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Active Contour Using Local Regional Information on Extendable
Search Lines (LRES) for Image Segmentation

Sopon PHUMEECHANYA†a), Student Member, Charnchai PLUEMPITIWIRIYAWEJ†∗b),
and Saowapak THONGVIGITMANEE††c), Nonmembers

SUMMARY In this paper, we propose a novel active contour method
for image segmentation using a local regional information on extendable
search line. We call it the LRES active contour. Our active contour uses
the intensity values along a set of search lines that are perpendicular to
the contour front. These search lines are used to inform the contour front
toward which direction to move in order to find the object’s boundary. Un-
like other methods, none of these search lines have a predetermined length.
Instead, their length increases gradually until a boundary of the object is
found. We compare the performance of our LRES active contour to other
existing active contours, both edge-based and region-based. The results
show that our method provides more desirable segmentation outcomes, par-
ticularly on some images where other methods may fail. Not only is our
method robust to noise and able to reach into a deep concave shape, it also
has a large capture range and performs well in segmenting heterogeneous
textured objects.
key words: active contours, image segmentation, level set, search line,
snakes

1. Introduction

Active contours or snakes [1] have been used broadly in im-
age segmentation. The contours move and deform within
the image domain under a combined influence of internal
and external forces. The internal force refers to the self-
generated force that controls the smoothness of the contour
during the deformation. The external force is usually de-
rived from the image and acts as a gravitational field to
pull the contour toward the boundary of the desired ob-
ject within the image. The external force may be catego-
rized into the edge-based [1]–[7] and the region-based [8]–
[16] approaches. The edge-based force employs local edge
information, e.g. the image gradient, as a clue to find the
object boundary. The region-based force generally uses the
difference between regional statistics of the image, a more
global type of information than edges, to guide the motion
of the active contour toward the object of interest.

The traditional active contour model (TAC) or snake,
introduced by Kass et al. [1], utilizes the gradient vector of
the image’s edge map. It is known to be quite sensitive to
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noise, unable to reach any deep concavity, and has poor
capture range [2]. Therefore, the contour must be initially
placed not too far from the actual boundary of the object for
the TAC to work properly. Many methods have been pro-
posed to improve the snake’s performance. Distance vec-
tor flow (DVF) by Cohen and Cohen [2] uses the gradient
vectors of the Euclidean distance between each image pixel
and the nearest pixel of candidate edges. As a result, it has
a longer capture range to object’s boundary. However, it
still cannot trace shapes with deep concave parts. Xu and
Prince [3] proposed the gradient vector flow (GVF) method
that spatially diffuses the gradient of the image’s edge map
so that each vector in the force field is extended gradually.
As a result, it solves the problems of limited capture range
and poor reachability into concave parts. However, the GVF
method suffers from high computational requirement. Li
and Acton [4] introduced an edge-based force called the vec-
tor field convolution (VFC) that convolves the edge map
generated from the image with a vector field kernel. Sim-
ilar to the GVF, the VFC provides large capture range and
the ability to navigate into the concave part of the object
boundary. Yet, it is less computationally expensive and
more robust to noise than the GVF [3]. Wang and Zhang [5]
proposed the Coulomb active contour model (CAC). Their
edge-based force is based on the Coulomb’s law in static
electric theory. The Coulomb force at any position on the
image is the vector sum of the Coulomb forces affected by
all the candidate edge pixels. The CAC method provides a
larger capture range with low computational complexity but
it sometimes, as we shall see in experiment section, cannot
extract concaved objects correctly.

Furthermore, all of these edge-based active contour
methods often inevitably suffer from the saddle point and
stationary point problems [6]. For example, Fig. 1 (a) shows
a U shape image with a small opening at the concave part
and its VFC vector field is shown in Fig. 1 (b). We can
clearly see in Fig. 1 (c) that there is a saddle point at the
“bottleneck” region, as shown within the rectangle. The vec-
tors within this region form a “wall” that obstructs the active
contour to pass inside. In addition, there is a stationary point
at the “bay” region, as shown within the circle in Fig. 1 (c).
All of the vectors within the “bay” region are pointing out-
wards in all directions to the nearest edge points. As a result,
these two points are crucial obstacles for the active contour
to move pass the stationary point and go toward the inner-
most part of the U shape as shown in column (b) of Fig. 4
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(a) (b) (c)

Fig. 1 (a) a U shape image (b) the VFC vector filed of the image (c)
saddle point (in rectangle) and stationary point (in circle).

in the experiment section. Our newly proposed method (the
LRES active contour), however, is designed to solve these
problems, while keeping the advantages of existing meth-
ods.

Besides the edge-based forces, region-based forces are
often used in active contour schemes for image segmenta-
tion. In region-based force models, the entire image infor-
mation is statistically calculated. The active contours then
use this information to segment the image into the object
and the background regions. These regional statistic models
are more global than the edge-based models where only few
pixels in the gradient image are considered as the bound-
ary candidates. As a result, it is less sensitive to noise and
more robust to initialization than the edge-based counter-
part. Moreover, they perform well even in the images with
low signal-to-noise ratio. There are many active contour
methods that take into account the region-based force. For
instance, Chan and Vese [8] introduced a powerful “Active
Contour Without Edge” (ACWE). They integrated the level
set method [17] and the Mumford-Shah model [18] to ob-
tain an energy function that is based on the average inten-
sities of the pixels within the object and the background ar-
eas. Their energy is optimized when the average pixel in-
tensities of the interior and the exterior of the contour are
well separated. Yezzi et al. [9] proposed a similar scheme
but they use the regional variances instead. The optimum
point of their energy function is accomplished when the
variances inside and outside the contour are most differ-
ent. Recently, Michailovich et al. [10] introduced an energy
function that compares the histograms of the foreground and
the background based on the Bhattacharyya distance [19].
This energy is minimized when the Bhattacharyya distance
between the probability density functions inside and outside
the evolving contour is the smallest.

In the case where the object or the background are of
heterogeneous textures, however, the region-based methods
with such global constrain may not perform effectively. As
shown in Fig. 2 (a), for example, the object has non-uniform
texture. When we apply such global region-based active
contour as the ACWE [8], it results in a delusive segmen-
tation as shown in Fig. 2 (b). The contour attempts to sep-
arate the image into the light region and the dark region as
shown in the two-shade version in Fig. 2 (c), which is not
quite of our desire, which is the triangular-like shape object
in the center of the image. An ability to segment hetero-

(a) (b) (c)

Fig. 2 (a) an example of the heterogeneous textured object (b) the seg-
mentation result of the image using global region-based active contour (the
ACWE [8]) and (c) the two-shade version of the result.

geneous textured objects is very important because hetero-
geneous textured objects exist in many medical images and
natural scenes.

To overcome the limitation of the global region-based
method in segmenting an image where the object or the
background or both are of heterogeneous textures, several
methods have utilized some local regional information as
a constrain to the active contour. For instance, Mille and
Cohen [14] proposed the local normal-based region term
(LNBR) for active contours. This method does not use the
entire regional information on the image, but rather it uses
the intensity of only the pixels inside and on the closed
proximity outside the contour, i.e., “the outer band”. This
method is designed to segment only the case of a homoge-
neous textured object lying within a heterogeneous textured
background. Ronfard [15] introduced a local region-based
active contour model that employs regions only around the
neighborhoods band, both inside and outside, of the con-
tour. Although this method can segment a heterogeneous
textured object, the initial contour must be placed not far
from the boundary of the object than predetermined within
of the neighborhood band. Recently, Lankton and Tannen-
baum [16] proposed the localizing region-based active con-
tours called LRAC. This method uses the local regional in-
formation that is within the circles that are around the con-
tour. The centers of these circles are the pixels on the con-
tour. The radii of all circles are set priori by a user. Setting
the radius parameter depends on the distance between the
positions of the initial contour and the object within the im-
age. If the initial contour is placed too far from the bound-
ary of the object and the radius of the circle is too small, the
contour still cannot move toward the object’s boundary. In
other words, the method may not have enough capture range
if the radius parameter is too small. On the other hand, if
the radius parameter is set too large, the method may act
like a global active contour and it may not be able to seg-
ment a heterogeneous textured object correctly. In practice,
it is difficult to set a suitable radius parameter for an object,
especially when it has several concave parts.

In this paper, we propose a new active contour method
to overcome the limitations of the previous edge-based and
region-based active contours. Rather than using the edge
map, our method uses intensity profile of the pixels along
the search line that is perpendicular to the contour front.
Then, a force similar to the region-based force, but more
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local, is determined in each search line, thus preserving the
advantages of the region-based methods. Moreover, to in-
crease the capture range, each search line is not of fixed
length. Its length increases according to the obtained local
information. The local region-based force with extendable
search line provides us with many advantages as follows: 1)
a large capture range, 2) an ability to handle concave shapes,
3) non-existence of the saddle and stationary point prob-
lems, 4) robustness to noise, and 5) an ability to segment
heterogeneous textured object.

The remainder of this paper is organized as follows.
Section 2 provides a brief review of the fixed-length search
line method [7] and the global region-based active con-
tour [8]. The proposed method is then described in Sect.,3.
Experimental results and comparison appear in Sect. 4. Fi-
nally, conclusion is drawn in Sect. 5.

2. Background

2.1 Fixed-Length Search Line Method

Our extendable search line method (described in Sect.3.1) is
motivated by the work of Cootes et al. [7]. Their active con-
tour uses search lines to find the object’s boundaries. Their
method can be categorized as an edge-based approach be-
cause it searches for the strongest edge pixels along a set of
lines normal to the contour front. These normal lines are of
a pre-determined fixed length and assumed to lead to the ob-
ject boundary. The current contour point of each search line
is to move to a new location where the maximum gradient
magnitude is located.

As one can see, the capture range of this method is lim-
ited by the length of the search lines which is set by the user.
As a result, for this method to perform effectively, the ini-
tial contour must be placed no further away from the object
boundary than the length of each search line. Otherwise,
some parts of the contour may not move because the length
of its corresponding normal lines is too short to find any
boundary candidate [12]. To solve this problem, we pro-
pose the length of the search lines to be extendable until
candidate boundary pixels are found. In images with high
noise content, however, the maximum gradient magnitude
may not well represent the true boundary of the object and
the method may mistaken highly noisy pixels as the object’s
boundary. To solve this problem, rather than finding just
one edge pixel, we use the entire intensity profile along the
search line as the criterion to find the boundary candidate.
This information is regional, hence less noise sensitive.

2.2 Global Region-Based Active Contour

The well-known “Active Contour Without Edges” model
(ACWE), proposed by Chan and Vese [8], is a region-based
geometric active contour model that divides the image into
two regions; the object and the background. The contour C
is embedded as the zero level set of a signed distance func-
tion φ(x, y), i.e., C = {(x, y) ∈ Ω : φ(x, y) = 0}, where Ω is

the image spatial domain. In addition, the region inside the
contour is defined to be positive, i.e., φ(x, y) > 0, and the re-
gion outside is defined to be negative, i.e., φ(x, y) < 0. They
introduce the energy functional E,

E (φ) = μ
∫
Ω

δε (φ) |∇φ| dxdy

+ λ1

∫
Ω

|I − Rin|2 Hε (φ) dxdy

+ λ2

∫
Ω

|I − Rout|2 (1 − Hε (φ)) dxdy, (1)

where μ, λ1, and λ2 are positive-valued weighting parame-
ters, I(x, y) is the input gray-scale image, ∇ is the gradient
operator, Rin is the average pixel intensity of the area inside
the contour, Rout is the average pixel intensity of the area
outside contour, Hε (φ) is a smooth regularized Heaviside
function [8] representing the pixels inside contour, 1−Hε (φ)
is the function representing the pixels outside contour, and
δε (φ) is a smooth delta function representing the pixels on
(and in the neighborhood of) the contour.

The first term in Eq. (1) is the energy that regulates the
length of the contour. Minimizing this term is to smoothen
the contour during deformation. The last two terms are the
external energy terms. When they are minimized, the con-
tour separates the image into object and background regions.
This method uses regional information of the entire image
and is based on the assumption that the image intensities are
statistically homogeneous in each region. As we shall see
later, this method is not suitable for segmenting heteroge-
neous textured object. To solve this problem, we propose a
new method that utilizes only the local regional information.

3. Proposed Method

In this section, we explain our novel active contour method
that navigates within the image domain toward the object
boundary using local regional information on extendable
search lines (LRES). The extendable search lines enable the
contour to move freely so that it does not get stuck at any
saddle or stationary points. Meanwhile, the searching pro-
cess that uses local regional information enables the contour
to segment heterogeneous textured object.

3.1 Extendable Search Lines

To search for the boundary of an object, we use an ac-
tive contour whose front comprises search lines with vari-
ous lengths as shown in Fig. 3 (a). For readability purpose,
the figure shows just a subset of search lines whose centers
spread evenly along the contour. These search lines are per-
pendicular to the contour front. Let each line be of length
ki pixels, i = 1, 2, . . . ,N where N is the number of pixels
on the contour. The length of each search line is adap-
tive throughout the contour evolution process. The length
adaptation is influenced by the image’s local information.
In other words, each search line is to be gradually extended
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(a) (b)

Fig. 3 Our extendable search line method.

until there is enough information to inform the contour front
toward which direction to move. Therefore, in this manner,
the contour can capture an object located anywhere within
the image, which is opposed to the active contour with fixed-
length search line that does not move if the search line does
not cross any object boundary.

The local information that we are using is the image’s
intensity profile along the search line, as shown in Fig. 3 (b).
The motion of each pixel on the contour is based on its own
local regional information. The intensity profile along the
search line is divided into two regions, one inside the con-
tour and the other outside. Our method uses two local re-
gional statistics, rin and rout; where rin is the average pixel
intensity on the part of the search line that within the con-
tour C and rout is the average pixel intensity on the part of
the search line that is outside the contour C.

The search line with fixed-length cannot direct the con-
tour if it lies entirely on a homogenous region. To solve this
problem, we let the search line be of extendable length until
the local regional statistics on both sides of the contour, rin

and rout, are different; so the moving direction of the con-
tour can be determined. The length of each line is gradually
extended by η pixels from the initial length kstart pixels by
checking whether the line lies on a homogenous region or
not. In other words, if rin is approximately the same as rout

the line’s length is increased. When the line has found a het-
erogeneous region, supposedly the object boundary, rin will
be different from rout. With this information, the search line
can direct the contour front, which is at its center, to move
toward the boundary.

3.2 Local Region-Based Force

For curve evolution, we implement our LRES active contour
method via level set [17]. The advantage of this technique
is that it can automatically handle any topological change
during the deformation. We start by embedding a region-
based force in each search line, so the local region-based
energy functional of each search line, Eline is as in Eq. (2).

Eline (φ) =
∫
Ω

(I − rin)2 M · Hε (φ)dxdy

+

∫
Ω

(I − rout)
2M · (1 − Hε (φ)) dxdy (2)

In Eq. (2), I is the input image, Hε (φ) is a smooth regu-
larized Heaviside function, rin and rout are the average pixel
intensity values on the part of each search line that are inside
and outside the contour, which can be obtained using Eq. (3)
and (4), respectively, and M is a line mask function for each
search line as in Eq. (5).

rin =

∫
Ω

I · M · Hε (φ) dxdy∫
Ω

M · Hε (φ) dxdy
, (3)

rout =

∫
Ω

I · M · (1 − Hε (φ)) dxdy∫
Ω

M · (1 − Hε (φ)) dxdy
. (4)

M(x, y) =

{
1, (x, y) is on the search line
0, otherwise

(5)

There are two terms in our total energy as in Eq. (6),

Etotal (φ) = μ
∫
Ω

δε (φ) |∇φ| dxdy

+ ν

∫
Ω

δε (φ) Eline (φ) dxdy, (6)

where μ and ν are positive-valued weighting parameters, and
δε (φ) is a smooth delta function. The first term of Eq. (6) is
associated with the contour length. Minimizing it is equiv-
alent to smoothing the contour itself. The second term is
our local region-based energy of all the search lines along
the contour. Minimizing it implies a separation of similar
textures “locally” by the contour.

Taking the derivative of Eq. (6) with respect to φ and
equating it to ∂φ

∂t , we have the evolution equation of our

LRES method as shown in Eq. (7), where κ = div
( ∇φ
|∇φ|

)
is the

contour’s curvature. The first term is the smoothing force to
control the elasticity of the contour during the deformation.
The second term is our local region-based force, FLR, as in
Eq. (8) (see more details in the Appendix). This force acts as
a driver to move the center of each search line, which is the
contour, in the direction perpendicular to the contour front.

∂φ

∂t
= δε (φ)

[
μκ + FLR

]
(7)

FLR = ν

∫
Ω

δε (φ) M
[
− (I − rin)2 + (I − rout)

2
]

dxdy (8)

3.3 Deformation Process

In this subsection, we describe the deformation process of
our LRES active contour method. First of all, the initial
contour is set and embedded as the zero level of the ini-
tial signed distance function, φ0. Then, the search lines are
formed at each pixel on the contour. Each search line is per-
pendicular to the contour front and its center is at the pixel
on the contour. Therefore, the number of search lines, N, is
equal to the number of the pixels on the contour. The length
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of each search line is initially set to ki = kstart pixels, where
i = 1, 2, . . . ,N. Then, two important parameters on each
search line are computed, i.e., rin and rout. We check the
condition |rin − rout| < (L × th) for every search line, where
th ∈ [0, 1] is a percentage of the intensity value range of the
input image. For example, if the input images are 8-bit gray
scale, we use L = 255. The value of th also refers to a small
amount of threshold to indicate that rin is different from rout.
Ideally, the value of th is to be kept closed to zero. If the
condition is true, i.e., rin is not much different from rout, this
implies that the search line is lying entirely on a homoge-
nous region. In other words, the search line has not found
any part of the object’s boundary. In this case, the length of
the search line is extended by setting ki = ki + η, where η is
the step-length. After each search line has found its optimal
length, where the condition |rin − rout| < (L × th) is not met,
i.e., rin is different from rout by th percentage, the contour
is deformed by one iteration using our evolution equation in
Eq. (7). Next, the length of each search line is reinitialized
to kstart for each new iteration. Then the whole process is
iterated until the contour converges to the object boundary.
Note that the number of search line in each iteration changes
depending on the number of pixels on the contour in each it-
eration. The overall process of our active contour method
has six steps as follows:

Step 1: Initialize φ0 where the contour C is embedded.
Step 2: Initialize the length of each search line ki to

kstart pixels.
Step 3: Compute the average intensity value of the in-

tensity profile along the region of the search line that lies
inside and outside the contour, rin and rout, respectively.

Step 4: Check the condition |rin − rout| < (L × th) for
every search line. If it is true, go to Step 5, otherwise go to
Step 6.

Step 5: Set ki = ki + η and return to Step 3 until the
search line finds the object’s boundary.

Step 6: Deform the contour by one iteration using our
evolution equation in Eq. (7). If the contour converges, the
process is done; otherwise go to Step 2.

4. Experiments

In this section, we test the performance of our active con-
tour method proposed in Sect. 3 and compare it to both the
edge-based and the region-based active contours. In all ex-
periments, we use μ = 0.5 (for the smoothing force), ν = 1
(for our local region-based force), L = 255 (the input im-
ages are 8-bit gray scale), th = 0.1 (for extendable search
line process), kstart = 11 pixels (5 pixels on each side of the
search line and 1 pixel on the contour), and η = 2 pixels
(one pixel is extended on each side of the search line) for
our active contour model. The size of all tested images is
100 × 100 pixels.

4.1 LRES Method vs. Edge-Based Active Contours

We compare our LRES method to five previously mentioned

edge-based active contours, i.e., the traditional active con-
tour (TAC) [1], the distance vector flow (DVF) [2], the gra-
dient vector flow (GVF) [3], the Coulomb active contour
(CAC) [5], and the vector field convolution (VFC) [4] meth-
ods. These methods are implemented via level set using
MATLAB. The edge map is generated by the gradient mag-
nitude of the convolution between the input image and the
Gaussian function. The thickness of the edge map depends
on the variance σ2 of the Gaussian kernel. In this experi-
ment, we use σ = 1 for all input images. The weighting
parameter for the smoothing force is set to be the same as
the one used in our method, i.e., μ = 0.5. The weighting
parameter for the external force, ν, is also set to 1 which
is similar to the one used in our method. Furthermore, the
vector field of all five methods is normalized.

There are 49 images in Fig. 4, arranged into 7 rows and
7 columns. In the first row, the seven tested images, with
their own initial contours, can be categorized into two types:
synthetic and real scenes. The first three columns (a) to (c)
are synthetic images consisting of a U shape image, a U
shape image with a small opening to the concave part, and
an S shape image, respectively. The last four columns (d)
to (g) are real scene images. They are a flight jet image,
a magnetic resonance image of a brain, a fish image, and
a cardiac magnetic resonance image (CMRI), respectively.
The second to the seventh rows are the final segmentation
results of the TAC, DVF, GVF, CAC, VFC, and our LRES
methods, respectively.

We can see in column (a) of Fig. 4 that the TAC and
the DVF methods cannot segment the U shape completely
because the TAC has limited capture range and the DVF
does not have an ability to handle a concave shape. How-
ever, the GVF, the CAC, and the VFC methods can segment
the U shape image successfully because they are capable of
reaching into concave parts. Another reason why the three
methods succeed in segmenting the U shape is that there
are no saddle or stationary points in this case. Our method
also provides a perfect segmentation result. As mentioned
in Sect. 3.1, using extendable search lines enables our active
contour to have large capture range and an ability to move
into the concave part of the object.

In column (b), we can see that all five edge-based active
contours stop at the small opening of the concave part of the
U shape. The contours did not move into the “bay” region
due to the existence of the saddle and stationary points. As
shown in Fig. 1 (c), the stationary point at the “bay” region
results in a saddle point at the “bottleneck” region. This sad-
dle point behaves as a “wall” that obstructs the active con-
tour to pass inside. Our active contour method as shown in
the last row, however, can reach into the deep concave part
because we use search lines rather than a vector field. Sim-
ilarly, the S shape image in column (c) cannot be success-
fully segmented using all of the five edge-based methods.
These methods fail because the saddle and stationary points
appear in the both “bay” regions of the S shape. However,
our LRES method in the last row can segment the S shape
accurately.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 4 Comparison with the edge-based active contours. First row: initial contour. Second to sev-
enth rows: segmentation results by using the TAC, DVF, GVF, CAC, VFC, and our LRES methods,
respectively.

Furthermore, the saddle and stationary points may in-
evitably appear in real scene images. In column (d), for ex-
ample, when we place the initial contour around the rear end
of the flight jet, all five edge-based active contours cannot
reach the cockpit due to a stationary point at the head part of
the flight jet. However, this is not a problem for our method.
Our active contour can conveniently move to the head part of
the flight jet and provides a desirable segmentation result as
shown in the last row. Another example is shown in column
(e). We place the initial contour on the right of the corpus
callosum. All five edge-based methods suffer a saddle point
located on the right during the deformation. Thus, the con-
tour cannot segment the overall of the corpus callosum. In
contrast, our LRES method can segment the desired corpus

callosum completely as shown in the last row.
In column (f), a fish image is tested. We found that all

five edge-based forces move the contour front to the pixels
on the heterogeneous texture of the fish rather than the true
boundary of the fish itself because the fish’s heterogeneous
texture has stronger gradient magnitude than the boundary
pixels. We notice further that all five edge-based contours
are stuck at the fish eye because it is of the highest gradient
in the image as shown in Fig. 5 (a), resulting in a vector field,
as shown in Fig. 5 (b) and (c), that is pointing to the fish eye
rather than the fish’s boundary. Our LRES active contour,
on the other hand, can move beyond the fish eye because our
local region-base force considers the eye pixel as merely a
noisy pixel compared to other intensity values on the search
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line. Therefore, the eye pixel does not have much influence
on our local region-based search line.

The last tested image is the cardiac magnetic resonance
image as shown in column (g) of Fig. 4. This image has high
content of noise causing spurious edges that confuse all five
edge-based active contours during the deformation. In addi-
tion, the papillary muscles inside the left ventricular region
and other tissues outside the heart further obstruct the con-
tour to find the true boundary of the left ventricle. Our LRES
contour, on the other hand, can trace the actual left ventricu-
lar boundary correctly. In summary, testing our local region-
based active contour scheme on the fish and the cardiac mag-
netic resonance images verifies that our LRES method is less
sensitive to noise than the edge-based active contours. In
conclusion, our active contour method performs better than
the edge-based ones in the sense that it has a large capture
range, an ability to handle concave shapes, no existence of
the saddle and stationary point problems, and robustness to
noise.

4.2 LRES Method vs. Region-Based Active Contour

4.2.1 Comparison with Global Region-Based Method

In this subsection, we are comparing our local region-based

(a) (b) (c)

Fig. 5 (a) the edge map of the fish image (b) the VFC vector filed and
(c) the VFC vector filed at the eye part of the fish image.

(a) (b) (c) (d) (e) (f) (g)

Fig. 6 Comparison with the global region-based active contour. First row: initial contour. Second
and third rows: segmentation results by using the ACWE and our LRES methods, respectively.

active contour to the global region-based one proposed by
Chan and Vese (ACWE method) [8]. In Eq. (1), there are
three weighting parameters for ACWE method. We set
μ = 0.5 for the smoothing force which is similar to other
methods and λ1 = λ2 = 1 for the external force.

Figure 6 is divided into 3 rows and 7 columns. Two
synthetic images and five real scene images are used to com-
pare our proposed LRES active contour to the ACWE. In
column (a), a triangular-like object with homogeneous tex-
ture is placed in a uniform background. In column (b), the
same triangular shape object as (a) but with heterogeneous
texture is placed in a background with non-uniform inten-
sity. Column (c) to (g) are real scence images consisting of
a balloon, a flower, a teddy bear, an image with two cats and
a brain tumor magnetic resonance image [13], respectively.

For the homogeneous texture object in column (a), we
found that both ACWE and LRES methods can successfully
segment the triangular-like object. This object is easy to
segment by both methods because the intensity of the ob-
ject and the background are clearly different. For the het-
erogeneous texture object in column (b), however, our lo-
cal region-based active contour can still segment it correctly
while the ACWE fails. In this image, the intensity of both
the object and the background areas is non-uniform. Since
the global region-based active contour attempts to separate
the dark region from the lighter one, the result is that the
dark regions of both object and background are grouped to-
gether as one and the light regions of both areas are consid-
ered as the other object. However, the LRES method, a local
region-based active contour, can distinguish the difference
in intensity locally. Therefore, it can find the true object
boundary successfully even though the object and the back-
ground are of non-uniform intensities. The balloon image
in column (c) also has heterogeneous texture. The global
region-based method cannot segment the complete balloon
shape because some parts of the balloon have intensity that
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(a) (b) (c) (d) (e) (f) (g)

Fig. 7 Comparison with the local region-based active contour. First row: initial contour. Second and
third rows: segmentation results by using the LRAC and our LRES methods, respectively.

is similar to the sky which is in the background. However,
our method can effectively provide the whole part of balloon
shape due to our local region-based force.

For the flower image in column (d), we can see that
even though the global region-based method can trace the
boundary of the flower correctly, it also includes some small
non-flower-regions. This is because those regions have
about the same intensity as the flower region. On the other
hand, our method traces only the flower boundary because
it searches only locally in the vicinity of flower. For the
teddy bear image in column (e), the global region-based ac-
tive contour not only traces the boundary of the bear itself
but also includes its shadow, appeared behind the leg. The
LRES active contour, on the other hand, correctly traces
just the desired bear and not its shadow. For the two cats,
one black and one white, in column (f), the global region-
based active contour separates the black cat from the white
one because they have entirely different textural intensity.
Nonetheless, our LRES active contour segments both cats
as one object even though their textures are different. Again
this is due to the local regional information of the LRES
method.

In column (g), we want to segment the brain tumor in
a magnetic resonance image, so the initial contour is placed
within the tumor region. We can see that the tumor is of
heterogeneous texture object. Therefore, the global region-
based method cannot successfully segment this tumor. A
more satisfactory result, as shown in the last row, is provided
by our local region-based LRES method. In conclusion, all
of the experiments in this subsection have shown that our
new LRES active contour with local regional statistics per-
forms well on heterogeneous object segmentation compared
to the global region-based counterpart.

4.2.2 Comparison with Local Region-Based Method

In this subsection, we are comparing our LRES active con-
tour to another local region-based one, proposed by Lank-
ton and Tannenbaum (LRAC method) [16]. The MATLAB
code of this method is provided by the authors [16]. Simi-
lar to other methods, we set the weighting parameter for the
smoothing force to 0.5. Furthermore, the important param-
eter of this method is the radius of the circles that covers the
local region. The radius parameters of all circles around the
contour have the same size and unchanged during the defor-
mation. The default size is set to be approximately 1/10 of
the input image size. In the experiment, all input images are
100×100, so the radius parameter is defined to be 10 pixels.

Figure 7 is divided into 3 rows and 7 columns. Three
synthetic images and four real scenes are used in this exper-
iment. In column (a), a pentagon object with heterogeneous
texture. In column (b), a group of nine circles with differ-
ent shades arranged as a square-like shape. In column (c),
a group of seven circles arranged as a U shape. Column (d)
to (g) are real scenes images consisting of a flower, a corpus
callosum, a starfish and a vertebra MRI image, respectively.

For the heterogeneous texture object in column (a),
both LRAC and our LRES methods can segment the pen-
tagon object perfectly. This object can be segmented eas-
ily because the initial contour is placed nearby the object’s
boundary and both methods utilize the local regional infor-
mation to drive the active contour. Another type of the het-
erogeneous texture object is tested in column (b). We found
that both LRAC and our LRES methods can successfully
segment this object. Next, the U shape object in column
(c) is tested. The initial contour is placed outside the ob-
ject as shown in the first row. We can see that the LRAC
method can not segment the U shape completely because
it has poor capture range when the radius parameter is too
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small. To increase the capture range for the LRAC method,
we change the radius parameter to 20, 30, and 40 pixels
whose results are shown in Fig. 8 (a), (b), and (c), respec-
tively. We can see in Fig. 8 (a), when the radius parameter
is set to 20 pixels, the contour moves somewhat toward the
opening of the U shape but still cannot reach the inner part
of the U shape. This is because the size of the radius also is
not large enough. We then increase the radius parameter to
30 pixels. The contour can move toward the innermost part
of the U shape; however, the top two light shaded circles
are neglected. As a result, it cannot completely segment the
desired U shape. In this case, the larger radius enables the
LRAC method to behave a little more like a global region-
based active contour, so the top two light shaded circles
are classified as a part of the background. We can clearly
see this effect when we set the radius parameter to 40 pix-
els, where the next two slightly darker shaded circles are
grouped together as a part of the background too. In con-
trast, our LRES method employs the extendable search lines
and each individual line has its own length. Therefore, our
LRES contour can move toward the innermost part of the U
shape without considering the differently shaded circles as
different objects or a part of the background. Therefore, the
U shape can be segmented perfectly by our LRES method
as shown in the last row of Fig. 7 (c).

For the real scene image of a flower in column (d), the
initial contour is placed inside the flower. The segmenta-
tion result of the LRAC method covers only three of the six
flower’s petals. Our LRES method, on the other hand, can
correctly trace all six petals, which are the actual flower’s
boundary. For the corpus callosum image in column (e),
the initial contour is placed to the left of the corpus callo-
sum. The LRAC contour in the second row cannot segment
the overall part of the corpus callosum. However, the con-
tour with extendable capture range of our LRES method can
move toward the right end of the corpus callosum perfectly.
Another example in column (f), we place the initial contour
on the middle part of the starfish. We found that the LRAC
method fails to segment the starfish correctly because of its
limited capture range. As a result, the LRAC contour cannot
reach into some protruding ends of the starfish. In contrast,
our LRES contour can segment the whole part of the starfish
completely.

In column (g), we want to segment only one vertebra
in the image, so the initial contour is placed inside the de-

(a) (b) (c)

Fig. 8 The segmentation results by using the LRAC method [16] when
the radius parameter is set to (a) 20, (b) 30, and (c) 40 pixels, respectively.

sired vertebra region. We can see that the LRAC contour
in the second row has some spill-over regions on the top
and the bottom parts on the right while our LRES contour
can trace the vertebra more accurately. This is because the
LRAC method uses the intensity inside a circle, not just on
the (normal) search line like the LRES does. This implies
that all neighborhood pixels around the point on the con-
tour have influenced the contour evenly. In other words, the
contour tends to spread all around, not just in the normal
direction. As a result, the segmentation region is easy to
have a spill-over. In contrast, our LRES method, which uses
only the intensity profile along search lines that are normal
to the contour. Therefore, our LRES contour can segment
the vertebra correctly without spreading over to undesirable
region. In other words, our LRES method utilizes the re-
gional information more locally than the LRAC method. In
summary, our LRES active contour performs better than the
LRAC method in the sense that it has a large capture range,
an ability to segment concave shapes without mutating to be
a global type.

4.3 Test of Convergent Rate

In this subsection, we are to study the convergent rate of
our LRES method compared to the VFC (an edge-based
method), the ACWE (a global region-based method), and
the LRAC (a local region-based method). All methods are
implemented via level set using MATLAB on a 2.40 GHz
Core 2 Duo processor with a 4 GB RAM. The image used
is the triangular-like shape object with the initial contour
shown in column (a) of Fig. 6. The maximum number of it-
erations for each method is set to 100. In each iteration, the
evolving contour Ct is compared to the desired final contour
C f , i.e., the triangular-like shape, using the area similarity
measurement [20], S area ∈ [0, 1] as in Eq. (9),

S area =
2n

(
Ct ∧C f

)
n (Ct) + n

(
C f

) , (9)

where n
(
Ct ∧C f

)
is the number of pixels inside both Ct and

C f , n (Ct) is the number of pixels inside Ct and n
(
C f

)
is the

number of pixels inside C f . If S area is equal to 1, it implies
that both Ct and C f have the same shape.

The area similarity values of each method through out
100 iterations are shown in Fig. 9. We can see that, to con-
verge to the desired shape, the VFC, the ACWE, and the

Fig. 9 The convergent rate of the VFC, the ACWE, the LRAC, and our
LRES methods.
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LRAC methods require approximately 70, 47, and 80 iter-
ations, respectively. Meanwhile, our method requires only
30 iterations to converge to the desired object. However,
we found that the VFC, the ACWE, the LRAC, and our
LRES methods require approximately 0.061, 0.062, 0.157,
and 0.302 second per one iteration, respectively. This results
in a total computational time of 4.27, 2.914, 12.56, 9.06 sec-
ond for VFC, ACWE, LRAC, and LRES, respectively. As
it turns out, our LRES method requires slightly more com-
putational time than that of the VFC and ACWE methods.
This is not surprising because our LRES method requires
additional processing of extending search line for each iter-
ation. In such process, each search line needs to find its own
optimum length by increasing its length gradually until the
object’s boundary is found. A more relevant comparison is
between our LRES method and the LRAC method, both of
which need additional computation on local regional infor-
mation. When benchmarked with the LRAC method, our
LRES method acquires less overall computational time, yet
can deliver better segmentation performances. Moreover,
we can further reduce the computation time of our LRES
method by implementing it using C++. We found that our
LRES method requires only 0.015 second per one iteration
in C++.

5. Conclusion

A novel active contour called the LRES method that uses
local regional statistics on extendable search lines has been
proposed in this paper. We design each search line to be
of adaptive length so that it can navigate the contour front
toward the object boundary with extendable capture range.
The intensity profile of the pixels along a set of search lines,
which are normal to the contour front, are used to compute
our local regional force, enabling the contour to segment ob-
ject with heterogeneous texture. From our experiments, the
advantages of our method over the edge-based active con-
tours are a large capture range, an ability to reach into deep
concave shape, no existence of the saddle and stationary
point problems, and robustness to noise. When compared
to an active contour with global regional force, our method
performs better in segmenting heterogeneous textured ob-
jects. Furthermore, when compared to another local region-
based active contour such as LRAC, our LRES method does
not need to priori set any capture range parameter because
it is automatically adaptive and it also requires less overall
processing time.
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Appendix: Obtaining of Our Local Region-Based
Force

In Sect. 3.2, we showed that the evolution equation of our
LRES active contour method as in Eq. (7) consists of two
terms. The first term is the smoothing force while the second
term is our local region-based force, FLR as in Eq. (8). To
obtain our local region-based force, we minimize the second
term of our total energy function in Eq. (6). We restate only
the second term here:

E (φ) = ν
∫
Ω

δε (φ) Eline (φ) dxdy, (A· 1)

where Eline is our local region-based energy function as in
Eq. (2).

In order to minimize the energy function, we take the
derivative of Eq. (A· 1) with respect to φ and equate it to ∂φ

∂t

∂φ

∂t
= −∂F
∂φ
= − ∂
∂φ

[
ν δε (φ) Eline (φ)

]

= −ν
[
δε (φ)

∂

∂φ
Eline (φ) + Eline (φ) δ′ε (φ)

]
, (A· 2)

where δ′ε (φ) is the first derivative of δε (φ).
We notice that, on the contour which is the zero level

set, δ′ε (φ) evaluates to zero. Thus, by omitting the second
term of Eq. (A· 2), we only have

∂φ

∂t
= −ν δε (φ)

∂

∂φ
Eline (φ) , (A· 3)

where

∂

∂φ
Eline (φ)=

∫
Ω

∂

∂φ

[
(I−rin)2 · M · Hε (φ)

]
dxdy

+

∫
Ω

∂

∂φ

[
(I−rout)

2 · M · (1−Hε (φ))
]

dxdy

=

∫
Ω

δε (φ) M
[
(I−rin)2 − (I−rout)

2
]

dxdy.

(A· 4)

Substituting ∂
∂φ

Eline (φ) into Eq. (A· 3), we get our local
region-based force, FLR as follows:

∂φ

∂t
= −νδε (φ)

∫
Ω

δε (φ) M
[
(I − rin)2 − (I − rout)

2
]

dxdy

= δε (φ)

(
ν

∫
Ω

δε (φ) M
[
− (I − rin)2 + (I − rout)

2
]

dxdy

)

= δε (φ) FLR (A· 5)

FLR=ν

∫
Ω

δε (φ) M
[
− (I−rin)2+(I−rout)

2
]

dxdy. (A· 6)
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