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SUMMARY Ground-truth identification – the process, which infers the
most probable labels, for a certain dataset, from crowdsourcing annota-
tions – is a crucial task to make the dataset usable, e.g., for a supervised
learning problem. Nevertheless, the process is challenging because anno-
tations from multiple annotators are inconsistent and noisy. Existing meth-
ods require a set of data sample with corresponding ground-truth labels to
precisely estimate annotator performance but such samples are difficult to
obtain in practice. Moreover, the process requires a post-editing step to
validate indefinite labels, which are generally unidentifiable without thor-
oughly inspecting the whole annotated data. To address the challenges, this
paper introduces: 1) Attenuated score (A-score) – an indicator that locally
measures annotator performance for segments of annotation sequences, and
2) label aggregation method that applies A-score for ground-truth identi-
fication. The experimental results demonstrate that A-score label aggre-
gation outperforms majority vote in all datasets by accurately recovering
more labels. It also achieves higher F1 scores than those of the strong base-
lines in all multi-class data. Additionally, the results suggest that A-score
is a promising indicator that helps identifying indefinite labels for the post-
editing procedure.
key words: ground-truth identification, crowdsourcing, label aggregation,
attenuation scoring

1. Introduction

Recently, crowdsourcing is a promising cost-effective and
time saving solution for dataset annotations by leveraging
collective opinions from multiple non-expert annotators [1].
An annotated dataset with crowdsourcing needs another
step, namely ground-truth identification, to infer the most
probable labels, which should ideally be identical to the
ground-truth labels, from annotations contributed by many
annotators. Such procedure is crucial because annotated la-
bels are inconsistent and noisy due to several factors, includ-
ing, e.g., different expertise levels, labeling inconsistency,
and spamming behaviors of annotators. In the past, a major-
ity voting method is commonly applied since it is intuitive
and easy to use. However, the method is prone to noisy
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labels. Moreover, given an instance annotated by several
annotators, the majority vote may produce uncertain aggre-
gation if multiple majority labels occur.

Existing ground-truth identification methods [2]–[13]
perform well in many crowdsourcing datasets but they gen-
erally do not address an important issue about the post-
editing procedure, which requires some human experts to
finalize the most probable labels from crowdsourcing an-
notations. Suppose the majority vote yields 70% aggrega-
tion accuracy on a given dataset, which, in turn, implies
that each instance in the dataset shares the same label ac-
curacy at 70%. Unfortunately, it is not informative enough
for the validation procedure. Specifically, if the validation is
needed, all instances have to be investigated anyway, which
is especially impractical for a large dataset. This scenario
indicates the need for a certain indicator that describes an-
notation quality at the instance level. Another issue is the
impractical assumption about an availability of ground-truth
labels for estimating annotator performance. Several previ-
ous methods require the good set of data sample that truly
represents annotator performance which is difficult to obtain
in practice.

This paper presents a novel and practical label aggre-
gation method with similar time complexity to the majority
voting method that offers: 1) an indicator manifesting an-
notation quality at the instance level without using ground-
truth labels, and 2) a label recovery technique for uncer-
tain aggregations. The unique part in this work is the at-
tenuated score (A-score) which expresses annotator’s local
performance in a sequence of annotations. The A-score is
extended from its original version, proposed in our previ-
ous work [14] that does not take annotation orders into ac-
count. We also propose the novel label aggregation using
A-score, called A-score aggregation. Experiments on real
crowdsourcing datasets show that the A-score aggregation
does not only yield the better aggregation quality and quan-
tity than the majority voting but also obtain higher F1 scores
for all multi-class data sets, as compared to many strong
baselines.

By using the A-score aggregation, dataset annotation
project can be accomplished without using true labels.
Dataset owners can obtain larger number of annotated in-
stances, compared to those inferred from the baseline ap-
proach. Moreover, the post-editing procedure is more ro-
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bust than using inter-rater agreement that could be unstable
with missing values. Our A-score aggregation also makes
the post-editing easier with the A-score indicator. In par-
ticular, the score suggests experts, who finalize the data la-
bels, to pay more attention on low A-score instances, whose
inferred labels are unlikely precise due to annotators’ dis-
agreement and poor recent performance.

2. Ground-Truth Identification in Crowdsourcing

For dataset annotation with crowdsourcing, the ground-truth
identification is the problem of inferring the most probable
label from a collection of annotated labels contributed by
multiple annotators on a given instance. For example, in
the music genre classification task, three annotators give an-
notated labels after listening a given pop music as follows:
{pop, rock, pop}. The ground-truth label is either pop or rock
depending on ground-truth identification method.

Formally, the ground-truth identification is defined as
follows: Let m be the number of instances, n be the num-
ber of annotators, xi ∈ xm×1 be the observed instance i,
yi, j ∈ Ym×n be the annotated label on the instance i by the
annotator j, y•, j be a collection of labels given by the anno-
tator j, and zi ∈ zm×1 be the identified ground-truth label of
the instance i.

Table 1 shows the formal representation of ground-
truth identification. There are two main approaches: label
discrimination and label aggregation. For label discrimina-
tion, the ground-truth label is identified from an annotated
label that has the highest probability among a given collec-
tion of annotated labels [3], [5]–[8], [10]. This approach es-
timates model parameters using EM algorithm [15] and uses
those parameters to determine the posterior probability of
ground-truth labels. One potential limitation is the number
of annotated data might not enough to learn all parameters
in order to obtain a robust model. For label aggregation, the
ground truth label is obtained from weight aggregation with
respect to a particular scheme.

In label aggregation, weighting scheme represents re-
liability of annotators or degree of expertise. A simple
method is majority vote that assumes all annotators are
equally reliable with static weight. Previous works im-
prove from majority vote by adjusting the weights more
dynamically such as weight majority [2] or worker history
of agreement [9] with binary classification. The more ad-
vance methods assume a latent confusion matrix bounded
with true labels [16] or two latent confusion matrices of in-
stances and annotators [17] in order to estimate annotator
reliability. The further extensions take prior distribution of
worker confusion matrix into account and apply to multi-
classification [4], [18], [19] or ordinal labels [20].

However, label aggregation could generate uncertain
labels and impractical. For the uncertainty issue, if there are
two or more labels which have the highest weight, the label
aggregation method has to choose predicted label randomly
from such candidates. This circumstance is called uncertain
aggregation that makes correct prediction by chance, which

Table 1 Formalization of ground-truth identification

x y•,1 y•,2 ... y•, j ... y•,n z

x1 y1,1 y1,2 ... y1, j ... y1,n z1

... ... ... ... ... ... ... ...
xi yi,1 yi,2 ... yi, j ... yi,n zi

... ... ... ... ... ... ... ...
xm ym,1 ym,2 ... ym, j ... ym,n zm

is considered as undesirable for ground-truth identification.
For the impractical problem, most of the existing meth-

ods still need some ground-truth labels for weight adjust-
ment or parameter estimation. Even though prior probability
can be assumed, it is obtained by the known ground-truth la-
bels from a subset of dataset. The difficulty of these methods
is to prepare the good data samples with ground-truth labels
that represent the distribution of annotator performance.

Furthermore, post-editing is required to finalize the an-
notated dataset [21]. With existing methods, targeting in-
stances to verify is difficult because they report only over-
all annotation accuracy. This process is normally per-
formed by analyzing of inter-rater agreement such as Ko-
hen’s kappa [22] but it is generally unstable due to the na-
ture of crowdsourcing data that contains very large number
of missing values.

3. Attenuated Score

Intuitively, for human, an annotation performed with con-
centration is likely to be a correct label if annotator’s prior
knowledge is sufficient for a given task. However, human
annotators might not be able to concentrate throughout the
whole task because fatigue, boredom, or interruptions are
difficult to control. Since crowdsourcing data is hard to iden-
tify annotator’s concentration, we introduce the A-score that
can be observed from an annotated dataset directly.

The A-score is based on the annotator’s recent perfor-
mance. In this paper, the annotator performance on a given
instance is the binary outcome whether his annotated label
is a member of majority labels or not. Therefore, annota-
tor’s recent performance is a sequence of binary numbers
within a given range of annotations. The range of annota-
tions, k-gram, starts from the current annotated instance to
k−1 previously annotated instances. The A-score takes into
account the annotation order that makes the annotated in-
stance i more important than its k − 1 previously annotated
instances. This characteristic can discriminate the same pat-
tern size but different order. As an example, consider that
1 indicates the annotated label to be a member of majority
labels and 0 otherwise, the annotator’s bi-gram recent per-
formance of ⟨1, 0⟩ will be better than that of ⟨0, 1⟩. The
A-score is obtained by transforming a sequence of recent
performance represented with binary numbers into a deci-
mal number.

Figure 1 shows an overview of A-score calculation
from crowdsourcing data. The calculation of the A-score
starts with transforming the crowdsourcing data into an an-
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Fig. 1 Processes of A-score calculation

Table 2 Example of crowdsourcing data

Transaction ID Annotator ID Instance ID Annotated Labels

1 A0 classic01 pop
2 A1 rock01 classic
3 A2 pop01 rock
4 A0 pop01 pop
5 A1 classic01 classic
6 A2 rock01 rock
7 A0 rock01 rock
8 A1 pop01 pop
9 A2 classic01 classic

Table 3 Annotation matrix

A0 A1 A2

classic01 pop classic classic

pop01 pop pop rock

rock01 rock classic rock

notation matrix and a majority matrix, respectively. Then,
for each transaction of crowdsourcing data, a k-subsequence
of observed instances is extracted and transformed to be a
k-digit binary pattern with respect to the majority matrix.
Next, the k-digit binary pattern is converted into an A-score
of a label annotated by a particular annotator. Finally, the
set of A-score is represented in the form of A-score matrix.

The A-score calculation can be described through the
following example: Suppose that there are nine transactions
of annotated data for music genre classification returned
from crowdsourcing, as listed in the Table 2. Each transac-
tion consists of a transaction ID, an annotator ID, an instance
ID, and an annotated label. In this example, the crowdsourc-
ing data are annotated by three annotators (A0, A1, and A2)
on three unique instances (classic01, pop01, and rock01).

Table 3 shows the annotation matrix corresponding to
the crowdsourcing data. The rows and the columns of the
matrix represent instances and annotators, respectively. The
values in the matrix are the annotated labels given by a par-
ticular annotator on his observed instances. This example
does not have missing values. However, in practice, the
missing values are ubiquitous because annotators generally

Table 4 Majority matrix

A0 A1 A2

classic01 0 1 1

pop01 1 1 0

rock01 1 0 1

Table 5 k-subsequence of observed instances

Transaction ID Annotator ID k-subseq of observed instances

1 A0 ⟨classic01, N/A⟩
2 A1 ⟨rock01, N/A⟩
3 A2 ⟨pop01, N/A⟩
4 A0 ⟨pop01, classic01⟩
5 A1 ⟨classic01, rock01⟩
6 A2 ⟨rock01, pop01⟩
7 A0 ⟨rock01, pop01⟩
8 A1 ⟨pop01, classic01⟩
9 A2 ⟨classic01, rock01⟩

Table 6 k-digit binary patterns

Transaction ID Annotator ID k-digit binary patterns

1 A0 ⟨0, 0⟩
2 A1 ⟨0, 0⟩
3 A2 ⟨0, 0⟩
4 A0 ⟨1, 0⟩
5 A1 ⟨1, 0⟩
6 A2 ⟨1, 0⟩
7 A0 ⟨1, 1⟩
8 A1 ⟨1, 1⟩
9 A2 ⟨1, 1⟩

Note: the patterns are organized as ⟨current, previous⟩.

contribute to some portions of a given dataset.
Table 4 shows the majority matrix. The value of 1 rep-

resents the majority label and 0 otherwise. It is derived from
the annotation matrix with respect to the majority vote ex-
cluding missing values. For example, at the row of clas-
sic01, the annotated labels are {pop, classic, classic}. The
result from majority vote is classic; thus, the values in the
majority matrix at this row will be ⟨0, 1, 1⟩.

Table 5 shows k-subsequence of observed instances ex-
tracted from the crowdsourcing data. Each sequence con-
sists of a current instance and k − 1 previous instances. In
this case, a sequence of bi-gram (k = 2) is observed. For
example, in case of annotator A0, the transactions 1, 4, and
7 are extracted and the bi-gram sequences are observed as
⟨classic01, N/A⟩, ⟨pop01, classic01⟩, and ⟨rock01, pop01⟩,
respectively.

Table 6 shows k-digit binary patterns which are derived
from the sequence of k observed instances and the major-
ity matrix. In our continuing example, in the forth trans-
action performed by the annotator A0, the pattern ⟨pop01,
classic01⟩ is observed. By consulting the majority matrix,
the majority score of the instance pop01 annotated by A0 is
1 and that of the instance classic01 annotated by A0 is 0;
thus, the corresponding k-digit binary pattern is ⟨1, 0⟩.
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Table 7 A-score matrix

A0 A1 A2

classic01 0 2 3

pop01 2 3 0

rock01 3 0 2

Table 7 shows the A-score matrix whose layout is sim-
ilar to the majority matrix but its values are A-scores each
of which is derived from a binary-to-decimal conversion of
a corresponding k-digit binary pattern. For example, the A-
score of the k-digit binary pattern of the forth transaction,
⟨1, 0⟩, is (1 × 21) + (0 × 20) = 2. Note that each value in
the A-score matrix represents the A-score of the current in-
stance annotated by a particular annotator with considera-
tion of k − 1 previous annotated instances.

4. Label Aggregation with A-Score

In this section, a formal description of applying A-score to
label aggregation, called A-score aggregation, is described.
Let m be the total number of unique instances and n be the
total number of annotators. The A-score aggregation can
be defined as follows: Given an annotation matrix Ym×n,
identify a list of ground-truth labels zm.

Let yi, j ∈ Ym×n, 1 ≤ i ≤ m, 1 ≤ j ≤ n be an annotated
label on the instance i by the annotator j; thus, yi,• is a col-
lection of annotated labels on the ith instance. The instance i
has ri annotated labels where 1 ≤ ri ≤ n because annotators
do not necessarily contribute to all instances.

The majority matrix Um×n can be derived from Ym×n as
follows: for each ui, j ∈ Um×n, 1 ≤ i ≤ m, 1 ≤ j,≤ n

ui, j =

1 , if yi, j = mode(yi,•)

0 otherwise
(1)

where mode(yi,•) returns the statistical mode of the collec-
tion yi,•. Assume that, for each annotator j, the number of
observed instances is c j, where 1 ≤ c j ≤ m, and the se-
quence of observed instances is v j = ⟨v1j , v2j , . . . , v

c j

j ⟩. The
k-subsequence of instances observed at the current position
p by the annotator j, where 1 ≤ k ≤ c j, is defined as follows:

v j(p, k) = ⟨vpj , v
p−1
j , . . . , v

p−(k−1)
j ⟩ (2)

where vqj , p − (k − 1) ≤ q ≤ p represents the row index of
the majority matrix. We use it to come up with the corre-
sponding k-digit binary pattern which is defined as follows:

w j(p, k) = ⟨wp
j , w

p−1
j , . . . , w

p−(k−1)
j ⟩ (3)

where

w
q
j =

uvqj , j , if q > 0

0 otherwise
(4)

Now, an A-score matrix Am×n, 1 ≤ i ≤ m, 1 ≤ j ≤ n
can be obtained. Let ai, j ∈ Am×n be an A-score of the label
annotated on the instance i by the annotator j. The ai, j is
defined as follows:

ai, j = a f (p, j), j

=
∑

q

w
q
j · 2

q−1 , p − (k − 1) ≤ q ≤ p (5)

where f (p, j) returns the A-score matrix’s row index that
represents the current instance in crowdsourcing data at the
position p observed by the annotator j.

Finally, with the A-score matrix, a list of identified
ground-truth labels zm = ⟨z1, z2, . . . , zm⟩ can be determined
as follows:

zi = yi, j for 1 ≤ i ≤ m and j = arg max
t

(ai,t) (6)

The Eq. (6) is interpreted as follows: The identified
ground-truth label of the instance i contributed by ri anno-
tators where 1 ≤ ri ≤ n is the label that has highest A-score.
It is possible that two or more unique labels have the maxi-
mum A-score. In this case, the aggregated label need to be
sampled from the list of candidates.

For a given annotated dataset of m unique instances by
n annotators, the complexity of the majority voting method
is defined as O(mn). For the pattern size of k, the complexity
of A-score aggregation is defined as O(kmn).

5. Experiment

The experiments have been conducted to evaluate the
A-score aggregation on four datasets: music genre
(MG), sentiment polarity (SP), dog breed (DB) and
adult contents (AC). The first two datasets, available
at https://eden.dei.uc.pt/˜fmpr/malr/, have been used in
the study of logistic regression modeling from mul-
tiple annotators [6]. For the dog breed classifica-
tion dataset, which is a part of the Stanford dog
dataset [23], has been used in the study of a crowd-
sourcing technique using minimax entropy [11]. For
the adult contents classification dataset, available at
http://ir.ischool.utexas.edu/square/data.html, has been used
in SQUARE [24] – a benchmarking framework for ground-
truth identification methods. Statistically, the label distri-
butions of MG, SP, DB are relatively uniform while AC is
rather skewed. We summarized the dataset characteristics
in terms of distributions between annotator accuracies and
contributions are summarized in Fig. 2, where dash lines are
the average values.

The experiments are comparative studies between the
A-score aggregation and other four baselines: majority vote,
Raykar’s model [4], GLAD [12], and Zencrowd [13] with
the following objectives: 1) to evaluate prediction perfor-
mance 2) to explore the relationship between the A-score
values of annotated labels and the probability of ground-
truth label and 3) to compare the number of post-editing
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workloads.
For the first objective, the A-score aggregation with k

gram pattern is compared with four methods by precision,
recall, F1, and accuracy. Then, we report the comparison
of label recovery of A-score aggregation for each size of k.
Since the A-score has 2k possible values, the larger k could
have patterns which are unobservable in annotated datasets
based on their annotator contribution. Therefore, the k is
set to be 2, 3, and 4 which produce 4, 8, and 16 possible
patterns, respectively. With these settings, the number of
possible patterns are suitable for the average contribution in
the four datasets.

For the second objective, we measure the probability
of ground-truth label given the A-score of the annotated la-
bel. This experiment extends our previous study [14] with
the real-world dataset instead of the simulated dataset. Let
k be a pattern size, A = {0, 1, . . . 2k} be a random variable
of A-score associated with the identified ground-truth label
for the instance i and T = {True, False} be a random variable
of the comparison between the identified ground-truth label
and the real ground-truth label where the True represents the
label-matched and False otherwise. This experiment mea-
sures the probability of ground-truth label given the A-score
using Eq. (7), (8) and (9).

P(T = True|A = α) =

∑
i

f (T, α)∑
i
g(T, α)

(7)

f (T, α) =

1 max(ai,•) = α and T = True

0 otherwise
(8)

g(T, α) =

1 max(ai,•) = α

0 otherwise
(9)

For the third objective, the post-editing is assumed to
produce the true labels. This experiment explores to what
extent the A-score can speed up the post-editing task to
achieve the target quality. The post-editing of A-score ag-
gregation re-annotates instances from the lowest to the high-
est A-score. We compare the growth of ground-truth la-
bels obtained from the A-score aggregation and the majority

Fig. 2 Dataset characteristics

vote. Raykar, Zencrowd, and GLAD are not included in this
experiment because their post-editing procedures are simi-
lar to the majority vote although each method has different
starting points with respect to their label aggregation quality.
For the majority vote, the post-editing re-annotates instances
randomly because we assume that only overall aggregation
accuracy is known.

6. Findings and Discussions

This section reports experimental results. For the first
objective, our A-score aggregation with k-gram pattern
(ASAGGk) is compared with majority vote (MV), Zen-
crowd (ZC), Raykar (RY), and GLAD. Their performances
are reported in Table 8, comprising of precision, recall, F1
and accuracy values in all datasets. For ASAGGk, almost
all numbers are raised when increasing k, which confirms
our assumption that the larger k would yield the better per-
formance.

For multi-class datasets, all ASAGGk with k >= 2
clearly show superior recall, F1, and accuracy to all other
methods in MG, which has the highest proportion of un-
certain aggregations at 26.86% (detected by the majority
vote). For DB and AC, which have relatively low rates
of uncertain aggregations (6.32% and 3.00% respectively),
ASAGGk also perform better than the majority vote and
achieve higher F1, compared to ZC and GLAD. For SP, a

Table 8 Performance

Datasets Method
Evaluation

Precision Recall F1 Accuracy

MG

MV 0.720 0.694 0.695 0.939
ASAGG2 0.756 0.731 0.734 0.946
ASAGG3 0.785 0.753 0.756 0.951
ASAGG4 0.812 0.774 0.776 0.955

ZC 0.833 0.741 0.749 0.949
RY N/A N/A N/A N/A

GLAD 0.921 0.457 0.558 0.938

SP

MV 0.887 0.886 0.886 0.886
ASAGG2 0.889 0.888 0.888 0.888
ASAGG3 0.890 0.889 0.889 0.889
ASAGG4 0.889 0.888 0.888 0.899

ZC 0.915 0.915 0.915 0.915
RY 0.911 0.911 0.911 0.911

GLAD 0.917 0.917 0.917 0.917

DB

MV 0.824 0.820 0.820 0.909
ASAGG2 0.825 0.822 0.821 0.910
ASAGG3 0.830 0.827 0.826 0.912
ASAGG4 0.826 0.823 0.822 0.911

ZC 0.832 0.823 0.821 0.909
RY N/A N/A N/A N/A

GLAD 0.869 0.781 0.817 0.912

AC

MV 0.724 0.757 0.726 0.860
ASAGG2 0.725 0.757 0.724 0.858
ASAGG3 0.729 0.760 0.729 0.861
ASAGG4 0.725 0.757 0.725 0.858

ZC 0.685 0.718 0.672 0.824
RY N/A N/A N/A N/A

GLAD 0.821 0.679 0.683 0.871
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binary-class dataset with a relatively low rate of uncertain
aggregations (3.62%), although ASAGGk outperform the
majority vote, they are not superior to ZC, RY, and GLAD.

The key factor influencing ASAGGk performance is
its ability to capture annotator’s recent performance. When
k = 1, only the current instance will be considered and it is
equivalent to majority vote. At k greater than 1, such infor-
mation is richer than the majority voting case, which helps
turning uncertain aggregations to be definitive, or reducing
a number of majority labels in some difficult instances. For
example, the ground-truth of a given music instance is clas-
sic. Suppose its annotated labels associate with A-scores
are ⟨(pop,1),(rock,2),(classic,3),(country,3),(jazz,2)⟩. Obvi-
ously, all labels are the majority labels. The probability of
correct aggregation for the MV becomes 0.2 because it sam-
ples one from all majority labels while the probability of
correct aggregation for the ASAGGk becomes 0.5 because
it samples one from all labels with maximum A-score.

Since the A-score improves label aggregation by recov-
ering labels from uncertain aggregations, the majority vote
is only compared because the number of uncertain aggrega-
tions in other methods are unobservable. From Table 9, the
recovered label quantity is increasing when the size of k is
increased. Obviously, each dataset has its appropriate size
of k. For example, in Table 9, the A-score 2-gram could not
recover label for the DB dataset but increasing the pattern
size from 2 to 3 and 4 shows that the A-score aggregation
yield more quantity and quality of label recovery. Although
increasing the size of k yields higher recovery rate, the be-
haviors of A-score could be unstable. We suggest to trade-
off between quality and the quantity of label recovery by
choosing the appropriate k.

For the second objective, behaviors of A-score
are studied from the probability to be the ground-
truth label of a given annotated label and its A-score,
P(ground-truth|A-score). Figure 3 shows the behaviors of
A-scores in all datasets. The probability to be ground-truth
is proportional to the values of A-score within a certain
range of k for each dataset. We observe that the growth of
probability to be ground-truth become unstable when k is
too large, e.g. k = 4 for all datasets. These unstable growth

Fig. 3 Behaviors of A-scores

are caused by the rare patterns as k increases.
We also explore the relationship between the annota-

tor accuracy and the average A-score shown in Fig. 4, where
each annotator is represented in the scatter dot. The larger
dot size indicates that annotator has the greater contribution
to the dataset than the smaller dot size. All datasets show the
positive relationship between annotator accuracy and aver-
age A-score.

For the third objective, dataset annotation projects have
the expected target quality for the annotation correctness. To
achieve the target quality, the post-editing procedure is re-
quired. The post-editing workload is indicated by the num-
ber of instances to be validated until the target quality is
achieved. Figure 5 shows the growth of ground-truth labels
after applying post-editing to annotated instances from the
majority vote and A-score aggregations. The projection on
the x-axis of the interception between the target quality and
the growth of ground-truth labels indicates the post-editing
workloads.

Figure 5 demonstrates the stability of the A-score for
the post-editing task. Specifically, as validation progressing
according to the A-score ranks, the cumulative accuracy has
risen constantly. Such ranking is desirable because for each

Table 9 Label recovery quantity

Datasets Unc Agg. Rate
Methods

ASAGG2 ASAGG3 ASAGG4

MG 26.86% 38.89% 65.95% 77.66%
SP 3.62% 2.21% 6.63% 15.47%
DB 6.32% 0.00% 1.96% 5.88%
AC 3.00% 10.00% 20.00% 20.00%

Table 10 Label recovery quality

Datasets
Methods

ASAGG2 ASAGG3 ASAGG4

MG 69.33% 63.71% 65.06%
SP 50.00% 66.67% 75.00%
DB N/A 0.00% 33.33%
AC 0.00% 50.00% 50.00%

Fig. 4 Relationship between annotator’s accuracy and individual’s aver-
age A-score
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Fig. 5 Post-editing workload

inspection, especially at the very beginning, it keeps cor-
recting the misclassified labels. A method with poor rank-
ing, on the other hand, might rank correctly classified la-
bels at the beginning, which would make small or even no
improvement at the beginning of the verification. Unfortu-
nately, it is difficult to perceive in ST, DG and AC datasets as
both methods (ASAGGk & MV) roughly yielded the same
pattern in terms of their slopes and interceptions. This is
firstly because the majority vote and A-score approaches
achieves about the same accuracies, which, in turn, yield
similar interception values on y-axis. Secondly, the dis-
tribution of aggregated A-score in those datasets is heav-
ily skewed to the highest value (approximately 95% of in-
stances for all datasets), implying that annotators in these
datasets are somewhat consistent. Consequently, similar im-
provements appear as the post-editing progresses. For MG
dataset, nevertheless, A-score noticeably gave a relatively
less steep slope, since fewer incorrect instances remain to
be corrected for the A-score case, as comparing to the ma-
jority vote case.

7. Conclusions and Future Works

We have presented the A-score and the novel label aggrega-
tion for practical ground-truth identification of dataset anno-
tation with crowdsourcing. Our A-score aggregation does
not require ground-truth labels of partial dataset for learn-
ing and can be performed with similar computational com-
plexity to majority vote that makes it achieves satisfactory
processing time. The experimental findings reveal that the
A-score aggregation can improve the overall accuracy by
recovering labels from uncertain aggregations without dete-
riorating certain aggregations. The recovery performances
depend on the size of annotated pattern and the size of
dataset. With our A-score aggregation, new datasets can
be created easily and effectively. Although the post-editing
workload does not show obvious improvement due to the
heavily skewed distribution of aggregated A-score, the lack
of instance prioritization is still one of the interesting re-
search directions.

In the future works, the A-score can be further ex-
tended by taking instance priority into account. The pri-
ority of instances could be very useful for particular types

of datasets such as text data that the words are not equally
important in term of lexical meaning. Validating the impor-
tant words which are likely to get wrong annotations could
be desirable than correcting functional words those have lit-
tle lexical meaning. Moreover, the A-score can be used as
a random variable for a probabilistic model. Finally, com-
parative studies between the A-score aggregation, the prob-
abilistic model using A-score, and other existing methods
are our research directions.
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