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SUMMARY  With the Semantic Web data standards defined, more ap-
plications demand inference engines in providing support for intelligent
processing of the Semantic Web data. Rule-based inference engines or
rule-based reasoners are used in many domains, such as in clinical support,
and e-commerce recommender system development. This article reviews
and compares key features of three freely-available rule-based reasoners:
Jena inference engine, Euler YAP Engine, and BaseVISor. A performance
evaluation study was conducted to assess the scalability and efficiency of
these systems using data and rule sets adapted from the Berlin SPARQL
Benchmark. We describe our methodology in assessing rule-based reason-
ers based on the benchmark. The study result shows the efficiency of the
systems in performing reasoning tasks over different data sizes and rules
involving various rule properties. The review and comparison results can
provide a basis for users in choosing appropriate rule-based inference en-
gines to match their application requirements.
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1. Introduction

With the Semantic Web data standards defined, meta-
data and ontologies, i.e., Resource Description Framework
(RDF), and Web Ontology Language (OWL) data, are in-
creasingly published on the Web. In addition, the Seman-
tic Web stack [1] emphasizes the need for rule language for
the Web. The rule language can enhance the ontology lan-
guage by allowing one to describe relations that cannot be
described using Description Logic (DL) used in OWL. For
example, rule language can allow for inference of property
value assignment, e.g. hasParent(?x,?y) hasBrother(?y,?z)
— hasUncle(?x,?z), which is impossible in DL. Processing
of rules typically demands inference engines in providing
support for an intelligent application. Rule-based inference
engines or rule-based reasoners are used in several domains,
such as clinical support, and e-commerce recommender sys-
tem development. Functions of rule-based inference engines
for the Semantic Web typically include high-performance
reasoning algorithms, compatibility with the Semantic Web
standards, providing interchangeable syntax and supporting
expressive rule languages with built-in functions.

This article conducts a comparative study of three rule-
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based reasoners designed for the Semantic Web: Jena In-
ference Engine, Euler YAP Engine (EYE), and BaseVISor.
The main criteria for selecting the systems for the study
were based on the following characteristics: available under
free software or freeware license, having an active user com-
munity, or updated publications or software. While some re-
searchers studied and compared semantic reasoners [2], [3],
our study focuses on the features of rule-based reasoners de-
signed for the Semantic Web data.

In addition to system features, reasoning performance
is one of the most important factors in evaluating a rule-
based inference engine. Different factors of rules can affect
the rule-based system performance including join complex-
ity, production operation, negation, built-in functions, and
rule dependency. Our study investigated the performance
of the reviewed rule-based reasoners in terms of response
time in performing rule-based reasoning task. We describe
an evaluation methodology to assess the scalability and ef-
ficiency of rule-based reasoners using the data and rule sets
adapted from the Berlin SPARQL Benchmark (BSBM) [4].
The comparison of features and benchmark result can guide
users in selecting rule-based inference engines.

2. Review and Comparison of Rule-Based Inference
Engines for the Semantic Web

Inference engines (or reasoners) are application software for
computing or deriving new facts from existing knowledge
bases. Although there are various types of inference en-
gines, our study focuses on only rule-based inference en-
gines. A rule-based inference engine applies rules with the
data to reason and derive some new facts. When the data
matches with rule conditions, the inference engine can mod-
ify the knowledge base, e.g., fact assertion or retraction, or
execute functions, e.g., displaying the derived facts. Our re-
view focuses on rule-based reasoners aimed for the Seman-
tic Web data processing.

2.1 Comparison Criteria

Some comparison criteria for assessing rule-based reasoners
for the Semantic Web are discussed as follows.

Reasoning Strategies and Algorithms. Reasoning strategies
are methods used by an inference engine to perform reason-
ing tasks. There are two main strategies of reasoning, for-
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ward chaining, and backward chaining [5]. Forward chain-
ing starts with existing facts and applying rules to derive all
possible facts, while backward chaining starts with the de-
sired conclusion and performs backward to find supporting
facts. Optimized algorithms and techniques may be used to
improve the performance of the reasoning process.

Expressivity for Reasoning. Inference engines may support
different levels or subsets of logics in reasoning. For the
Semantic Web data, the common levels of reasoning are
typically RDFS, various subsets of OWL, and user-defined
rules. RDFS and OWL reasoning support is typically con-
figured as a set of pre-defined inference rules which sup-
port some specified semantics. For example, RDFS reason-
ing support may be provided as a set of rules that covers
the model-theoretic semantics of RDFS [6]. User-defined
rules are normally defined as a set of custom inference rules
that can be applied in addition to the pre-defined RDFS and
OWL rules.

Built-in Functions and User-defined Functions. Built-in
functions are functions provided for calculating values of
variables in rule clauses. Some common built-in functions
include mathematical, boolean, and string functions. Some
inference engines may provide supports for users to addi-
tionally create custom functions.

Reasoning Features. In addition to performing inference
and deriving new facts, an inference engine may provide
some additional useful functions, such as proof explanation,
and proof tracing. An inference engine may also provide a
number of configuration options of reasoning, for example,
caching, and output filtering.

Supported Rule Languages. Rules for the Semantic Web
data can be expressed in various languages and formats [7].
Inference engines either support standard rule languages,
e.g., Rule Interchange Format (RIF)[8], Notation3 [9], or
their own rule languages, e.g., Jena rules [10].

2.2 Comparison of Rule-Based Inference Engines

This section reviews three rule-based reasoners aimed for
the Semantic Web data processing: Jena Inference Engine,
EYE, and BaseVISor. Although some systems may pro-
vide other functions beyond inference engines, i.e. semantic
repository, programming environment, etc., our review of
the systems only focuses on its inference engine sub-system.
The systems selected for the review were based on the fol-
lowing characteristics. The software must be available un-
der free software or freeware license. It must have some
user community or have updated publications or software
within the past three years. These requirements are gener-
ally defined to limit the scope of the studied systems to more
available and active systems. It should be noted that the sys-
tems included in the study were selective and not intended
to be comprehensive.
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Jena Inference Engine. Jena Inference Engine [10] is one of
the development tools of the Jena framework [11], a Java-
based open-source application framework for developing
Semantic Web applications adopted by the Apache Software
Foundation. The framework provides a number of prede-
fined reasoners including an RDFS reasoner, an OWL-lite
reasoner, and a general-purpose rule reasoner supporting
user-defined rules in the Jena own syntax. The rule rea-
soner supports three execution strategies: forward-chaining,
tabled backward-chaining, and hybrid. The rule reasoner
consists of two internal rule engines, a forward engine based
on the RETE [12] algorithm and a tabled Datalog backward
engine. A number of primitive built-in functions are pro-
vided and can be extended by users. Additional reasoning
features include proof tracing, proof explanation, and pre-
processing attachment.

Euler YAP Engine. EYE (Euler YAP Engine) [13], [14], is
a backward-chaining inference engine based on underlying
Prolog YAP engine[15], a high-performance Prolog com-
piler for demand-driven indexing. The inference engine uses
backward-forward-backward chaining reasoning cycle and
Euler path detection algorithm to avoid loops in an infer-
ence graph. EYE can be configured with many options of
reasoning, e.g., not proving false model, output filtering, and
providing useful information of reasoning, e.g., proof expla-
nation, debugging and warning logs. The inference engine
also supports using user-defined plugins. In addition to the
main supported language, Notation3, EYE also supports the
RIF-BLD [16] (Basic Logic Dialect) rule language.

BaseVISor. BaseVISor[17], [18], developed by VIStology,
is a forward chaining inference engine based on RETE net-
work optimized for the processing of RDF triples. The infer-
ence engine supports OWL2-RL and rule-based reasoning,
and supports rules in its own format. The priority of a rule
may be specified. The inference engine supports operations
including fact assertion, retraction, and procedural control
functions, e.g. halting and throwing exception. It also sup-
ports external procedural attachments. Some optimizations
are provided, e.g. indexing, caching, join optimization. The
engine supports a number of built-in functions, which can
also be extended by users.

The features of the rule-based reasoners were com-
pared based on the following software versions: Jena 2.10.1,
EYE 2013-05, and BaseVisor 2.0. Table 1 presents a com-
parison of the features related to reasoning strategies and
algorithms of the system, supported RDFS/OWL reasoning,
rule languages [7], reasoning operations and features pro-
vided, i.e. built-in and user-defined function, proof explana-
tion facility and software license.

There are some additional inference engines provid-
ing support for rule-based inference over the Semantic Web
data which are actively being developed. Openllet’ is an

Thttps://github.com/Galigator/openllet
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Table 1  Comparison of the features of reviewed rule-based inference
engines
Jena EYE BaseVISor
Reasoning Strategies
Forward Chaining v v v
Backward Chaining v v -
Reasoning RETE Euler Path |RETE
Algorithms Detection,
YAP Prolog
engine
RDFS/OWL RDFS, selected OWL2-RL
Reasoning OWL predicates
Lite of RDFS
and OWL
Rule Languages Own Notation3, |Own format
format RIF-BLD
Production
Operations
Assertion v v v
Retraction v - v
Built-in Functions v v v
User-defined v v v
Functions
Proof Explanation v v -
Software License Apache MIT Free for
License License academic/
2.0 research use

open-source continuation of Pellet [19], an OWL2 DL Rea-
soner, which supports reasoning with SWRL (Semantic Web
Rule Language) rules. The SWRLAPI Drools Engine' is a
plug-in to the SWRLAPI[20] that supports the execution
of SWRL rules using the Drools rule engine"". RDF4J7
provides rule-based reasoning support with SPIN (SPARQL
Inferencing Notation) [21], i.e. rules in SPARQL syntax.
Review and comparison of these systems is planned for fu-
ture work.

3. A Performance Evaluation Study of Rule-Based In-
ference Engines

3.1 Overview

Performance is an important criterion for choosing an in-
ference engine for an application. One requirement of an
inference engine for the Semantic Web data is the ability to
process a large amount of data, i.e. high scalability and effi-
ciency. In addition, the performance should be evaluated ac-
cording to different application requirements. Specifically,
each application may be different in terms of required ex-
pressive power, a dependency of rules, and data sizes.
There have been comparative studies on the perfor-
mance of rule-based inference engines for the Web scale.

TThttps://github.com/protegeproject/swrlapi-drools-engine
T http://www.drools.org/
Tt http://rdf4j.org/
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OpenRuleBench [22] is one of the most comprehensive
studies on developing a benchmark for comparing and ana-
lyzing the performance of these systems. The study involved
evaluation of broad-ranged system technologies including
prolog-based, deductive databases, production rules, triple
engines, and general knowledge bases. The study also in-
volved large join tests, datalog recursion, and default nega-
tion. Our study differed from the OpenRuleBench in sev-
eral aspects. First, our study only investigated inference en-
gines that were based on triple engines and were available
under free software or freeware licenses. Thus, the study in-
volved some systems that were not in the OpenRuleBench
studies. Second, our study used the dataset from the Berlin
SPARQL Benchmark (BSBM) [4], which simulated an e-
commerce use case involving data about products, vendors,
consumers and reviews about the products. The BSBM was
chosen because it was closer to real-world enterprise appli-
cation scenarios than several independent datasets employed
in the OpenRuleBench. Third, our study applied tests on
some general expressive power which were not in the Open-
RuleBench study. Examples of such tests were built-in func-
tions, and fact retraction.

3.2 Methodology
3.2.1 Dataset Description

Datasets and reasoning tasks are the main components of
reasoner evaluation resources [23]. In our study, the dataset
was adapted from the BSBM package which consists of
dataset generators and queries mix that can be used for com-
paring the performance of native RDF stores. The bench-
mark built around an e-commerce use cases in which a set
of products was offered by different vendors and consumers
had posted reviews about products. The BSBM dataset con-
sists of the following classes: product, product type, product
feature, producer, vendor, review, and person.

Although the BSBM was not originally designed as a
benchmark tool for inference engines, it was chosen because
it could simulate real-world enterprise application scenarios,
e.g., to create product recommendations for customers. In
addition, the BSBM dataset is provided in the RDF data for-
mat, which simulates the Semantic Web data setting. In our
tests, five different sizes of the dataset were generated and
varied by the number of products: 1K, 1.5K, 2K, 2.5K,
and 3 K products. The numbers of generated triples were
ranged from 375 K to 1 M triples respectively.

3.2.2  Ruleset Description

Six rulesets were designed to test the performance of
forward-chaining reasoning tasks, i.e., matching, action, and
firing rules. The rulesets used the vocabularies from the
benchmark dataset. Each ruleset is different in various cat-
egories of factors: join complexity, production operation,
negation, built-in functions, and rule dependency. These
factors can be briefly described as follows.
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[(?product rdf:type bsbm:Product) (?product rdfs:label ?label) regex(?label,(.)*ac(.)*")
(?product bsbm:productFeature bsbm-inst:ProductFeaturel) (?product
bsbm:productPropertyNumericl, ?property) ge(?property, 1000)
(?offer rdf:type bsbm:0ffer)(?offer bsbm:product ?product) (?offer bsbm:price ?price) le(?price,
5000) (Poffer bsbm:vendor dataFromVendorl:Vendorl)
->(:userSuggestedProducts :userPreferenceProduct ?product)]
Fig.1  An example rule syntax of ruleset 1
[(?product rdf:type bsbm:Product)(?product bsbm:productFeature bsbm-inst:ProductFeaturel)
-> (:SummerProducts :product ?product)]
[(?product rdf:type bsbm:Product)(?product bsbm:productFeature bsbm-inst:ProductFeature2)
-> (:SummerProducts :product ?product)]
[(?product rdf:type bsbm:Product)(?product bsbm:productFeature bsbm-inst:ProductFeature3)
-> (:SummerProducts :product ?product)]
[(?product rdf:type bsbm:Product)(?product bsbm:productFeature bsbm-inst:ProductFeature4)
-> (:SummerProducts :product ?product)]
[(?product rdf:type bsbm:Product)(?product bsbm:productFeature bsbm-inst:ProductFeature5)
-> (:SummerProducts :product ?product)]
[ (:SummerProducts :product ?product) (:CurrentTime :month ?month) le(?month, 8)
ge(?month, 4) -> (:userSuggestedProducts :seasonPreferenceProducts ?product)]
Fig.2  An example rule syntax of ruleset 2
¢ Join complexity: The uses of joins are classified into Table 2 Summary of characteristics of the rulesets
three categories: low, medium, and high complexity. Ruleset 1 ]2 3 4 5 6
Low join complexity is defined as when fewer than Join complexity | high | Low | medium | medium | high low
three atoms are involved in joins. Medium complex- Operation
ity is defined as when between three and seven atoms Assertion v | v v v v v
are involved. High complexity is defined as when more Retraction - R - v - -
than seven atoms are involved. Negation - - - v v -
e Operation: Operations are defined as whether asser- Built-in Function
tion or retraction is involved in the consequence part. Math v | v v v v _
. Nega.tion: Negation is defined as whether negation is String AR N B v N
usefi H.l the ante.cedent pa1"t. . L. Rule dependency| - - - - - | recursion
e Built-in functions: Built-in function is defined as Number of Rules| 1 | 22 1 1 1 5

whether string or math functions, or comparators are
used.

e Rule dependency: Rule dependency is defined as
whether the result of a rule will result in the firing of
another rule or firing the same rule, i.e. recursion.

Six rulesets were created to emulate the business logics
of recommending products to users and data modification.
Using these rulesets, an e-commerce recommender system
can generate product recommendation results for the user
based on the three information types: user preferences, sea-
son preferences, and product-rating preferences. In addi-
tion, the system modified the delivery days and the price of
products sold by a vendor based on some defined criteria.
Four rulesets consisted of one rule per ruleset, and two rule-
sets consisted of more than one rule per ruleset. Table 2
provides a summary of characteristics for each ruleset. The
details of each ruleset are provided as follows.

Ruleset 1: Recommend products based on user preferences.
The user preferences included text in product label, prod-
uct features, price, and vendor of products. This ruleset in-
volved complex join (eight atoms) and function symbols.
An example of the rule syntax in the Jena rule format is
shown in Fig. 1.

Ruleset 2: Recommend products based on season prefer-
ences. Products were matched with each season by five
product features. The example showed the partial rules of
summer season only. This ruleset involved simple join (two
atoms) of a large number of rules (24 rules). An example of
the rule syntax in the Jena rule format is shown in Fig. 2.

Ruleset 3: Recommend products based on product-rating
preferences. This ruleset involved intermediate join (three
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[(?product rdf:type bsbm:Product)(?review bsbm:reviewFor ?product)
(?review bsbm:rating4 ?ratingd) ge(?rating4, 8)

-> (:userSuggestedProducts :popularProduct ?product)]

Fig.3  An example rule syntax of ruleset 3

bsbm:deliveryDays) (?offer :firedFor bsbm:price)]

[(?offer rdf:type bsbm:0ffer)(?offer bsbm:vendor dataFromVendor5:Vendor5) (?offer bsbm:deliveryDays ?days)
noValue(?offer :firedFor bsbm:deliveryDays) sum(?days, 5, ?newDays) (?offer bsbm:price ?price)
noValue(?offer :firedFor bsbm:price) product(?price, 0.9,?newPrice)

-> remove(2) remove(5) (?offer bsbm:deliveryDays ?newDays) (?offer bsbm:price ?newPrice) (?offer :firedFor

Fig.4  An example rule syntax of ruleset 4

noValue(?product bsbm:productFeature bsbm-inst:ProductFeature5)

noValue(?product bsbm:productFeature bsbm-inst:ProductFeaturelo)

Fig.5 An example rule syntax of ruleset 5

[(?reviewFromA bsbm:reviewFor ?product) (?reviewFromB bsbm:reviewFor ?product)
(?reviewFromA rev:reviewer ?A) (?reviewFromB rev:reviewer ?B)

(?offer bsbm:product ?product) (?offer bsbm:price ?price) lessThan(?price, 30)
(?offer bsbm:deliveryDays ?days) lessThan(?days, 3) -> (?A :connects ?B)]

Fig.6  An example rule syntax for the base case data generator of ruleset 6

[(?A :connects ?B) (?B :connects ?C) -> (?A :connects ?C)]

Fig.7  An example rule syntax of ruleset 6

atoms). An example of the rule syntax in the Jena rule for-
mat is shown in Fig. 3.

Ruleset 4: Extend the delivery days of products sold by ‘Ven-
dor5’ by five days, and decrease the price by ten percent.
Product data modification was written as a combination of
two operations: retraction and assertion. The assertion of
:firedFor predicate was the flag of modified triples, and the
condition of the form noValue(?offer :firedFor <predicate>)
was added to prevent them from being matched again (firing
itself). This ruleset involved intermediate join (four atoms),
negation, and retraction. An example of the rule syntax in
the Jena rule format is shown in Fig. 4.

Ruleset 5: This ruleset extended ruleset 1 by adding two
negation atoms to exclude products having two specific
product features. Only added negation atoms were shown
in Fig. 5. This ruleset involved complex join and negation.

Ruleset 6: This ruleset involved a large number of recur-
sions. The base cases of recursion were connections of re-
viewers who wrote reviews of the same product. The re-
cursion was transitive closure based on these relations (e.g.

two groups of people could connect to each other via some
people who were in both groups). The base cases of the re-
cursion were generated by the base case data generator. The
results were stored as a pre-processing step so that only re-
cursion was involved in this test. The conditions of price
and delivery days of products were used to limit the number
of involved reviewers. An example rule syntax for the base
case data generator is shown in Fig.6. An example of the
rule syntax of ruleset 6 is shown in Fig. 7.

Mixed ruleset: Combination of rulesets 1, 2, and 3.
3.2.3 Experiment Settings

All tests were performed on a machine with the following
specifications: Intel Core i5 430 M CPU, and 8 GB main
memory size. The machine was running on Windows 8 and
JDK version 1.6 with maximum heap size 6 GB. In each test,
we warmed up the inference engines by loading data and
perform reasoning until the execution time was stable. Then
we measured the average system response time of three-time
executions. The following provides the version numbers and
configurations of the tested inference engines.
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Table3  Execution time of data loading (in seconds)
No. Products | EYE Jena BaseVISor
1,000 72.33 1.78 30.85
1,500 107.23 3.19 38.72
2,000 135.95 4.00 50.38
2,500 164.45 6.10 76.31
3,000 189.55 6.45 82.68

1. Apache Jena Inference Engine from Jena framework
version 2.11.0 using forward chaining strategy with RDF
datasets in Turtle format, and rulesets in Jena’s own rule
format

2. Euler YAP Engine (EYE) version 2013-05 with RDF
datasets in Turtle format, and rulesets in Notation3 format
3. BaseVISor version 2.0, with configuration “optimiza-
tionLevel = high” with RDF datasets and rulesets in Base-
VISor’s own .bvr format

The performance metrics used were load time and rea-
soning time. The load time was the time the system used in
loading the dataset. The reasoning time was measured from
after the data was loaded into the main memory until the in-
ference phase had finished. The RDFS/OWL inference rules
were not applied to the data because they did not affect the
inference results of the user-defined rulesets and thus were
not involved in the reasoning time.

3.3 Results
3.3.1 Load Time

Table 3 shows the execution time of loading dataset into the
inference engines. Comparing the load time performance,
Jena inference engine was the fastest for all sizes of datasets,
followed by BaseVISor and EYE. At 3,000 products, Jena
was approximately factor of 12.8 faster than BaseVISor and
factor of 29.3 faster than EYE. The more load time indicated
the more time that the systems used in managing indexing
of the RDF data.

3.3.2 Reasoning Time

Figures 8—14 show the result comparison charts for each
ruleset. Euler YAP Engine was not included in the results
of rulesets 4 and 5 because its supported rule language, No-
tation3, did not support non-monotonic negation and retrac-
tion.

For rulesets 1 and 5 which involved complex join, Ba-
seVISor yielded the best performance with a low growth
rate. For ruleset 1, Euler YAP Engine showed the second
best performance with a similar growth rate to BaseVISor.
Jena’s did not perform well in both rulesets with a higher
growth rate. The execution times of the ruleset 5 for Jena’s
were slightly lower than the ruleset 1. The lower execution
time might be because of the exclusion of some results by
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negation, which reduced the size of input to the join opera-
tions. The result of the mixed rulesets (1+2+3) also showed
the performance in the similar growth rates as the ruleset 1
for all systems. These results have indicated that join com-
plexity has the most effects on the performance.

For the ruleset 2 which involved simple join of several
rules, the result of Jena inference engine was significantly
better than the result of ruleset 1 and was slightly better than
BaseVISor’s. Euler YAP Engine’s showed relatively similar
performance and trend as the result of ruleset 1.

For ruleset 3 which involved intermediate join, Base-
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VISor’s had the best performance with a lower growth rate.
Jena’s showed the second best performance with a higher
growth rate. Euler YAP Engine yielded the third best per-
formance with a similar growth rate as Jena’s. The result of
Euler YAP Engine also had similar performance and trend
as the result of ruleset 1.

For ruleset 4, which involved intermediate join, retrac-
tion and negation, Jena showed the best performance with
a lower growth rate. BaseVISor’s had lower performance
with higher growth rate than Jena inference engine. The ex-
ecution times of the ruleset 4 for Jena’s were lower than that
of the ruleset 3. This might be because some results were
excluded from joining by negation and retraction.

For ruleset 6, which involved recursion of simple
join, BaseVISor showed the best performance with a lower
growth rate. Euler YAP Engine had the second best perfor-
mance with a higher growth rate. Jena’s yielded the third
best performance with a similar growth rate as Euler YAP
Engine at between 1,000 to 2,500 products but the growth
highly increased at 3,000 products.

Based on the results, we concluded that BaseVISor’s
had the best overall performance with a low growth rate.
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Except for the ruleset 4, BaseVISor’s performed the best
among the studied inference engines. The results showed
that Jena was extremely fast when simple join was involved
(ruleset 2), but did not yield an outstanding performance for
complex join (rulesets 1, 5, mixed) or recursion (ruleset 6).
Jena’s also had performance better than other systems for
retraction and negation when complex join was not involved
(ruleset 4). Euler YAP Engine had a longer loading time.
Its results for all of our tests were surprisingly in the similar
value ranges and growth rates (except for ruleset 6).

We made some observations based on the results as fol-
lows. Both BaseVISor and Jena’s are based on RETE infer-
ence algorithm. However, BaseVISor claimed that its imple-
mentation was optimized for RDF triples by using a simple
data structure for its facts (i.e., triples) rather than arbitrary
list structures, which permitted greatly enhanced efficiency
in pattern matching of RETE network [18]. In contrast to
Jena’s, the performance of BaseVISor was marginally af-
fected by the complexity of join, which indicated the effec-
tiveness of its join optimization technique. Euler YAP En-
gine performance was also marginally affected by the com-
plexity of join for a similar reason, although its forward-
chaining reasoning algorithm was generally less effective
than BaseVISor’s RETE-based algorithm.

4. Conclusions

In this article, we reviewed and compared some freely-
available rule-based reasoners designed for the Semantic
Web data. One of the main purposes is to identify some
criteria that can be used to compare rule-based reasoners for
the Semantic Web. We compared some key features of three
rule-based reasoners: Jena’s, EYE, and BaseVISor, based
on these criteria. Our work also conducted a performance
evaluation study of these rule-based reasoners based on the
Berlin SPARQL Benchmark. The study result shows the ef-
ficiency of the systems in performing reasoning tasks over
different data sizes and rules involving various rule prop-
erties including join, reasoning operation, negation, built-
in function, and rule dependency. Our experimental result
analysis can be used in guiding researchers and develop-
ers in the Semantic Web field to better choose rule-based
reasoners that match their application requirements. Our
planned future work will consider additional benchmark,
such as the benchmark of additional reasoning strategy, i.e.,
backward reasoning, and comparative study of additional in-
ference engines.
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