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To increase productivity in agricultural production, speed, and accuracy is the key requirement for long-term economic growth,
competitiveness, and sustainability. Traditional manual paddy rice seed classification operations are costly and unreliable
because human decisions in identifying objects and issues are inconsistent, subjective, and slow. Machine vision technology
provides an alternative for automated processes, which are nondestructive, cost-effective, fast, and accurate techniques. In this
work, we presented a study that utilized machine vision technology to classify 14 Oryza sativa rice varieties. Each cultivar used
over 3,500 seed samples, a total of close to 50,000 seeds. There were three main processes, including preprocessing, feature
extraction, and rice variety classification. We started the first process using a seed orientation method that aligned the seed
bodies in the same direction. Next, a quality screening method was applied to detect unusual physical seed samples. Their
physical information including shape, color, and texture properties was extracted to be data representations for the
classification. Four methods (LR, LDA, k-NN, and SVM) of statistical machine learning techniques and five pretrained models
(VGG16, VGG19, Xception, InceptionV3, and InceptionResNetV2) on deep learning techniques were applied for the
classification performance comparison. In our study, the rice dataset were classified in both subgroups and collective groups for
studying ambiguous relationships among them. The best accuracy was obtained from the SVM method at 90.61%, 82.71%, and
83.9% in subgroups 1 and 2 and the collective group, respectively, while the best accuracy on the deep learning techniques was
at 95.15% from InceptionResNetV2 models. In addition, we showed an improvement in the overall performance of the system
in terms of data qualities involving seed orientation and quality screening. Our study demonstrated a practical design of rice
classification using machine vision technology.

1. Introduction

Oryza sativa, known as Asian rice, is a popular variety of rice
grown in many countries all over the world. It is divided into
2 subspecies according to climate conditions, including
indica and japonica. Rice in Thailand is an indica species,
which is adapted to suit the humid areas of tropical Asia
(India, southern China, Vietnam, Thailand, Myanmar, etc.)
[1, 2]. The world needs a hundred million tons of rice annu-
ally. Thailand is the world’s second-largest exporter of rice
and approximately 40% of Thais who work in agriculture

are rice farmers. Thailand has different climatic conditions
that make a genetic diversity of rice varieties throughout
the country. Thailand has more than 17,000 varieties of rice
cultivar, which are under the responsibility of the govern-
mental Rice Department. One of the most important tasks
of the agency is to control the rice quality. The contamination
causes many problems such as variety impurity, rice muta-
tion, or cross-breeding, which may result in poor quality pro-
duction. In the traditional way, the examination of
contamination in breeding seeds has been done by rice
experts. Paddy seeds are quite small and are sometimes
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ambiguous to classify differences between each type. The
experts use personal skills to consider morphological struc-
ture, shape, texture, and color in many parts of the seed to
make a decision. In the examination, they classified a specific
type of rice seeds from a specific locality. Firstly, they put seed
samples, which are supposed to be the same type on a table
and examine them with tools such as a large magnifying
glass, an illumination, and forceps. Then, they try to find
and bring out seeds with different physical characteristics,
which are contaminated seeds from other types. With the
limitations of being human, a large number of seed inspec-
tors take quite a long time in the process because it is difficult
for the human eyes to find small differences in one seed
among many seed samples.

Over the past decade, computer vision has been widely
used in various domains. Several methods in the field of com-
puter vision have been changed from statistical methods to
deep learning methods because it offers greater accuracy for
tasks such as object detection and image recognition. The
technology can help computer scientists to develop tasks in
various fields rapidly. It can automatically learn features from
the given data while the traditional machine learning
methods need feature engineering one at a time. It can handle
the variability and deviations of the data that are very similar.
However, deep learning technology is rather complicated. It
has a large network structure and requires a large amount
of training data, time-consuming, and high-performance
computing resources. In this work, we experimented with
classification methods of rice cultivars and compared classifi-
cation performances between traditional machine vision
methods and deep learning methods.

2. Related Works

Machine vision in agriculture applications, related to rice
quality inspection and grading, has been reviewed and sum-
marized [3–5]. There are various works related to the field
of rice quality inspection. Measuring rice quality can be proc-
essed both on milled rice and paddy seeds, depends on the
purpose of usage. The following works presented the quality
inspection methods for milled rice grains or polished rice.
HerathRavi and De Mel [6] analyzed four rice varieties that
had quite different shapes and colors. Some previous works
[7–9] were aimed at grains mixed with other defects.

They studied various grain defects, such as broken,
chalky, damaged seeds, and improper elements. The defected
grains needed to be detected and classified to estimate the
purity of the rice grain. Wah et al. [9] proposed an image
processing technique with a k-NN classifier and evaluated
three classes (30 images for each class). Some other research
[10–13] placed emphasis on detecting the chalkiness that
appeared in the grain. A chalky grain is a grain the kernel
of which is partially opaque or milky white. The degree of
chalkiness is one of the important indicators in the evalua-
tion process. Rice grains with a high degree of chalkiness tend
to break during milling, which will affect their taste.

The works of references [8, 14, 15] focused on classifying
milled rice quality between head rice and broken rice. Head
rice seed has a length equal to or over three-quarters of the

average, which is longer than the broken rice. The quantity
of the two rice types is one of the criteria for measuring
milled rice quality. In [14], they studied to help employees
distinguish between head rice and broken rice grain to evalu-
ate different rice standards. Yao et al. [8] processed 500 of
head rice grains and 500 cracked rice grains of five rice kernel
varieties. Zareiforoush et al. [15] applied four statistical clas-
sification techniques on four different classes of milled rice to
classify the degree of milling and the length of rice grains.

In the above articles, they focused on milled rice quality
examination. In the studies described later, they focused on
paddy seed examination, which was the same examination
target as in our work. They tried to identify the differences
between rice varieties related to object classification technol-
ogy. The difficulty of this technology depended on the com-
plexity of the object’s shape and the number of the types of
objects to be classified. Having many types of objects would
increase the chance of ambiguity between each type. Many
research studied between 3 to 6 rice species while the only
research by Kuo et al. [16] studied up to 30 species.

Anami et al. [17] was the only researcher that proposed a
rough assessment of rice quality instead of the one-grain clas-
sification. They attempted to classify the level of adulteration
from the image of mixed bulk paddy samples varied between
10-30% of the adulteration levels. Watanachaturaporn [18]
adopted a symbolic regression algorithm to find analytic
expressions to separate the Khao Dawk Mali 105
(KDML105) rice from three similar rice varieties. Their work
studied a total of 800 images. Kuo et al. [16] proposed a
sparse-representation-based classification for distinguishing
over thirty rice grain varieties. Their process required analyz-
ing a high-resolution image through a powerful optical
microscope at high magnifications. They could examine the
appearance of a sample in greater detail on both feature traits
of grain body and parts (such as husk, sterile lemmas, and
brush). Their experiments evaluated 50 images of each specie
and received 89.1% overall accuracy. However, the micro-
scope is a large, cumbersome, and expensive equipment. It
also requires a careful sample preparation before placing rice
grains in the microscope. Archana et al. [19] suggested
methods to extract new angular features, horizontal-vertical
and front-rear angles, for classifying four paddy varieties.
The fusion feature could increase accuracy from 95.2% to
97.6% when evaluating the 164 images of paddy seeds by
using a back propagation network classification.

Many researches [20–22] proposed a rice seed classifica-
tion technique analyzing information from a hyperspectral
imaging system. Hyperspectral imaging provided a wide
range of an electromagnetic spectrum with higher details of
spatial relations between the particular spectra. It suited for
analysis of the surface of a material. Additionally, many of
them paid attention to not only traditional classification
techniques but also deep learning techniques (CNN). Vu
et al. [22] used hyperspectral image data from a near-
infrared camera to classify 6 common rice seed varieties
and evaluated 108 seeds in each variety and 648 seeds from
across all varieties using SVM and a Random Forest classifi-
cation technique. It was found that combining spectral and
shape-based properties derived from the rice seeds could
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enhance accuracy to 84%, compared to 74% when using only
visual features.

Lin et al. [23] proposed a comparison between two tech-
niques, CNN and traditional methods, to distinguish rice
grains between three different shapes (medium, round, and
long grain). They studied 5,554 images for calibration
purposes and 1,845 images for validation purposes. The
experiments adjusted training parameters such as batch size
and epochs in the CNN method. They also carried out an
experiment using the traditional statistic methods that got a
classification accuracy ranging from 89 to 92%. On the other
hand, the experiment using the CNN method had given
95.5% classification accuracy, which was higher than the tra-
ditional methods. Chatnuntawech et al. [20] used benefits
from the synergy between hyperspectral imaging and CNN.
Their experiments were conducted on 2 sets of data, consist-
ing of 232 samples from six types of milled rice and 414 sam-
ples from four types of paddy rice. The proposed method’s
accuracy was 86.3%. Compared to this, 79.8% was obtained
from the SVM technique on the paddy seed dataset, while
the accuracy of the other set was slightly different. Qiu et al.
[21] identified 4 varieties of rice seeds using hyperspectral
imaging with three machine learning methods, namely, k-
NN, SVM, and CNN. The experiment was studied on two
different spectral ranges, and the numbers of training sam-
ples are varied. A hyperspectral camera was adopted to deal
with the problem of rice varieties classification in many
researches. However, the instrument was costly and complex.
Moreover it required a fast computer, sensitive detectors, and
large data storage capabilities.

From the above literature survey, most research identi-
fied paddy rice seed varieties from a few species. Further-
more, they studied only few tenth image samples or few
hundred images of each rice species. The limited number of
samples might cause data bias, and insufficient variation
may cause the trained model not to be general enough for
practical uses.

3. Proposed Methodology

In this work, we presented a technical study of paddy seed
quality inspection by evaluating over 14 varieties of Thai

paddy rice, as shown in Figure 1. Popular and economical
potential rice samples were chosen and supported by the
Thailand Rice Department. We analyzed more than 3,500
images in each species from various planting sources. This
study aimed at being a basis for a prototype of a rice grad-
ing machine [24], which is currently under development.
The hardware consisted of a tray for conveying seed, a
photographic part, a contaminated-seed detector, and a
contaminated-seed elimination part. Therefore, many grain
samples were collected to cover the diversity of each rice
species to assess the potential or the limitation of the effi-
ciency of classification obtained from each rice variety. We
plan to improve the technique in future efforts.

Our rice varieties classification process consisted of the
following steps: object orientation to align seed image in the
same direction, image screening for outlier/irregular/abnor-
mal seed or tilted seed, feature extraction for retrieving phys-
ical seed properties, and rice varieties classification. The
system overview is presented in Figure 2. The classification
performances were evaluated by comparing both traditional
machine learning and deep learning technique. We investi-
gated the performance of each rice variety in both subgroups
and collective groups. We also presented preliminary results
on data quality aspects such as quality screening and seed
orientation. A flatbed scanner was selected because it was
capable to acquire large sample data in one shot. Also, it
was a reasonable price and an acceptable image data quality.

4. Materials and Methods

4.1. Sample Preparation. Rice seed samples of 14 varieties
(shown in Figure 1), obtained from various provinces in
Thailand in order to cover different characters which are var-
ied depending on producing environments and areas, were
provided by the Thailand Rice Department. The samples
were prepared, and only complete seeds were selected, by
experts from the Rice Department.

4.2. Training Image Acquisition. Each training image of rice
seed was acquired from a scanner with a special box tray,
which could roughly separate each rice seed sample and
usually adjusted each seed to be aligned horizontally as

CNT1 KDML105 PSL2 PTT

RD15 RD31 RD33

RD41 RD47 RD49 RD51

RD57

RD6

SPR1

Figure 1: Fourteen rice cultivars used in the present experiment.
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shown as in Figure 3(a), because a seed which was not
horizontally laid (Figure 3(b)) did not show all of the seed
features properly. The seeds, which were not horizontally
laid, were tilted. Examples of tilted seeds are shown in
Figure 3(c). The obtained images were rechecked to get
rid of images that contained more than one seed and
images that the seed was not properly aligned horizontally.
An object region in each input image was extracted by
applying background-subtraction using Otsu thresholding
method. Then, ellipse fitting with coordinates of object
contour was used to calculate the object approximate size
from the ellipse major axis and minor axis values. If the
object size varied greatly from the average size, the object

in the image was determined not properly aligned in the
horizontal orientation.

4.3. Preprocessing. After getting a single seed, this section
dealt with a preparation of quality seed image, which con-
sisted of two parts: seed alignment and seed quality
screening.

4.3.1. Seed Orientation/Alignment. This process examined
and rotated the seed body into the horizontal axis direction,
so that all seeds’ head-and-tail directions would be aligned
in the same direction. Being aligned in the same direction
simplified extracting features and analyzing data. This

Training

Training data preparation

Rice seeds image scanning

Preprocess

Seed area segmentation

Seed orientation

Seed quality screening

Rice seed image database

Feature extration
Shape feature
Color feature

Texture feature
Training

Prediction result

Preprocess

Rice seed seed image to be classified

Feature extraction

Deep learning
classification model Statistical

classification model

Prediction result

Figure 2: System overview.

(a) Properly horizontally laid seed (b) Tilted seed

(c) Tilted seed examples

Figure 3: (a) Schematic of properly horizontally laid seed and the corresponding cross-sectional view; (b) tilted seed and the off dimensions;
(c) photographs of tilted seed examples.
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process is necessary because the grain might move or be mis-
aligned during scanning. The procedure details are described
as follows:

The seed image was processed based on coordinates of
the object contour therefore the image needed to be rotated
and flipped so that the image appeared as shown sche-
matically in Figure 3(a). The seed head pointed to the left
and the tail pointed to the top-right. After adjusting the
alignment, shape features that expressed the head and
the tail were easily extracted by the method described in
Section 4.4.

The distances between each object contour points and the
object centroid were calculated. The head point and the tail
point were defined as tip points, which were the point fur-
thest away from the centroid and the point locally furthest
away from the centroid on the opposite side. A common
physical shape of rice seed is shown in Figure 4. The shape
around the head normally had a relatively symmetrical cor-
ner. In contrast, the shape around the tail had an unsymmet-
rical corner and might have two small corners due to the
structure of lemma partly hanging over the palea. As a result,
the head tip point could be determined by calculating the
object area around the tip point, shown by the red triangle
in Figure 4, and by comparing their sizes. After the head
point was determined, the rice image could be rotated so
the head point was on the left of the image and the line
between the head point and the centroid was parallel to the
X-axis in the image shown in Figure 3(a).

4.3.2. Seed Quality Screening. It was important that input data
images had high quality because we dealt with a lot of images
and a large sample collection. A delivering of inappropriate
data to be analyzed in the system should be avoided. There
were two types of seed samples during the data preparation
that should have been discarded. The first type, outlier seed,

was caused by raw material itself while the other type, the
tilted seed, was an error on the procedure in the seed scan-
ning process.

(1) Outlier seeds were rice seeds that had different shapes
from the standard one, e.g., very long tail, large crack,
and smudged skin. Samples of outlier seeds are
shown in Figure 5

(2) Tilted seeds were rice seeds that had an oval shape
when viewed cross-sectionally. It might tilt up when
laid on the flat surface of the scanner. Examples of
tilted seeds are shown in Figures 3(b) and 3(c)

A seed quality screening process to examine the two cases
is described as the following.

We extracted features (shape, color, and texture pre-
sented in Section 4.4) from each sample and used the features
as input data for the DBSCAN technique, one of the most
popular clustering techniques, to detect outlier from sample
data. DBSCAN uses a density-based clustering algorithm to
detect abnormally of multidimensional data. The algorithm
identified and clustered in a high-density region separated
from a low-density region throughout the two parameters,
eps (radius of neighborhood region), and MinPts (minimum
number of points). A point was decided as a clustered region
only if there were more neighbors than MinPts and was
within the eps. Otherwise, a point that did not satisfy the con-
dition was defined as an outlier point. In the tilted case, the
shapes of the seed had more distinctive characteristics than
the diverse shape of an outlier seed. Most of the tilted seed
was more symmetrical in shape along the length of the body
than the seeds laid horizontally. Here, the SVM technique
with our shape features was applied to tackle this problem.
A classify model was created to identify seed types between
a tilted seed and a horizontal seed.

Tip
point

Tip
point

Centroid

Figure 4: Seed orientation.

Figure 5: Outlier seed samples.
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4.4. Features Extraction. After screening out inappropriate
samples from the previous process, a proper seed sample
image was rotated in the same direction and was easily facil-
itated to extract the data features on the various parts of the
seed body.

4.4.1. Shape. We used basic physical shape features as
referred in [25]. The extracted values are shown below.

C = circularity was calculated from equation 1, while
A = object area and P = object perimeter.

C = 4π A

P2 : ð1Þ

R = roundness and Co = compactness was calculated
from equation (2), while Dmax = object maximum diam-
eter.

R = 4A
πDmaxð Þ2 , CO =

ffiffiffiffiffiffiffiffiffiffiffiffiffi

4A
πDmax

s

: ð2Þ

Shape factors were calculated from equation (3). F1 =
shape factor 1, F2 = shape factor 2, F3 = shape factor 3,
d1 = major axis length and d2 = minor axis length.

F1 =
d1
A
, F2 =

A

d1
3 , F3 =

4A
πd1d2

: ð3Þ

FA = area factor was calculated from equation (4)
when Ahull = object convex hull area was shown as an
area surrounded by a red line in Figure 6(a).

FA =
A

Ahull
: ð4Þ

Slope factors were calculated from contour pixel
coordinates. The object was divided into N equal parts.
From the experiment, N was determined to be 9. The
point on the left of the object represented the head
point Phead, and the point on the right of the object
represented the tail point Ptail, shown by pink points
in Figure 6(b). We defined Suppern = nth slope factor
on the upper side, Slowern = nth slope factor on the
lower side, Puppern = nth dividing point on contour on
the upper side (blue points), and Plowern = nth dividing
point on contour on the lower side (green points).

When n = 2, 3,⋯,N − 1,

Suppern =
Puppern yð Þ − Puppern−1 yð Þ
Puppern xð Þ − Puppern−1 xð Þ : ð5Þ

Slowern =
Plowern yð Þ − Plowern−1 yð Þ
Plowern xð Þ − Plowern−1 xð Þ : ð6Þ

Figure 6(c) shows the illustration of Stail, tail slope
factors. Qmidn =nth point dividing object into Ntail equal
parts on the object middle line shown as the green line.
Examples of Qmidn are shown as red points. The object
middle line, Lmid, was calculated from the thin object
area. Quppern (blue point) and Qlowern (green point) were
calculated in the same way as the Qmidn, using the
object upper contour and the lower contour instead of
Lmid. Ntail was experimentally determined to be 21.
When m = 1, 2,⋯,M and M was experimentally deter-
mined to be 7. While pos ∈ fmid, upper, lowerg, Stailposm
and Stailavg were calculated as in equations (7) and (8).

Stail posm =
Ptail yð Þ −Qpos Ntail−mð Þ yð Þ
Ptail xð Þ −Qpos Ntail−mð Þ xð Þ : ð7Þ

Stail avg =
∑M

m=1Stail midm
M

: ð8Þ

We also used object contour shape histogram 180
degree around tail tip as shape factors. Example is
shown in Figure 7. From this histogram, we calculated
a hair around tail tip frequency value and used as
another feature.

4.4.2. Color. We used RGB color space in calculation and
color features below from each pixel color value in the object
area. When color ∈ fR,G, Bg and pcolor(x,y) = pixel value of
the color in the object at coordinate (x, y) and N was the
number of pixels of the object. We used the features below
for each color.

Max pcolor x, yð Þð Þ: ð9Þ

Min pcolor x, yð Þð Þ: ð10Þ

Avg pcolor x, yð ÞÞð = ∑pcolor x, yð Þ
N

: ð11Þ

(a) Convex hull (Ahull surrounded by red line) (b) Slope factors (c) Tail slope factors

Figure 6: Shape feature.
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V ar pcolor x, yð ÞÞð = ∑ pcolor x, yðð Þ −Avg pcolor x, yð ÞÞÞð 2

N
:

ð12Þ
We also used color histograms on RGB color space which

represented color distribution on the object.

4.4.3. Texture. We applied LBP (local binary pattern) [26] to
gray-scale object picture to extract texture features, which
represented each pixel intensity difference between neighbor-
hood pixel intensity.

LBP values were tolerance to brightness differences in the
picture. Finally, the computed LBP histogram was used as a
feature vector.

Another set of texture features was calculated from
GLCM (Gray-Level Cooccurrence Matrix). Normalizing
object image by using GLCM, the GLCM matrix, P of each
pixel value was Ai,j/∑i,jAi,j, where Ai,j = number of neighbors
with the center pixel value, i, and the neighbor pixel value j.
From the GLCM matrix P member p(i,j), we calculated con-
trast, correlation, homogeneity, entropy, and dissimilarity, as
shown below.

Contrast =〠
i,j

i − j 2�� p
�
� i, jð Þ: ð13Þ

Correlation =〠
i,j

i − μi j − μjð Þp i, jð Þð
σiσj

: ð14Þ

Homogeneity =〠
i,j

p i, jð Þ
1 + ij − jj : ð15Þ

Entropy = −〠
i,j
p i, jð Þ log p i, jð Þ: ð16Þ

Dissimilarity =〠
i,j
p i, jð Þ i − jjj : ð17Þ

4.5. Classification. The techniques in both classical machine
learning and deep learning techniques were applied to evalu-
ate the efficiency of rice varieties classification.

4.5.1. Statistical Classification Method. In the machine
learning technique, features described in Section 4.4 could
be identified and extracted by values pixels, position orienta-
tion, color, textures, and shape. There were four classifier
methods, including LDA, LR, k-NN, and SVM in this evalu-
ation. In the process, Principal Component Analysis (PCA),
a well-studied algorithm for reducing the dimension, was
applied to the extracted feature for reducing redundant and
irrelevant features without causing data loss. PCA trans-
formed a projection of the original data into a new subspace
of fewer dimensions while preserved the most important of
the original data. To estimate performance in each method,
an average accuracy was estimated by K-fold cross-
validation. It was applied to give our model an opportunity
to train on multiple train-test splits. A dataset was randomly
divided into k sets with approximately equal size. Perfor-
mance computing would repeat multiple times by using
k−1 sets in training and the remaining sets for testing.

Logistic regression (LR) [27] was one of the most popular
algorithms widely used for classification problems. The tech-
nique was a predictive analysis algorithm and based on the
concept of probability. The technique could map predicted
values through a prediction function, defined as the Sigmoid
function, to return a probability which was scored between 0
and 1.

Linear discrimination analysis (LDA) [28] was a general-
ization of Fisher linear discriminant, a method used in statis-
tics, pattern recognition, and machine learning. LDA was a
linear transformation technique to project data onto a
lower-dimensional subspace that maximized the separation
between multiple classes. It used Bayes theorem to estimate
the probability. LDA assumed a normal distribution for each
class, a class-specific mean, and a common variance.

The k-nearest neighbors algorithm (k-NN) [29] had been
widely used in classification problems because it was simple,
effective, and nonparametric method. Plotting all samples to
a super space and setting k as a number, k-NN used the k
nearest neighbors to decide which class was the new
unknown-class sample point belongs to. It calculated the dis-
tances between an unknown sample and the samples in the
predefined training set. Therefore, k-NN needed to define
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An example of Angle-Distance histogram graph around tail point

Figure 7: Example of a contour shape histogram around the tail point.
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the k nearest samples in the training set. The process started
with searching the closest k points according to the Euclidean
distance. The new unknown sample class was assigned as the
same class of the most of the surrounding points.

Support-vector machines (SVM) [29] classifier was one
of the most efficient machine learning algorithms and widely
used for pattern recognition. The algorithm would find the
optimal hyperplane that maximized the margin between the
two classes. SVM could efficiently perform a nonlinear classi-
fication using the kernel function to transform data into
high-dimensional feature spaces. In this work, we used a pop-
ular RBF (radial basis function) kernel function because it
performed good performance on a large variety of problems.
There were two parameters to be determined in the SVM
model, C, and gamma. To get the best model, the optimum
values of C and gamma parameters of the kernel could be
determined by using grid search with cross-validation.

4.5.2. Deep Learning. Recently, a convolution neural network
(CNN), known as deep learning [30], was used as a popular
and effective method for image analysis. Deep learning tech-
nique could learn high-level features directly from input
image data throughout many hidden layers of network archi-
tecture. CNN relied on a huge amount of parameters and
needed to be tuned to achieve an optimum solution. In this
paper, we used convolutional neural networks, which were
combinations of image convolution and deep neural network
as classification algorithms. We used the networks, which
were fully trained on a large opened image data ImageNet,
due to their ability in image classification. The ImageNet
[31] project was a large visual database designed for visual
object recognition software research. A model trained on
ImageNet could classify images among 1,000 classes of real-
world images. This made it a powerful and widely used in
the latest computer vision research. In this technique, we
studied some popular networks trained on ImageNet data
with 5 pretrain models including VGG16, VGG19 [32],
Xception [33], InceptionV3 [34], and InceptionResNetV2
[35]. The details of the networks are described below.

VGG was a uniform architecture. The VGG16 and
VGG19 consisted of 13 and 16 convolutional layers and
ended with three fully connected layers. Both networks used
only 3 × 3 small filters with stride 1, followed by multiple
nonlinear layers. With many layers, it could learn more com-
plicated features from images. However, this network had a
very large number of weight parameters. The Inception net-
work was an important milestone in the development of the
CNN classifier. Inception V1-V4 and InceptionResNet were
popular models with some differences from each other. The
inception module was used to act as a multilevel feature
extractor by computing 1 × 1, 3 × 3, 5 × 5 convolutions
within the same module of the network. InceptionResNet
was a combined hybrid with a performance of the ResNet
(Residual Neural Network). Xception [33] was an extension
of the Inception architecture which replaces the standard
Inception modules with depthwise separable convolutions.
Due to the reason that it had no need to perform convolution
across all channels, the number of connections in the model
was lighter than the models described before.

Deep learning performance could be improved by
increasing the amount of training data. Augmentation was
a technique to increase the size of a training dataset. It pro-
vided various image functions such as shift, flip, rotation,
zoom, rescale, and brightness. However, our research data
had already been rotated and flipped into the same align-
ment. Therefore, we did not use flipping and rotation in the
augmentation process.

5. Results and Discussion

Our work was developed on Windows OS processed on Intel
Core i7 3.2GHz CPUs, 16GB Ram. It was implemented by
OpenCV in C++ programming language, Scikit-learn, and
Keras python library for machine learning and deep learning.
For deep learning techniques, the entire training process was
specially performed on Linux OS using NVIDIA Tesla K80
for faster training with CUDA Core Graphic Cards with
24GB of GDDR5 memory. Rice seed samples were put in a
special tray box and were scanned on a flatbed scanner with
600 DPI resolution. When measuring the average size of
the seed, approximately 500 × 200 pixels were used. In the
experiment, we divided the rice dataset into subgroups to
analyze ambiguity among rice varieties and the potential of
classification techniques. The rice varieties were categorized
according to the same planting area because they had an
opportunity to mix together. It could be divided into three
groups. Rice varieties in the first group (GrpI) consisted of
CNT1, KDML105, PTT, RD15, RD33, RD51, and RD6. The
second group (GrpII) consisted of PSL2, RD31, RD41,
RD47, RD49, RD57, and SPR1. The last group (GrpAll) was
from combining the first two groups, a total of 14 varieties.
In each class, more than 3,500 seeds were photographed,
and a total number of close to 50,000 images was analyzed.
This result section is divided into three parts as follows.

5.1. Preprocessing

5.1.1. Seed Orientation. The seed orientation method
described in Section 4.3.1 was used to evaluate 20,000 sample
images randomly from all varieties and received an accuracy
rate of up to 98.32%. It was noticed that the missed detection
could be identified into two cases: (1) seeds that had rather
narrow tail with the shape similar to the head and (2) seeds
that had a uniformly wide body from the head to the tail.
The error seemed to be consistent with the hypothesis of
the proposed method, which relied on asymmetry compari-
son between the head and the tail shape. Generally, the head
of the seed should have higher symmetry than the tail. There-
fore, if the seed body had a uniform shape on both sides, it
was complicated to analyze. The problems in such seeds
required additional features, such as the sterile glumes’ posi-
tion on the seed body or curvature around the tail, to
improve efficiency.

5.1.2. Outlier and Tilted Seed Screening. After all of the seed
images were rotated in the same orientation, images that
had an irregular (outlier) or tilted shape appearance were
discarded from the dataset.
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In outlier seeds, we applied the DBSCAN technique per-
formed on all features from shape, color, and texture. The
parameters of 2 values (eps and MinPts) in the algorithm
were adjusted. In the experiment, the eps and MinPts values
were defined in the range from 0.2 to 10 and 4 to 20, respec-
tively. An optimum value range was found between eps 0.6-
1.2 and MinPts 10-15, which offered an ability to separate
only half of the total amount of outliers. Most of the seeds
that separated had a distinctly different shape, both in terms
of size and shape, such as seed that were longer than normal,
a long tip of the tail, and large cracks or smudges. However,
these types of seeds were in a small proportion of only 1.6%
because the database was prescreened for seed quality con-
trol. Actually, this group of seeds inevitably existed naturally.
In the future, if there are enough of these types of seeds, it will
be further studied.

In tilted seeds, it had more symmetrical shape along the
body length than the seeds that were laid horizontally. Here,
we created a classify model to identify the type of seeds
between tilted seed and horizontal seed, using shape feature
and SVM technique. A total of 10,000 seeds sampling from
all classes were divided in the ratio of 70 : 30 for training
and test sets. We obtained a model with accuracy reached
96.98%. It was utilized to reexamine images and removed
about 10% of the tilted seeds from the dataset. However, in
that case, we further tested the hypothesis by taking 500 sam-
ples placed on a curved tray and counted those seeds manu-
ally. We found that the tilted proportion appeared only 2% in
this small number of samples. Therefore, if we used a curved
container in the design of the grading machine device, it
would help to reduce this problem.

We also studied the effects of the discarded seeds on the
classification performance of various rice varieties. Testing
performance by comparing the efficiency before and after
blending these seeds was demonstrated by the SVM method
and evaluated on datasets in GrpI and GrpII. In the dataset,

these seeds were mixed in each of the rice variety in different
proportions. The total number of outliers was 714 seeds, of
which the proportion in GrpI and GrpII was at 53.4% and
46.6%. In addition, we had 4,265 tilted seeds, which were in
GrpI and GrpII in the proportion of 37.3% and 62.7%,
respectively. In GrpI, the efficiency rates before and after
filtering these seeds from the dataset were 87.90% and
89.2%, while in GrpII, the efficiency rates were 80.99% and
84.31%, respectively. We found that the differences in the
average accuracy in both groups decreased by 2-3%. Most
affected of the first three rice varieties were RD57, RD49,
and PSL2 in GrpII, which was reduced by 4-7%. Although
the human eyes perceived that these seeds were inappropriate
when examined for classification, the seed physical features
still had a unique difference in the variety appearances. The
average accuracy was reduced by only a few percent, not in
accordance with the proportion of these discarded seeds,
which was up to 10%.

5.2. Classification Results from Statistical Techniques. After
the seed object was aligned in the horizontal direction, the
object physical characteristic information was extracted by
using the proposed method described in Section 4.4. Princi-
pal Component Analysis (PCA) was later applied to obtain
features to get rid of the unimportant feature dimensions.
In the classification process, some data were discarded from
the seed screening process, resulting in different propor-
tions of the sample number of each class. Therefore, we
cut the number of samples according to the classes with
the least samples to provide balanced information. These
samples were randomized in equal proportions at 2,900
samples per class and divided into a training set and a val-
idation set with a proportion of 80% and 20%, respectively.
The performance of the classification model using 5-fold
cross-validation and confusion matrix was considered in
this processing step.

Table 1: Experimental results of statistical classification techniques.

Method
PCA = 50 PCA = 150 PCA = 350 PCA = 600 Train

Train Test Train Test Train Test Train Test Avg. Std

GrpI

KNN 71.09 72.12 72.02 73.84 72.02 73.74 72.09 73.67 8.70E-03

LR 81.09 80.2 86.59 85.86 89.09 88.35 89.46 88.72 1.08E-02

LDA 80.35 80.25 85.86 85.54 88.56 87.76 89.21 88.79 9.51E-03

SVM 85.9 85.81 89.57 89.26 90.48 90.59 90.54 90.61 4.40E-03

GrpII

KNN 60.69 61.18 61.78 62.04 61.77 62.36 61.77 62.27 1.08E-02

LR 71.25 70.27 76.51 76.11 79.28 80.1 80.07 80.49 9.16E-03

LDA 70.76 70.49 76.28 75.64 79.2 80.51 79.6 80.17 7.12E-03

SVM 77.12 76.9 81.31 81.4 82.54 82.66 82.44 82.71 7.26E-03

GrpAll

KNN 55.93 56.87 57.37 58.49 57.49 58.71 57.46 58.69 4.87E-03

LR 68.91 69.33 76.68 76.91 80.25 80.66 80.63 81.12 6.17E-03

LDA 67.31 67.26 75.16 75.12 79.13 78.74 79.68 79.77 6.80E-03

SVM 76.26 76.96 81.7 82.16 83.0 83.85 83.07 83.9 2.04E-03

9Journal of Sensors



CNT1

KDML105

PTT

RD15

RD33

RD51

RD6

CN
T1

KD
M

L1
05

PT
T

RD
15

RD
33

RD
51

RD
6

Tr
ue

 la
be

l

80

60

40

20

0

96.20

0.52

0.17 1.21 1.21

2.58

0.69 0.00

6.22

0.00

8.43

0.86

4.82

0.35

1.72

6.72

85.71

96.55

80.83

88.98

88.28

0.69

1.72

0.69

0.17

2.071.38

0.52

4.49

0.00

2.24

0.00

0.56

0.86

1.21

0.17 0.00

0.52

1.55 1.20

0.00

0.52

0.00

99.14

0.52

0.17 1.04 0.00

0.52

Predicted label

(a) GrpI

PSL2

RD31

RD41

RD47

RD49

RD57

SPR1

PS
L2

RD
31

RD
41

RD
47

RD
49

RD
57

SP
R1

Tr
ue

 la
be

l

80

60

40

20

0

87.39

0.86

0.35 5.18 1.04

13.97

1.21 1.04

0.00

8.30

0.17

1.38

1.89

1.04

0.00

1.04

66.38

89.29

91.74

90.53

78.55

2.42

9.00

0.69

11.88

0.174.65

1.04

0.34

0.17

1.04

0.00

1.20

3.63

6.02

0.34 3.10

1.04

2.24 0.34

0.00

9.64

0.17

74.87

2.59

2.59 3.45 0.00

16.03

Predicted label

(b) GrpII

CNT1

KDML105

PSL2

PTT

RD15

RD31

RD33

RD41

RD47

RD49

RD51

RD57

RD6

SPR1

CN
T1

KD
M

L1
05

PS
L2

PT
T

RD
15

RD
31

RD
33

RD
41

RD
47

RD
49

RD
51

RD
57

RD
6

SP
R1

Tr
ue

 la
be

l

Predicted label

80

60

40

20

0

89.16

0.17

0.17 0.17 0.69

0.00

1.03 1.89 0.86 0.17

1.38 0.00 0.35 0.00

0.00 0.00

0.00 0.00

0.52

1.033.27

0.35

0.52

0.6

0.35

10.67

0.000.52

0.520.000.00

0.17

0.52 1.38

3.61

83.70

0.52

0.52 0.34 0.17

1.20 0.17 0.17

0.00 0.00 0.00

1.04 0.00 0.17

0.34

0.17 0.00

0.00 77.55

0.00

0.00

99.48

9.47

6.74

0.00

75.56

0.69

0.00

0.00

0.00

0.00

0.17

1.72

1.55

86.23

0.34 0.00 0.00

1.55 0.00 0.85

0.17

1.03

0.17

0.52

0.17

1.72

8.13

0.52

0.34

0.34 0.86 0.00

0.17 1.20

0.34

1.20

0.00

0.35

0.00

12.26

0.00

0.34

0.00

0.35

0.17

0.69 8.95

85.29

83.13

93.62

74.44

68.33

1.20

0.17

0.34 4.98

0.34

0.69

0.17

0.00

0.34

0.86

4.13

6.37

0.00

0.69 1.20

0.20

7.431.38

0.52

1.38

0.00

1.89

0.69

1.03

0.86

0.34

1.37

0.86

4.49

0.34

90.21

1.38

1.721.20

1.72

5.84

0.34

1.72

1.20

0.69

0.17

0.17

0.00

1.38

1.72

0.17

1.20 1.37

0.17

2.25 1.04

1.03

0.52

4.46

5.87

80.76

1.90

0.86 0.34 1.72 0.52 0.86

0.35

0.34

0.00

0.00 14.63

1.73

1.55

0.86 0.69

2.41

0.86 0.17

1.54 0.34

0.52

86.40

1.37 0.17 1.89

0.00

0.86

0.69

1.55

2.13

0.86

0.34

(c) GrpAII

Figure 8: The confusion matrix of rice varieties with SVM method: (a) GrpI; (b) GrpII; and (c) GrpAll.
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In classification with k-NN, we used Euclidean distance
as a distance function and optimized k parameter between
five to forty-five range [5, 10, 15..., 45]. We found that k =
15 was the best accuracy given from our experiment. For
the SVM classification method, the grid searching range of
each parameter was at gamma = ½0:0001, 0:001, 0:01, 0:1, 1,
10, 100� and C = ½0:001, 0:01, 0:1, 1, 10, 100, 1000�. The high-
est accuracy was achieved at gamma = 0:001 and C = 10.
Therefore, we conducted experiments based on these param-
eters, which gave the highest accuracy.

Table 1 shows the performance comparison from the
four classification techniques when using PCA at various
values. From the efficiency of all 3 groups of rice varieties,
we found that the accuracy of all classification methods had
an increasing trend according to the increasing PCA, and it
was not changed much when PCA was equal to 350. LR
and LDA methods started at a lower rate than the SVM
method but tended to increase more clearly than SVM while
the PCA increased. The accuracy of the k-NN method had
changed only 2-3% even though the PCA was higher. The
performance in GrpI had better accuracy than that of the
GrpII, while GrpAll classified on all 14 rice varieties was close
to that of the GrpII. SVM method achieved a 2-3% higher
accuracy rate than the LR and LDA methods and 17-25%
higher than the k-NN method. Among all studied methods,
the best accuracy rate on the SVM technique presented at
PCA 600 was 90.61%, 82.71%, and 83.9% in GrpI, GrpII,
and GrpAll, respectively.

Results of the confusion matrix of classification in each
group, which was obtained from the SVMmethod, are shown
in Figure 8(a)–8(c). In Figure 8(a), the first three rice varieties
in GrpI that received a high accuracy rate was RD6 at 99.14%
and the two pairs of varieties, including (CNT1 and PTT)
and (RD33 and RD51), had accuracy rates at 96.2-96.55%
and 88.98-88.28%, respectively. RD15 was a rice species that
appeared to be ambiguous with RD33 and RD51 at 6%. In
Figure 8(b), the first 3 varieties that gave the best identifica-
tion were RD47, RD49, and RD41 at 91.74%, 90.53%, and
89.29% accuracy, respectively, while RD31 was the worst to
be classified (66.38%). The three varieties of RD31, RD57,
and SPR1 were the most ambiguous with a range between
9.0-16.03%. In Figure 8(c), the accuracy rate remained at
83% closed to that of the GrpII although GrpAll had the
number of rice varieties up to 14 species. This experiment
showed that GrpI and GrpII had some dependencies on each
other with relatively low ambiguity of a range between 1-4%.
There were 4 varieties with a low accuracy rate, including

RD31, RD15, RD57, and SPR1, which were very ambiguous
from a total of 14 rice varieties in the study. Their accuracy
ranged between 68.33-77.55%. From the confusion matrix,
we could see that RD31 was an ambiguous species between
RD57 and SPR1 with false-positive prediction results at
10.67% and 14.63%, respectively.

5.3. Classification Results from Deep Learning Methods. The
classification performance of rice varieties in this section
was evaluated by using deep learning techniques, which had
a complex network structure and many variables involved.
Training a classify model on the technique took several days
to process, in contrast to the statistical techniques which
needed only a few hours. Therefore, this study presented a
performance only in GrpAll because of processing time
limitations. In this testing, we adopted a network architecture
with weights trained on ImageNet, namely, VGG16, VGG19,
Xception, InceptionV3, and InceptionResNetV2. In this
experiment, an image size was about 250 × 250 pixels, and
the number of epoch was equal to 200, which had training
time enough to show the trend of performance through the
entire training dataset. We also had defined the number of
freezing layers in the model. This freezing was related to pre-
venting weights in the network layer being modified. If the
model did not freeze any layers, it meant that the weight in
the network layer was modified and took longer training
time. In addition, we also studied data quality factors that
affected the performance of the model in terms of the accu-
racy and the duration of training time, such as the orientation
of the seeds and the image size used to train the model.

We conducted an experiment to train deep learningmodels
from the weights pretrained by the ImageNet dataset. From
2,900 samples in each rice variety, we trained each model with
2,320 (80%) images from each class, including 2,030 (70%)
images for training, and 290 (10%) images for validatingmodel.
Then, we tested the performance accuracy of each model with
test datasets, which contained 580 (20%) images per class. For
each network architecture, we used the model with weight
obtained at the 200th epoch, defined as Acc200, and model with
weight obtained the least validation loss, defined as Accl. The
experimental results are shown in Table 2, and the training
model validation accuracy is shown in Figure 9.

In Table 2, we found that the best classification efficiency
was almost 95% accuracy obtained from InceptionResNetV2
and Xception, which their training was performed without
freezing the layer while the remaining models received lower
performance with a range of 85-90%. In training time, the best

Table 2: Deep learning experimental results with the top layer set at 1024 nodes and input image size set at 250 × 250 pixel.

Model
Number of bottom

layer frozen
Acc200 (%) Accl (%)

Test time per
image (ms)

Model training
time (hour)

InceptionResNetV2 0 94.74 95.14 17.00 89 : 03

Xception 0 94.3 93.82 13.92 80 : 36

Xception 108 90.34 90.38 13.92 53 : 15

InceptionV3 249 84.24 85.32 7.64 32 : 44

VGG16 15 88.62 89.45 11.95 33 : 38

VGG19 15 88.74 90.94 13.73 34 : 12
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Figure 10: The confusion matrix of rice varieties in GrpAll with InceptionResNetV2 model.
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accuracy from InceptionResNetV2 and Xception took up to
1.5-2.75 times longer than the other models throughout the
number of epochs. However, the efficiency of the two models
increased rapidly since the epoch number equaled to 10 and
started to stabilize when it reached 50 as shown in Figure 9.

Figure 10 shows a confusion matrix of classification
results from InceptionResNetV2. Most rice varieties could
well be distinguished from each other. The first 3 varieties
that had low accuracy rates were SPR1, RD31, and RD57,
which were 85.17%, 88.97%, and 90.69%, respectively. How-
ever, the results of three varieties of them, (SPR1, RD31, and
RD57), were in the same group as the SVM method, which
had ambiguity rates between 21-8.62%.

In the study of the size of images used in training, Table 3
shows the trend of efficiency that affected the image size at
various values. Here, we selected the VGG19 model in this
training because it gave a good performance in a short train-
ing time. In each level of the reduced image size, this reduc-
tion could save about 1.3 times of the training time. The
performance (Accl) was almost no significant difference when
the image size changed from 250 to 200 pixels but it was
worse by 3.61%, 4.14%, and 10.7% when the image size drop
to 150, 100, and 50 pixels, respectively. In conclusion, reduc-
ing the image size allowed for faster training time. However,
the image size should not be lower than 150 pixels because it
decreased the efficiency significantly.

We had evaluated the effectiveness of our seed orienta-
tion process. An experiment was conducted to compare the
performance of two models. The first model was trained with
our dataset that had been applied to the seed orientation pro-
cess, and the second model, a baseline model, was trained
with the same dataset that had not been used in the seed ori-
entation process. The augmentation process of the first
model included shifting, zooming, rescaling, and brightness
adjustment, and the augmentation process of the second
model includes shifting, zooming, rescaling, brightness
adjustment, flipping, and rotating. We tested the process
with InceptionResNetV2 model by performing on a short
training time with an epoch number equal to 50. The dataset
with 1,000 samples in each class were used in this evaluation,
by dividing it into proportions of 80%, 10%, and 10%, for
training, validation, and testing, respectively. We found that
using our seed orientation technique could improve perfor-
mance by 1.3% when compared to the nonoriented method,
and the efficiency was improved slightly.

6. Conclusions

In this paper, we developed and tested a quality inspection
method to identify 14 rice cultivars from a database of nearly
five thousand seeds received from many planting areas. We
implemented a method to deal with a large number of seed
for preparing data quality appropriately before being used
as input for machine learning techniques and to improve
classification ability. It was found that the seed orientation
improved the classification accuracy in deep learning experi-
ment by 1.3%, and the seed screening improved the classifica-
tion accuracy in statistical methods by 2-3%. For the
classification of rice varieties, we investigated up to 2,900 data
samples in each rice variety for training and testing models.
Several methods in machine learning techniques were evalu-
ated and compared in order to obtain a method that had the
best performance. In the experiment using statistical
methods, we found that SVM performed the best classifica-
tion with an accuracy of 83.9% when the PCA dimension
number was set at 600. In the experiment using deep learning
method, we found that the InceptionResNetV2 model using
the validation data gave the least loss value and performed
the best classification accuracy at 95.14%. The results showed
that the efficiency of deep learning method performed up to
11.24% better than the traditional method. Based on the
results of the study and the efficiency from this investigated
process, we will further improve our recently developed
machine for seed quality inspection to be more efficient.
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