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FULL LENGTH ARTICLE

Preparation and properties of metakaolin-based porous geopolymer formed 
with sodium perborate
Sasijuta Wattanarach, Sitthisuntorn Supothina and Parjaree Thavorniti

National Metal and Materials Technology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, 
Thailand

ABSTRACT
This work aimed to study the use of sodium perborate as a foaming agent in the production of 
porous metakaolin-based geopolymer. The influence of sodium perborate foaming agent on 
physical properties, mechanical properties, and thermal conductivity was focused. The results 
revealed that the porosity and pore size increased with an increment of the additions of 
sodium perborate from 0.5 to 2.0 wt.%. The obtained porous geopolymers showed compres
sive strength of 5–6 MPa and thermal conductivity in the range of 0.22–0.32 W/mK. The 
addition of sodium perborate produced porous geopolymer with acceptable compressive 
strength and thermal conductivity.

ARTICLE HISTORY 
Received 9 March 2022  
Accepted 9 June 2022 

KEYWORDS 
Geopolymer; sodium 
perborate; mechanical 
strength; porosity; thermal 
conductivity

1. Introduction

Geopolymer is a new amorphous to semi-crystalline 
inorganic material that is synthesized by the reaction 
of rich alumina and silica sources with alkaline solution 
at ambient temperature to temperatures lower than 
100°C [1–3]. The aluminosilicate framework of geopo
lymer leads to excellent properties such as high 
strength, chemical resistance, and fire resistance. 
Because of these properties, geopolymer becomes an 
alternative material for building materials. In recent 
years, there has been a significant increase in the 
demand of lightweight building materials with 
a good thermal insulating property [4]. Compared 
with conventional thermal insulation materials, geopo
lymer has received a lot of attention due to its low 
energy process.

Several methods have been developed to produce 
porous geopolymers [5–7] such as lightweight fillers 
addition [8,9], direct foaming method [10], replica 
method [11], additive manufacturing [12,13], water- 
soluble pore-foaming agent addition [14], and the mix
ing of several methods [15]. Direct foaming method 
has been widely studied because of its simplicity [5– 
7,10]. The commonly used foaming agent are alumi
num (Al), silicon (Si), and hydrogen peroxide (H2O2) 
[16–20]. Since the geopolymer foamed using H2O2 

showed finer pore distribution than that using Al [21], 
H2O2 has got a lot of interests [22–28]. However, it can 
dissolve because of light. Therefore, H2O2 must be 
stored in cool place and its high concentration cannot 
directly contact [29].

Sodium perborate (NaH2BO4) is a chemical salt, 
which is generally used in the laundry detergent and 
cleaning products. NaH2BO4 is more stable and easier 
to handle than H2O2. It can be used for the same 
purpose as H2O2 [29,30], and it has been recently 
reported as a new effective foaming agent for produ
cing porous geopolymers because the use of NaH2BO4 

foaming agent showed lower cost to thermal resis
tance ratio than the use of H2O2 [31]. Thus, NaH2BO4 

should be a choice for foaming agent in the manufac
turing of porous geopolymer.

In addition, the preparation of porous geopoly
mer by direct foaming with sodium perborate (NaH2 

BO4) was very rarely reported in the literature. 
Therefore, the utilization of sodium perborate as 
foaming agent in metakaolin-based geopolymer is 
studied in this work, and the results is reported in 
this paper.

2. Materials and methods

2.1. Raw materials

Metakolin was received by calcining kaolin clay from 
Ranong province in the southern part of Thailand at 
600°C for 2 h. The conversion of kaolin clay to meta
kaolin via dehydroxylation reaction was confirmed by 
XRD analysis as shown in Figure 1. Its chemical com
position is presented in Table 1, which shows the con
tent of SiO2 and Al2O3 is about 95%. Sodium perborate 
(NaH2BO4) supplied from Elago Enterprise Pty Ltd. was 
used as the foaming agent.
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2.2. Porous geopolymer preparation

The alkaline activator was prepared by mixing 10 M 
sodium hydroxide (NaOH) solution with sodium silicate 
(Na2SiO3) solution at the weight ratio of 2:3. First, the 
metakaolin was blended with sodium perborate (NaH2 

BO4) by stirring at a speed of 750 rpm for 1 min and 
then mixed with the alkaline activator solution for 
further 5 min to form geopolymer paste. In this study, 
the weight ratio of solid:liquid content of 55:45 was 
employed. The amount of sodium perborate foaming 
agent varied from 0.5 to 2.0 wt% of metakaolin. 
Geopolymer paste was poured into 25 mm × 25 mm 
× 25 mm silicone molds for cube shape and 25 mm × 
25 mm × 120 mm silicone molds for bar shape. After 
demolding, the geopolymer samples were sealed with 
plastic film and cured at 27, 40, 50, and 60°C for 24 h. 
Afterward, the samples were wrapped with plastic 
sheet and aged at 27°C and 75% relative humidity 
until the required ages (28 days).

2.3. Characterization

Phases of porous geopolymer was analyzed by using 
an x-ray diffractometer (XRD, D8 Advance, Bruker). 
Physical properties i.e. water absorption, bulk density, 
and apparent porosity were carried out by using an 
Archimedes method according to ASTM C373. The 
total porosity was calculated following the 
Equation (1). 

Total porosity %ð Þ ¼ 1 �
bulk density
true density

� �

x 100 (1) 

Compressive strength and three-point bending 
strength (flexural strength) were tested by using 
a universal testing machine (Instron 8872) at 
a crosshead speed of 1 mm/min. Pore morphology 
was observed by optical microscope (Stereo micro
scope, Stemi-2000). Software Image J program was 

employed to analyze the pore size distribution by 
using the images with at least 100 pores per each 
sample. Thermal conductivity was examined by 
Thermal Conductivity Analyzer (TCA, model Hot Disk 
TPS 2500 S) using the transient plane method with 
a hot-disk sensor. To ensure accuracy, each sample 
was measured three times at room temperature and 
the average value was reported.

3. Results and discussion

3.1. Effect of foaming agent (NaH2BO4) on 
physical properties

Figure 2 shows bulk density and water absorption of 
the geopolymer with the different amount of foaming 
agent addition. Bulk density of geopolymer without 
the addition of foaming agent was 1.43 g/cm3 

(1429 kg/m3) and decreased to 1.08 g/cm3 (1077 kg/ 
m3) when 0.5 wt% of foaming agent was added. The 
lowest bulk density was found in the geopolymer with 
the addition of 2 wt% foaming agent. Water adsorp
tion of porous geopolymers increased with an increase 
in the amount of foaming agent.

Total porosity of the geopolymer with the addition 
of various amount of foaming agent is shown in 
Figure 3. Total porosity of geopolymer increased as 
the amount of foaming agent increased. The addition 
of 0.5 wt% Na-perborate (NaH2BO4) foaming agent 
resulted in a significant increase of porosity, and the 
total porosity was gradually increased when further 
increasing amount of foaming agent was added.

3.2. Effect of curing temperature

Figure 4 illustrates total porosity of porous geopolymer 
cured at different temperatures. It is clearly seen from 
this figure that the effect of curing temperature on the 
formation of the pore was not found. This indicated 
that the temperature at 27°C was enough to allow the 
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Figure 1. XRD patterns of kaolin and metakaolin.

Table 1. Chemical compositions of metakaolin.
Composition SiO2 Al2O3 Fe2O3 K2O Na2O CaO MgO Others

Metakaolin 54.48 41.30 1.29 2.40 0.05 0.02 0.07 0.39
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Figure 2. Bulk density and water absorption of the geopoly
mer with the different amount of foaming agent addition.
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reaction of sodium perborate with water to form the 
pores. Therefore, the curing temperature at 27°C was 
selected for further experiment.

3.3. Phase analysis and pore morphology

XRD patterns of the geopolymer with the addition of 
various amount of foaming agent as shown in Figure 5 
demonstrate the presence of amorphous phase of alu
minosilicate together with unreacted phase of 

metakaolin such as kaolin, illite, quartz, and magnesio
ferrite in all geopolymers. No difference of phases was 
detected in the porous geopolymer with the addition 
of foaming agent.

Figure 6 presents the pore morphology of porous 
geopolymer with the addition of various amount of 
foaming agent. The geopolymer without the addition 
of foaming agent showed the dense geopolymer 
matrix with a few pores, while many pores with various 
sizes were observed in the porous geopolymer with 
the addition of foaming agent. This result implied that 
the addition of NaH2BO4 foaming agent influenced the 
pore characteristic. The amount of pore increased with 
an increase in foaming agent content. Sodium perbo
rate (NaH2BO4) was dissolved in the water and reacted 
with water to form oxygen gas as given in equation (2) 
[32]. These oxygen gases generated the pores in geo
polymer matrix similar to H2O2 [28]. 

Naþ B OHð Þ2OOð Þ2
� ��

2ðSÞþ2H2O lð Þ $ 2Naþþ2½B OHð Þ3 OOHð Þ�
�
;

½ðB OHð Þ3 OOHð Þ�
�
$ B OHð Þ3þ HOO� ;

B OHð Þ3þHOO� þH2O$ B OHð Þ4
� ��

þH2O2

2H2O2ðlÞ ! 2H2OðlÞþ O2 gð Þ

(2) 

In addition, the tiny spherical pores coalesced when 
a higher content of foaming agent was added. An 
increment of the foaming agent content enhanced 
the formation of larger size of pores in the level of 
macropores as shown in Figure 7. This was due to 
thermodynamically unstable process of the foaming 
agent. The gas bubbles from its decomposition within 
the paste coalesced and expanded to become macro
pores [28,33]. In order to solve this problem, the stabi
lizing agent was added [33–35]. Since different types of 
stabilizing agent showed different effect on the foam 
and geopolymer paste [22–28,33–35], more investiga
tion on stabilizing agent and its parameter process will 
be conducted to further explain their behaviors.

Despite being thermodynamically unstable, which 
caused inhomogeneity of the pores, it has been 
reported that an advantage of NaH2BO4 was the slower 
decomposition rate, which is capable to control the 
beginning of the foaming process [31,36].

During the decomposition process of NaH2BO4 

(equation 2), boron in the form of borate is formed, 
which may pose a risk to the user’s health because 
borate is classified as a CMR substance in category 1B 
of Commission Regulation (EC) 790/2009, leading to 
the use of borates being forbidden in cosmetics [37]. 
Nevertheless, some borates including NaH2BO4 still 
have been used in other products such as detergents, 
bleaches, and disinfectants by following the safety 
terms and conditions [38]. In addition, geopolymer 
has been ordinarily recognized to use for immobilizing 
the toxic wastes [36,39]. Immobilization of boron and 
borate salt was also investigated by several research
ers. The study by Palomo and López de la Fuente found 
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of various amount of foaming agent.
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that boron was effectively immobilized in geopolymer 
[40]. Taviri et al. have carried out research using solid– 
state MAS NMR spectroscopy. From their results, they 
concluded that boron was a part of the geopolymer 
structure. It played a role in the network of geopolymer 
structure like aluminum [41], which was difficult to 
release. Therefore, the obtained porous geopolymer 
foamed with NaH2BO4 might be safe for use in the 
products. However, further experiment on the leaching 
of boron will have to be performed to ensure this 
point.

3.4. Mechanical properties of porous geopolymer

The porous geopolymer exhibited a decrease of com
pressive strength with an increment of foaming agent 
content as demonstrated in Figure 8(a). The compres
sive strength of the geopolymer without any addition 
was around 51–62 MPa. Addition of 0.5wt% of NaH2BO4 

foaming agent drastically reduced.the compressive 

strength, and the compressive strengths were steady 
as further increasing foaming agent contents were 
added. The compressive strength of the obtained por
ous geopolymer was in the range between 5 and 6 MPa. 
This compressive strength value was higher than those 
reported of 4.8 MPa by Phavongkham et al. [42], who 
examined the compressive strength of fly ash-based 
geopolymer foam made with NaH2BO4 and surfactant.

A comparison of compressive strength of the 
obtained porous geopolymer with other porous 
geopolymers is given in Table 2. As shown in 
Table 2, very low compressive strength was gener
ally obtained in porous geopolymers. For instance, 
Jaya et al. reported the compressive strength of 
0.4–6 MPa for metakaolin geopolymer foamed with 
H2O2 and polyethylene glycol (Tween 80) [43]. The 
compressive strength of 3.34 MPa was achieved by 
Samson et al. [44] for H2O2 and surfactant-foamed 
metakaolin geopolymer. Le et al. obtained the 
compressive strength of 1.94–9 MPa for metakaolin 

2mm.

2mm. 2mm.

2mm.2mm.

(a.) (b.) (c.)

(d.) (e.)

Figure 6. Optical microscope geopolymer and porous geopolymers: (a) geopolymer, (b) porous geopolymer with 0.5% Na- 
perborate, (c) porous geopolymer with 1.0% Na-perborate, (d) porous geopolymer with 1.5% Na-perborate, and (e) porous 
geopolymer with 2.0 % Naperborate.
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geopolymer foamed with Al powder [45]. From Le 
et al.’s study, the high compressive strength was 
probably due to the fiber reinforcement.

Similarly, the downward trend with the addition of 
foaming agent was observed for flexural strength 
(Figure 9(b)). Among the porous geopolymer, the max
imum flexural strength of 5 MPa was achieved in por
ous geopolymer containing 0.5 wt% NaH2BO4, and the 
flexural strength gradually decreased with an increase 
in foaming agent.

The above results suggested that the strength was 
correlated with the density, and the reduction of the 
strength was due to the increment of pores developed 
in the porous geopolymer.

According to TIS 58–2533 standard, the minimum 
limit for compressive strength of conventional non
load-bearing concrete masonry is 2.5 MPa [51]. The 
compressive strength of the obtained porous geopo
lymer was higher than that indicated in the standard.

3.5. Thermal conductivity

Thermal conductivity of geopolymer and porous geo
polymers is shown in Figure 10. Compared with the 
geopolymer (0.47 W/mK), the thermal conductivity of 
porous geopolymer reduced to about 0.325–0.218 W/ 
mK. The thermal conductivity of porous geopolymers 
decreased with increasing of the foaming agent. These 
thermal conductivity values were comparable with 
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Table 2. Compressive strength of metakaolin-based porous geopolymer.

Matrix Foaming agent
Compressive strength 

(MPa) Ref.

MK NaH2BO4 5–6 This work
MK H2O2 + polyethylene glycol (Tween 80) 0.4–6 [43]
MK H2O2 + commercial surfactant 3.34 [44]
MK Al 1.94–9 [45]
MK H2O2 + sodium dodecyl sulfate 0.1–5.7 [46]
MK Silica fume + rice husk ash, sand, sawdust 1–4 [47]
MK H2O2 + olive oil 0.2–3.9 [22]
MK H2O2 + canola oil 0.3–5.7 [23]
MK H2O2 + cetyl trimethyl ammonium bromide 0.3–5.9 [28]
MK, calcined clay H2O2 + butter, pork lard 0.6–2.5 [48]
MK, soda lime H2O2 + polyoxyethylene octyl phenyl ether (Triton X-100) 0.4–5.5 [49]
MK, FA H2O2 + calcium sterate 2.1–5.4 [50]
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those reported by Phavongkham et al. (0.27–0.32 W/ 
mK) for fly ash geopolymer foamed with NaH2BO4 and 
surfactant [42], by Pantongsuk et al. (0.15–0.45 W/mK) 
for H2O2-foamed metakaolin-blended bagasse ash 
geopolymer [52], and by Le et al. (0.15–0.36 W/mK) 
for metakaolin geopolymer foamed with Al pow
der [45].

The thermal conductivity values of various 
types of lightweight concrete and nonload-bearing 
concrete masonry are summarized in Table 3. The 
obtained thermal conductivity values of porous 
geopolymer in this study were lower than that of 
conventional nonload-bearing concrete masonry. 
The values of thermal conductivity of the obtained 
porous geopolymer were in the range of Class II 
lightweight concrete [53,54].

In accordance with Table 3, the obtained porous 
geopolymer was a good candidate for using as struc
tural and thermal insulating lightweight materials as 
well as lightweight concrete.

There are several models proposed to describe the 
correlation between thermal conductivity and poros
ity. Among these models, the modified minimum solid 
area (MSA) model proposed by Rice [55–57] and the 
universal model [58,59] were widely used. The modi
fied equation of MSA was given in equation (3), and 
the universal model was expressed by equation (4). 

λ ¼ λ0expð� b2
2εÞ (3) 

where λ0 is the thermal conductivity of dense geopo
lymer and b is an empirical constant. 

λ ¼
Pm

i¼1 λiV ið d ik0ð Þ= d i � 1ð Þk0 þ λ i
Pm

i¼1 V ið d ik0ð Þ= d i � 1ð Þk0 þ λ i
λ (4) 

where λ and V are thermal conductivity and 
porosity, m is number of component, and i represents 
the component. di is a parameter related with pore 
shape and kʹ is a parameter that reflected the heat 
conduction between solid and air.

The relationship between thermal conductivity and 
porosity of porous geopolymers is shown in Figure 10. 
The experiment data were rather close to those of the 
universal model than MSA model. Although some devia
tion of the experiment data from the universal model 
was found, the R2 of 0.996 was obtained. This high 
correlation factor value suggested that total porosity 

was an important parameter whichThatinfluenced the 
thermal conductivity. The deviation of experiment data 
is attributed to the effect of the distribution of pore, 
pore shape, and pore connectivity [60].

4. Conclusion

This work studied mainly the preparation and prop
erties of porous metakaolin-based geopolymers 
foamed with sodium perborate (Na-perborate) foam
ing agent. The result showed that Na-perborate can 
be utilized as a foaming agent in geopolymer as well 
as H2O2. The presence of Na-perborate increased the 
porosity while decreased the bulk density, compres
sive strength, flexural strength, and thermal conduc
tivity. All porous geopolymers exhibited flexural 
strength in the range of 3.0–5.2 MPa. The optimum 
compressive strength of 5 MPa and thermal conduc
tivity of 0.2 W/mK were obtained in the porous 
geopolymer with the addition of 2 wt% Na- 
perborate. The obtained porous geopolymers has 
a potential to be used as a structural and thermal 
insulating material in building and construction 
industries.
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