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A B S T R A C T   

Water loss in distribution networks known as Non-Revenue Water (NRW) is one of the major challenges facing 
water utilities. In a densely populated city, the acoustic listening method manually conducted by waterworks 
operators during routine leak pinpointing tasks is vital for NRW reduction. However, this method is considered to 
be typically labor-intensive, skill-dependent, non-systematic, and sometimes imprecise due to fatigue and 
inexperience of newly trained staff. This paper presents the development of an AI-based water leak detection 
system with cloud information management. The system can systematically collect and manage leakage sounds 
and generate a model used by a mobile application to provide operators with guidance for pinpointing leaking 
pipes. A leakage sound collection and management system was designed and implemented. Leakage sound 
datasets were collected from some multiple areas of the Metropolitan Waterworks Authority. Machine learning 
algorithms including Deep Neural Network (DNN), Convolutional Neural Network (CNN), and Support Vector 
Machine (SVM), were developed and compared. The results show that the DNN performed better than SVM and 
as well as CNN, but with less complex structure. DNN was then selected to generate a model used in field trials for 
pinpointing leakage by novice operators. The field trial results show that the accuracy of the system is above 90% 
and the results were similar to those conducted by experts.   

1. Introduction 

One of the important issues that challenges water utilities is the 
management of water losses, so-called Non-Revenue Water (NRW). 
NRW is defined as the amount of water that cannot be billed, including 
unbilled authorized consumption, commercial losses, and physical los
ses. The majority of NRW results from water being physically lost 
through leaks in distribution pipes. This leads to unnecessarily increased 
operational costs. It was reported by Asian Development Bank that NRW 
was 35% on average in the Asian cities and can reach much higher 
levels. The estimated annual volume of NRW in urban water utilities in 
Asia was on the order of 29 billion m3 or equivalent to nearly 9 billion US 
dollars per year [1]. 

The Metropolitan Waterworks Authority (MWA) of Thailand is 
responsible for the water supply of Bangkok, which is the capital of 
Thailand, and its vicinity. MWA has committed to NRW reduction by 
developing and employing advanced technologies and management 
strategies to cope with physical water losses during distribution systems. 

In Thailand, one major source of NRW is leakage from pipes with small 
diameters that connect household water meters and water distribution 
pipelines. The main causes of these leaks are aging pipelines and soil 
subsidence, which introduces stress and pressure on the pipelines. Since 
these small diameter pipes are used in most of the Bangkok metropolitan 
area and have a complex network topology, it is labor-intensive and 
resource-consuming to investigate and repair the leaks. 

Leakage management strategies can be categorized into three 
groups, including passive control, regular survey, and leakage moni
toring in zones or sectors [2]. Passive control is a reaction method where 
water supply staffs repair water pipes according to reports from cus
tomers, especially when leakage is visible or when the pressure drops. 
The regular survey is a method of inspection using acoustic devices to 
listen for leaks from one end of the distribution system to the other. 
Leakage monitoring is a method of monitoring the flows into zones or 
districts to measure leakage and prioritize the leak detection activities. 
An example of leakage monitoring is the background night flow analysis 
mentioned in the Bursts and Background Estimates concepts [2,3]. 
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These concepts were first developed for the UK Water Industry in the 
early 1990s and have been accepted and adopted in many countries 
because they provide a simple and pragmatic approach to monitoring 
water leakage problems. In the background night flow analysis, the 
measurement of the minimum night flow into a district metered area is 
performed, which is an effective way to identify whether there is a 
serious leakage problem. On the other hand, leakage monitoring can be 
performed through water pressure monitoring and control in the water 
distribution systems simulation [4,5]. Hence, an optimized set of water 
distribution parameters, such as water pressures and pipe diameters, is 
determined to reduce water leakage. 

Another aspect of leakage monitoring is leakage localization through 
an installation of acoustic or vibration sensors, permanently or tempo
rarily, for each section of the water pipelines. Several techniques have 
been proposed for this kind of leakage localization such as flow-based 
analysis, noise correlator, and transient pressure wave techniques. 
Regarding flow-based analysis techniques, an ultrasonic flowmeter has 
been used to collect pipe flow data and the data is classified by One- 
Class-SVM, which is an unsupervised algorithm consisting of Support 
Vector Machine (SVM) to detect water leakages [6]. In a previous report, 
the measured data, such as pressure and flow rate of both inlet and 
outlet, are analyzed through rules generated using rough set theory and 
support-vector machines to detect leakages [7]. For noise correlator 
techniques, at least two sensors need to be installed along the water 
pipeline and the time shift between two signals with the highest corre
lation is determined to sequentially find the location of the leak. Pre
viously, signals from pressure, velocity, and acceleration sensors are 
compared for cross-correlation leak detection performance [8]. It is 
found that pressure signals from a hydrophone provide the most effec
tive results for leak localization, especially in the case of a small 
signal-to-noise ratio (SNR). Moreover, an extra step of leak detection has 
been considered using an ensemble of a 1D Convolutional Neural 
Network (CNN) and an SVM model to recognize the leakage first [9]. 
Then, an enhanced graph-based algorithm localizes the leakage using 
the signals from leakage nodes with cross-correlation computing and 
reduced time searching. On the other hand, another method used 
autocorrelation analysis where only one signal source can be used to 
locate the leakage [10]. Signals from a hydrophone, and radial and axial 
accelerometers are compared, and it was observed that longitudinal 
vibrations from axial accelerometers are the most effective signals for 
leak detection. For transient pressure wave techniques [11,12], a 

transient pressure wave is generated, e.g., from a side discharge valve, 
which propagates through the physical structure of the pipelines. The 
analyses of the transient wave that passes through special structures 
such as a junction, pressure reducing valve, or leak, can reveal those 
structures and locate them. For the techniques mentioned, the sensors 
and instruments are installed beforehand to automatically record signal 
data, detect, and localize the leaks. Therefore, these techniques can save 
the time and effort of the professional leak detection staff and water 
suppliers. However, the initial installation is costly and time-consuming. 
Furthermore, the applications of those techniques have only been 
studied in simple pipeline networks, and the results do not apply to the 
complexity of the consumer household water pipeline network. 

Regarding regular surveys as a leak management strategy, it was 
reported that acoustic-based technologies have been widely applied to 
pipeline leak detection [13]. Geophones and acoustic rods are used to 
listen to buried pipelines from the surface. These devices are accurate 
and highly sensitive, such that they can detect the exact location of the 
leak. However, the accuracy depends highly on the proficiency and the 
experience of the operators. Typically, skilled professionals are required 
to listen and analyze the sound to determine if there is any leakage. After 
a long working period, these professionals may be exhausted, and their 
performance and accuracy for detecting the leakage sound can drop 
significantly. Moreover, the training process for an eligible person to 
perform this task requires on-the-job training that is time-consuming 
and costly. To expand the workforce and cover large residential areas 
in the cities, some other systematic approaches must be employed to 
minimize human error, and reduce costs and time. As previously re
ported [14], Adaptive Tabu Search (ATS) can be combined with an 
Artificial Neural Network (ANN) to improve the accuracy of leak 
detection using a ground microphone. The results showed an improve
ment compared with leak detection using ANN alone. In previous studies 
[15–17], CNNs have been applied for leak sound detection when time 
series data of the sound is transformed into images such as through 
recurrence plots, Mel-spectrograms, and Mel Frequency Cepstral Co
efficients. These techniques show promising results. However, there 
have not been methods that use machine learning techniques along with 
an acoustic rod, which is the common tool widely used by waterworks 
staffs. 

Therefore, MWA and the National Electronics and Computer Tech
nology Center (NECTEC) collaborated on a project, developing an AI- 
based water leak detection system with cloud information 

Fig. 1. Application of leak detection device in the field.  
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management, in which is the focus of this paper. The main purpose of 
this project is to develop an AI-based water leak detection prototype that 
provides the operators with guidance to interpret the sound from the 
acoustic rod as either leakage or non-leakage and pinpoint the pipeline 
leak. This prototype allows novice operators to perform the leak pin
pointing routine, thus MWA can reduce time and resources to train a 
new operator to perform the task. Moreover, human error in the sound 
interpretation due to fatigue can be minimized. Several machine 
learning methods, such as SVM, DNN, and CNN are compared based on 
the accuracy of leak detection of underground pipes. Training and 
testing datasets consist of both leakage and non-leakage sounds sys
tematically collected through the cloud information management sys
tem from the confirmed underground leakages in urban areas. An 
evaluation regarding the accuracy and computation time is performed. 
Finally, the performance of the system in controlled environments and 
field tests conducted in Bangkok, Thailand, for several district areas is 
presented and discussed. 

2. MWA leak detection system with cloud information 
management 

MWA staff usually uses an acoustic rod to listen to the underground 
sounds for detecting leakage of the underground pipelines, as shown in 
Fig. 1 (a). The procedure generally requires skilled professionals to 
determine the accurate location of the leakage, but they become 
exhausted after continuously working for a long duration, which causes 
a decrease in the accuracy of detecting leakage. Moreover, novice staff 
require long on-the-job training to become eligible to perform this task. 

To overcome these issues, the MWA and NECTEC developed an AI- 
based leak detection device and a classification model to distinguish 
leakage sound from the typical sound of water flow in the pipes, as 
shown in Fig. 1 (b). By leveraging machine learning techniques and 
selecting the technique that is most suitable for extracting the noticeable 
features of the leakage sound signals, an optimal classification model is 
derived using the sound data collected from leaking and non-leaking 

pipes in the field. 

2.1. Overall system design 

The overall platform of the leak detection system for the household 
water pipeline consists of 4 parts, including the smartphone, acoustic 
rod/microphone, cloud server, and local server, as illustrated in Fig. 2. 
The data is exchanged among the smartphone, cloud server, and local 
server using the internet as demonstrated in Fig. 3. The leakage data 
collection and classification model generation processes starts with 
using an acoustic rod to survey, identify, and locate the leakage sound. 
Then, the users login to the mobile application on the smart phone and 
fill in the details for the data collection. After that, the users can record 
acoustic signals through the smartphone and the microphone connected 
to the acoustic rod and upload the signals and job details to the cloud 
server. In this project, the acoustic rod is a stainless steel Fuji Listening 
Stick LSP 1.5 with 510 g weight, 1511 mm long, and a resonant chamber 
to amplify leak noise. The microphone connected to the acoustic rod 
through a custom made chamber cover is Rode SmartLav + omni- 
directional microphone with frequency range 20 Hz - 20 kHz and 67 dB 
signal-to-noise ratio. 

After the pipeline repairing process is completed, the system 
administrator can label the sounds as “leak” or “no leak” through the 
web application. Then, the system administrator can download the 
acoustic signals, along with the ground-truth labels, on the local server 
and use them to train a new water leakage classification model. Finally, 
the result of the training process, which is an optimal model for the 
water leakage classification, is uploaded to the cloud server and trans
ferred to the smartphone to be applied in the field. 

The tasks of leakage sound classification and data collection are 
coordinated by using a mobile application and a web application as 
shown in Fig. 4 and Fig. 5, respectively. The mobile application, 
adopting a user-friendly design, is available on iOS and Android. It 
consists of 4 main parts, including login, leak detection, leakage job data 
collection, and leakage job data upload to the cloud. The web 

Fig. 2. AI-based water leak detection system with cloud information management.  
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Fig. 3. Sequence diagram.  

Fig. 4. Mobile application for the leak detection system.  
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application is responsible for the leakage data management and is 
accessible on a cloud server with user password authentication, as 
shown in Fig. 5 (a). Fig. 5 (b) shows a job summary, which is an over
view of all the data. The leakage job list and job detail can be seen in 
Fig. 5 (c) and Fig. 5 (d), respectively. The screen in Fig. 5 (d) is designed 
for the administrator to label the sounds as “leak” or “no leak” as 
mentioned previously. 

2.2. AI-based leak detection method 

The leak detection method in the AI-based leak detection system is 
separated into two phases, including the training phase and detection 
phase, as illustrated in Fig. 6. In both phases, the sound data is collected 
from the field at the frequency of 44.1 kHz. Each frame composed of 
2048 samples, or 46.44 ms, is transformed into the frequency domain 
using Fast Fourier Transform (FFT). Since the transform result is 2048 
complex symmetrical data points, the frame is truncated to 1,024, and 

Fig. 5. Web application for leakage data management.  

Fig. 6. The pathways of the data during training phase and leak detection phase.  
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the magnitude of those data is used in the next step. Then, the pre- 
processing step calculates the frame average for each spectrum from 
14 frequency data frames representing 650.16 ms of sound. The frame 
average makes important features of the leakage sound and the non- 
leakage sound stand out and distinguishable for categorization. After 
that, the frame average is normalized to the magnitude between zero 
and one. 

In the training phase, the pipeline repair team is sent to the locations 
where the sound inputs are collected and performs the repairing process. 
During the process, the actual results of the leakage are determined and 
used for labeling the target data that corresponds with “leak” or “no 
leak” sounds. The target data and sound input data are fed together to 
the machine learning algorithms for training and testing the leak 
detection models to find an optimal model that accurately distinguishes 
leakage sounds from non-leakage sounds. Finally, in the leak detection 
phase, the smartphone downloads the optimal leak detection model and 
uses it to guide novice operators by signaling whether the input sound is 
categorized as a “leak” or “no leak” sound. 

3. Machine learning algorithms 

In this paper, three well-known machine learning methods are 
compared, including SVM, DNN, and CNN. 

3.1. Support Vector Machine 

SVM is a well-known classification and regression method that is 
suitable for small and medium-sized datasets [18,19]. The basic idea of 
SVM classification is to use a hyperplane {x|aT (x − x0) = 0}, where x, a 
are vectors and x0 is a constant vector, to separate the dataset into two 
groups. The parameters of the hyperplane can be identified by solving a 
quadratic programming problem shown in Eq. (1), where w, b are col
umn vectors and constants defining a hyperplane, xi is the data point i, 
and ti is the corresponding target. 

minimizew,b (1 / 2)wTw (1) 

subject to t(i)(wTx(i) + b) ≥ 1 for i = 1, 2, …, m. 
Since binary classification for the dataset in real-world problems 

might not be able to categorize data into two groups by a hard margin of 
a hyperplane, slack variables, ζi, are introduced into the problem 
formulation, as shown in Eq. (2), to allow the use of soft margins for the 
classification. Soft margin allows some data points to be on the wrong 
side of the hyperplane, with penalty costs to be minimized. Moreover, 
the mapping function or kernel function, φ(⋅), according to Mercer’s 
conditions [19], can be applied to map the data into a higher dimension 
to linearly categorize non-linear datasets. 

minimizew,b,ζ (1 / 2)wTw+ C
∑m

i=1
ζ(i) (2) 

subject to t(i)(wTφ(x(i)) + b) ≥ 1 − ζ(i) and ζ(i) ≥ 0 for i = 1, 2, …, m. 
For multi-class classification, one can use n binary classification rules 

to separate the data of class k from the rest where k = 1, 2, …, n. The 
highest value of the classification functions, wT

kφ(x
i)+ bk, identifies the 

class where the data is categorized. 

3.2. Artificial Neural Network 

3.2.1. Basic principle of ANN 
ANN has been a growing interesting approach to solving classifica

tion and data mining problems in various areas such as image process
ing, signal processing, pattern recognition, etc. [20–22]. The main 
advantage is that ANN does not require a user to specify any 
problem-solving algorithm and instead it learns from examples like 
human beings [23]. Moreover, ANN can identify and respond to patterns 
that are similar but not identical to the ones they have been trained on. 

ANN can be defined as a model of reasoning based on the human 
brain, which is trained with historical data to perform a desired function 
by adjusting the weights (w) and bias (b) of the connections such that 
outputs match the outputs of the desired function [24]. A set of neurons 
are combined in a layer and a network can consist of a single layer or 
multiple layers. A very popular structure is based on the multi-layer 
organization, where the neurons of a layer connect to the neurons of a 

Fig. 7. The pathways of the data in an ANN.  

R. Vanijjirattikhan et al.                                                                                                                                                                                                                      



Results in Engineering 15 (2022) 100557

7

subsequent layer. Typically, these layers are termed ‘input’, ‘hidden’, 
and ‘output’ depending on their positions in the ANN structure. The 
general structure for a three-layer back-propagation ANN is shown in 
Fig. 7. 

The indexes i, j and k indicate neurons in the input, hidden and 
output layers respectively. The input signals u1, u2, …, un are propagated 
through the network from left to right. The weight wij connects the ith 
node in the input layer and the jth node in the hidden layer. In the same 
way, the weight wjk connects the jth node in the hidden layer and the kth 
node in the output layer. The output of an ANN is defined as follows, 

yk = θk +
∑m

j=1
wjkf (netj) (3)  

where f () is an activation function such as sigmoid, hyperbolic tangent, 
and ReLU. In the hidden layer, node j receives the signal netj according to 
the following, 

netj = θj +
∑n

i=1
uiwij (4)  

where θj and θk are bias terms of the hidden layer and the output layer, 
respectively. 

3.2.2. Deep Neural Network 
DNN is an ANN with multiple hidden layers as shown in Fig. 8. In the 

hidden layers, every unit in the previous layer fully connects to every 

unit in the next layer. Thus, this structure can be called “fully connected 
layers” [25–27]. These multiple hidden layers improve the performance 
in many research areas such as speech recognition, image recognition, 
and object detection. 

Since this structure has so many neural units, it may cause a problem 
when training the model with a small training dataset. Consequently, 
the model is likely to perform poorly due to “overfitting”. The “dropout” 
mechanism that temporarily removes the neural units randomly is 
proposed to prevent the deep model training from the overfitting 
problem [28,29]. 

3.3. Convolutional Neural Network 

Unlike the classical ANN, the CNN has additional layers called 
“convolutional layers” that can generate representative features of the 
input data. In each convolutional layer, the inputs are convoluted by 
filters to generate the features. After that, CNN uses the fully connected 
network for learning the representative features, as shown in Fig. 9. 

Since the features extracted by the convolutional layers are useful for 
recognizing patterns, CNN becomes an effective technique in several 
research topics such as image recognition [30,31], video recognition 
[32,33], and activity recognition [34,35]. 

Fig. 8. Classical structure of a DNN.  

Fig. 9. General structure of a CNN.  
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4. Experiments and discussions 

4.1. Machine learning performance comparison 

This section presents the comparison of leakage sound data classifi
cation performance among SVM, DNN, and CNN. The experiment was 
conducted by using real-world leakage and non-leakage sound data 
obtained from the MWA. The sound data were collected by the acoustic 
rod and microphone through the smartphone as shown previously in 
Fig. 1 (b) and analyzed by the machine learning algorithms. Examples of 
the frame average of the sound signals in the frequency domain are 
illustrated in Fig. 10. The results show that, in some cases, the signal 
characteristics of “leak” are specific to a certain band of frequencies, 
such as around 400–450 Hz, as shown in the Examples A, C, and E. 

However, in other cases, the signal characteristics of “leak” are different 
and it is more difficult to distinguish between “leak” and “no leak”. 

The leak detection data processing method is summarized in Fig. 11. 
The total amount of data collected from 688 leakage sites and 619 non- 
leakage sites is 108,481 samples, which are separated into 51,377 for 
“no leak” and 57,104 for “leak”. The datasets are processed through FFT 
and the pre-processing, then randomized and divided into training and 
testing samples. Notably, the datasets from each site are grouped 
together during randomization to prevent data leakage problems. About 
70% and 30% of the samples are used in the training and testing pro
cesses, respectively. 

The SVM classification is computed by using a polynomial kernel, 
with the regularization parameter of 2 and polynomial degree of 3. The 
DNN and CNN models are trained by using an Adam optimizer and a 

Fig. 10. Examples of frame average spectrum for leak and no-leak case.  

Fig. 11. Leak detection data processing method for comparing SVM, DNN, and CNN.  

Table 1 
Performance of SVM, DNN, and CNN (averaged over 10 trials with 300 training iterations).  

Method Training data Testing data Training 

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy time (mins) 

SVM 0.7164 0.9070 0.8055 0.6885 0.8820 0.7829 1.29 
DNN 0.9966 0.9974 0.9970 0.9374 0.9618 0.9489 14.01 
CNN 0.9976 0.9961 0.9969 0.9317 0.99643 0.9471 15.44  
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Fig. 12. Confusion matrix for SVM.  

Fig. 13. Confusion matrix for DNN.  

Fig. 14. Confusion matrix for CNN.  
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sparse categorical cross-entropy loss function. The DNN network con
sists of an input layer (128 neurons), 3 hidden layers (64, 32, and 10 
neurons), and 1 output layer (1 neuron). The activation functions are 
ReLU for the input layer and all of the hidden layers, and Softmax is used 
for the output layer. The CNN network includes a convolutional layer 
(1D CNN with 8 convolutional filters and the window size = 9), a 
pooling layer (max-pooling), and fully connected layers. The fully con
nected layers are used with an input layer (128 neurons), 3 hidden layers 
(64, 32, and 10 neurons), and 1 output layer (1 neuron) which are the 
same configurations as for the DNN. 

The computer in this experiment is equipped with Xeon 3.6 GHz 
CPU, 160 GB RAM, 1 TB SSD M.2 PCIe 4.0, and NVIDIA Quadro 
RTX5000 16 GB graphic card. The classification performance of SVM, 
DNN, and CNN are summarized in Table 1, showing the average values 
of accuracy and training time over 10 trials. The accuracy, sensitivity, 
and specificity are calculated by using Eqs. (5)–(7), where TP is True 
Positive, TN is True Negative, FP is False Positive, and FN is False 
Negative. As observed, SVM takes less training time, about 1.25 min, 
compared with 14–16 min for DNN and CNN. However, SVM provides 
much lower accuracy than the other methods, with 78.29% for the 
testing datasets using SVM and 94.89% and 94.71% for DNN and CNN, 
respectively. The confusion matrix, shown in Figs. 12–14, illustrates the 
detail of the classification results, which show that the accuracy of SVM 
is degraded mainly due to false negatives in both the training and testing 
datasets. Hence, the sensitivity value of SVM in Table 1 is much lower 
than DNN and CNN. From the performance comparison, DNN provides a 
more accurate solution than SVM and has less complex structure than 
CNN. Therefore, DNN is the selected model for the AI-based leak 
detection since it provides the best accuracy with relatively less complex 

structure. 

Accuracy =
Number of correct predictions
Total number of predictions

=
TP+ TN

TP+ FP+ TN + FN
(5)  

Sensitivity =
TP

TP+ FN
(6)  

Specificity =
TN

TN + FP
(7)  

4.2. Field trial 

Bangkok is located in the central part of Thailand where the popu
lation is about 5.6 million people and the water consumption from MWA 
is about 1800 million m3 per year. Apart from using sophisticated tools 
such as leak noise correlators, manually pinpointing leaks in pipelines 
by highly skilled operators using acoustic rods is still conducted during 
regular NRW reduction operations. However, the overall performance 
can be limited due to fatigue and inadequate numbers of highly skilled 
operators in some areas. Before using MWA AI-based leak detection 
devices to support newly trained operators, the DNN model was tested in 
the field to pinpoint leaking pipes in the water distribution system. The 
areas of the field tests are shown in Fig. 15 in the yellow and green areas. 
It is noted that the “leak” and “no leak” sound samples for model training 
and testing were collected from the green areas only. The DNN model 
was trained offline by the average frequency spectrum of the sound data 
to obtain an optimal classification model. The trained model was used 
for real-time leak detection in the field by analyzing the sound input 
from the leak detection device. 

Fig. 15. MWA areas for the field trials and data collection.  

Table 2 
Leak detection performance comparison for the field trials.  

Device Branch Total 

SSW TS PKN TMHM MHSW SMPK PSCR 

Professional expert 
Detected point 6 3 9 3 14 9 2 45 
Actual leakage 6 3 9 2 14 7 2 43 

Leak detection device 
Detected point 6 2 9 3 15 8 3 46 
Actual leakage 6 2 9 2 15 8 3 45  
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The performance of the leak detection device compared with MWA 
professional experts in the field trial is summarized in Table 2. The 
performance comparison was conducted in the 7 areas colored in green 
and yellow. The leakage results were confirmed by the actual drilling for 
repair as an example of repairing report shown in Fig. 16. The profes
sional experts detected 45 leakage points, and 43 actual leakage points 
were confirmed. In parallel, by using the AI-based leak detection device 
in the same areas, novice operators detected 46 leakage points, and 45 
actual leakage points were confirmed. The accuracy of the proposed 
device was 97.83%, while the accuracy of the professional experts was 
95.56%. The results show that the accuracy of the proposed device is 
slightly higher than the professional experts. Notably, the results might 
be affected by the time sensitive nature of the professional experts 
during the leak detection which was not an issue for the novice operators 
using the leak detection device in the field trial. 

5. Conclusion 

The paper evaluates an AI-based water leak detection system with 
cloud information management. The main purpose of this work is to 
systematically collect and manage leakage sounds and generate a clas
sification model. This system is designed to support the leakage pin
pointing task by providing newly trained operators with guidance in 
making decision and to minimize the imprecision due to fatigue. 
Detailed description, platform system design, and experimental results 
of the AI-based leak detection device are presented in the paper. The 
paper has evaluated the performance and compared the accuracy of 
SVM, DNN, and CNN algorithms based on datasets from 5 of the MWA 
branch areas. The results show that the DNN performed better than SVM 
and performed as well as CNN, but with less complex structure. The DNN 

algorithm was used in training and applying the model in the field trials 
to detect water leakage along with the leak detection device. The field 
trials were conducted to compare the accuracy between professional 
experts and the developed device in 7 areas of the MWA branch areas. 
The results show that the AI-based water-leak detection system with 
cloud information management can classify leakage and no-leakage 
sounds for novice operators with similar accuracy compared with pro
fessional operators using conventional methods. For further advance
ment, additional data collection and field trials will be performed by 
MWA and NECTEC to improve the accuracy of the leak detection model 
and the usability of the device in the field. Other parameters, such as the 
time spent for leak pinpointing task and the sound level of ambient 
noise, will be introduced in the future study. The prototype system 
developed in this paper is a promising tool for reducing water loss, and it 
represents an innovative step towards the goal of sustainable water 
resource management for the improvement of environmental and 
human wellbeing. 
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