Nano caused the difference in
the accuracy when running object detection and tracking algorithms. The average FPS on
the Jetson Nano was approximately 24 FPS, which is suitable for real-time detection.

Figure 36 shows the screenshot of the detection process while the system is detecting
the wrong-way driving vehicle on a video with vertical orientation. The system can track
and detect vehicles accurately.



Sustainability 2022, 14, 10232 26 of 32

Table 2. The number of start and stop points on each divided area of the road boundary.

Video Length Area
Number of Points Area Type

Start Stop Prediction Ground Truth

1 2:12 min

Area 1 0 95 Stop Stop

Area 2 50 35 Start Start

Area 3 23 2 Start Start

Area 4 2 53 Stop Stop

2 3:01 min

Area 1 0 28 Stop Stop

Area 2 18 1 Start Start

Area 3 21 0 Start Start

Area 4 0 23 Stop Stop

3 5:00 min
Area 1 4 119 Stop Stop

Area 2 68 40 Start Start

4 2:31 min
Area 1 2 64 Stop Stop

Area 2 46 31 Start Start

5 2:59 min
Area 1 111 37 Start Start

Area 2 2 194 Stop Stop

6 2:04 min
Area 1 100 35 Start Start

Area 2 4 228 Stop Stop

7 4:07 min
Area 1 72 34 Start Start

Area 2 0 151 Stop Stop

8 2:00 min
Area 1 3 88 Stop Stop

Area 2 43 35 Start Start

9 2:03 min
Area 1 0 71 Stop Stop

Area 2 50 16 Start Start

10 2:02 min
Area 1 3 41 Stop Stop

Area 2 105 21 Start Start

Figure 36. Screenshot of the DBDD algorithm while detecting vehicles driving in the correct and
wrong direction.
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Table 3. Numbers of motorcycles were detected as wrong-way and correct-way driving using DBDD.

Video Length Lane
Ground Truth Computer Embedded System

Correct
Driving

Wrong
Driving

Correct
Driving

Wrong
Driving

Correct
Driving

Wrong
Driving FPS

1 2:12 min
1 9 1 9 1 9 1

22
2 6 0 5 0 6 1

2 3:01 min
1 8 0 9 0 7 0

23
2 3 0 2 0 3 0

3 5:00 min 1 51 15 51 15 49 17 27

4 2:31 min 1 20 6 19 6 19 6 27

5 2:59 min 1 44 4 46 5 47 3 18

6 2:04 min 1 26 5 25 5 26 5 19

7 4:07 min 1 70 1 68 1 68 1 26

8 2:00 min 1 25 10 26 11 28 10 25

9 2:03 min 1 32 2 29 2 33 2 32

10 2:02 min 1 13 5 14 6 12 6 29

3.2.3. IBI Capturing Feature

The IBI capturing feature algorithm is used to capture the most precise image, captur-
ing the closest moment where the vehicle comes closest to the camera. Figure 36 shows
screenshot images cropped to the size of a vehicle that drives in the wrong direction.
Figure 37a,b show the example captured images with IBI capturing features when vehicles
are driving in vertical and horizontal orientations, respectively. As we mentioned in the
problem statement and the motivation for this research, the motorcycle is the major type of
vehicle that often be found driving in illegal directions on road lanes in Thailand. Therefore,
we only focus on detecting the motorcycles in this research. Although there are some cases
where other types of vehicles (e.g., car or truck) are found when driving in the wrong
direction, we do not have sufficient images of those cases captured in our video records for
the experiments.

Figure 37. Output images of the wrong-way driving vehicles using the IBI capturing feature. (a) Vertical
orientation road; (b) Horizontal orientation road.
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4. Discussion
4.1. Limitations

The scope of our research is to detect the road lane and be able to implement the
system onto a real-time embedded system, such as a Jetson Nano. Therefore, there are three
limitations we would like to discuss for future improvements.

The first limitation is running the system using limited resources on the Jetson Nano.
The Jetson Nano is an effective embedded system that can perform image processing tasks.
To achieve higher FPS, we have to resolve several issues to make our algorithms on the
Jetson Nano work best for the real-time processing system. For example, we must narrow
the road boundary to make it smaller for processing on the Jetson Nano. If we use the
original boundary size, the system will take more computing time to compute a large area.
Therefore, we decided to reduce the size of the road boundary after detecting it with the
Road-CCTV algorithm.

The second limitation is about various road conditions. It is challenging to detect
all types of roads in the system. There are many factors that influence the accuracy of
the RLB-CCTV and DBDD algorithms. For example, when there are objects blocking the
road lane, the system may not detect the road lane accurately. We need to consider several
conditions for improving our road lane detection algorithm. In addition, the current system
can only detect the road lane with a straight line in vertical or horizontal orientations; we
would like to improve our approach to handle the curved road in future work.

The last limitation is the capability to validate the correct driving direction regarding
the speed and accuracy of the MBCDD. According to our experimental results, the algorithm
provided high accuracy wrong-way driving detection. However, there are some aspects in
the validation step that the algorithm remains at a weak point. We would like to have a
shorter time validating the correct direction on a road boundary with great accuracy. Thus,
the length of the validating video should be shortened for time reduction. However, the
challenging part is, can a short validating video produce a threshold value with enough
accuracy, especially for the validation on the embedded system? We tested this idea by
trimming the video length to 1000 frames, 2000 frames, and 3000 frames. In Table 4, we
tested our algorithm with the stated configuration of the video’s lengths for the validation
step on Jetson Nano.

Table 4. MBCDD algorithm in the validation step on Jetson Nano.

Video Length
(Frame)

Validation Detection

STD Threshold Time Taken
(Seconds)

Speed
(FPS)

Correct-Way
Driving Vehicle

Wrong-Way
Driving Vehicle

Speed
(FPS)

1000 6.053 0 174 7 51 8 23

2000 6.130 7 303 7 52 12 20

3000 6.498 14 450 7 52 15 20

As shown in Table 4, the threshold values increase according to the number of video
lengths. Figure 38 shows the detected vehicle movements used in the validation step. The
higher number of frames from the video length increases the accuracy of the majority
direction most vehicles are moving toward.
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Figure 38. Detected vehicle movements (a) 1000 frame length (b) 2000 frame length (c) 3000 frame length.

Table 4 shows varying, different results. As we manually counted, the ground truth of
the number of vehicles is 51 and 15 for the correct-way and wrong-way driving, respectively.
To compare the error in both correct-way driving vehicle and wrong-way driving vehicle
columns in Table 4 with the ground truth, the 1000 frames, 2000 frames, and 3000 frames
produce seven, four, and one miscounted vehicles, respectively. With this information, we
can conclude that the minimum number of frame lengths to use in the validation step for
MBCDD running on Jetson Nano is 3000 frames, which takes around 7.5 min to validate
the direction, while the actual video run times for 3000 frames should be only around
1 min and 40 s. For DBDD, the validation step is simpler where the video frame length at
1000 frames already produces an accurate validation result. With these concerns, we
decided to use our proposed DBDD algorithm as part of our WrongWay-LVDC framework.

4.2. Challenging Constraints

To test our proposed algorithms and whether they would handle various scenarios
and constraints, we have gathered possible scenarios that would happen while running the
framework. There are four cases of challenging constraints. The first case is the resolution of
the CCTV cameras. As we could not directly access the CCTV camera for the video, in this
research, we imitated the CCTV camera angle and recorded the video using the smartphone.
The videos we received from the smartphone have a resolution of 1920 pixels in width and
1080 pixels in height. We converted the resolution to 1280 pixels in width and 720 pixels
in height for faster processing. As we checked the resolution of the CCTV, the converted
resolution of the input video is equivalent to a 720p HD video from CCTV. There are many
several higher resolutions of video that are collected from CCTV. However, as long as the
resolution of the input video from the actual CCTV is greater than 1280 × 720 pixels, the
input video should be compatible with our system.

The second case is when there is heavy traffic. During rush hours, we often face bad
traffic, where all vehicles on the road move slowly or do not move for a certain time. As
the system’s default requires one minute video for the validation part, in the case of traffic
jams, the distances of each moving vehicle in the video might be too short, and the system
might not obtain the significant information to validate the correct direction of a road lane.
In the case that the vehicle is moving slowly in the video length of one minute, for the
MBCDD algorithm, this case would not affect the efficiency of the system to validate the
correct moving direction because even the tiny direction movement is sufficient for the
system to understand the majority moving direction of all vehicles. However, this will
severely affect the validation part of the DBDD algorithm since the algorithm will divide
the road into two areas, the start and stop areas. If the vehicles do not have enough time,
within one minute, to drive across from the start area to the stop area, the system will fail
to validate the correct direction. However, this situation can be solved by increasing the
time for the validation video, depending on the time of the day of the video that is selected
to be the validation video. The system should avoid using the video during rush hour to
validate the correct direction. If it is unavoidable, the longer length of the video, such as
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3 or 5 min, should be used to validate instead, as this will be a solution for the system to
obtain more accuracy in direction validation.

The third case is when the vehicle is driving too fast. Oppositely to the previous
case, we also consider the capability of the system to detect fast-moving 64 vehicles. The
collected video has a resolution of 30 frames per second. When the vehicle is driving
too fast and appears in only one frame in the video, the system will not be able to track
the moving direction due to the low information provided. Detection is possible when a
fast-moving vehicle appears for at least two frames inside a video. In this case, there will
be two challenges for our proposed systems: tracking capability and direction validation.

For direction validation, this might be a challenge to detect the moving direction of a
vehicle that appears inside the video for two frames. However, our algorithms can detect
and specify the moving direction even in a few frames that a vehicle appears in. Both of
our wrong-way driving detectors (MBCDD and DBDD) only require two vehicle locations
to determine the vehicle’s distance and moving angle. With this idea, we can conclude that
even if the vehicle is moving very fast, with only two frames, it appears our algorithms can
verify the moving direction of that vehicle.

We tested our system using short video clips of around 3 to 5 min. We have another
concern when using longer video clips, which might affect the detection performance.
Therefore, the fourth challenging case is using the longer length of the video inputs. As
we run the wrong-way driver detection on PC, the speed is up to 80 FPS in a normal
traffic scenario. With the high performance on PC, the trend of detecting speed will not
drop below the real-time speed, which is around 30 FPS, even if the input video is very
long. However, running a long video on a small embedded is a major concern because
the embedded system has limited resources, and it always becomes easier to obtain a high
temperature and decrease the detection performance. As we tested our system on the Jetson
Nano, the average speed was around 24 FPS. In the scenario where the traffic is heavy on
the testing video, the speed may drop below 20 FPS. Therefore, there are many factors that
would affect the speed of wrong-way driver detection on an embedded system. There are
potential solutions that support wrong-way driver detection. First, keep the embedded
system’s temperature low and avoid the overheat condition while detecting. Second,
skipping the frame of detection for the input video. If the device detects all vehicles every
frame, it will consume excessive energy and would slow down the process. Lastly, turning
off the interface display while running the system reduces power consumption. With these
approaches, the detection on embedded systems would remain in a good performance
detecting long video clips.

5. Conclusions

In our research, we proposed the WrongWay-LVDC framework, which consists of three
proposed sub-systems; improved road lane boundary detection from CCTV (improved
RLB-CCTV), Distance-Based Direction Detection (DBDD), and Inside Boundary Image Cap-
turing (IBI capturing). Each of these sub-systems will run after one another synchronously
and automatically. This seamless pipeline flow makes it convenient and functional to use
in a broad area. Furthermore, we can deploy our framework on an embedded system at
a real-time average speed of 24 FPS. The obtained accuracies are 95.23% while running
on a personal computer and 94.66% on the embedded system. We can conclude that the
proposed framework can provide high accuracy and speed performance for an IoT purpose.
For future work, this research has a high potential to be improved in several aspects to
enhance the algorithms to handle several cases of road conditions. For example, the im-
proved RLB-CCTV should be able to detect various road conditions such as curve line roads,
roads with objects blocking on the side, and roads with projected shadows. Moreover, new
features can be added to this framework based on improving speed detection and detecting
traffic density levels.
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