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Abstract: The demand response (DR) program is one of the most promising components in the
development of the Smart Grid. However, there are many challenges in practical operation to improve
the existing and outdated system to comply with the DR programs. In Thailand, the major pain
point of the office building owner in the DR program is the additional equipment, modification and
operation cost of the existing equipment. Moreover, the sophisticated solution and control are other
obstacles that need more measurements and data, and they make the operation difficult to work with.
In this paper, we implemented a simple yet cost-effective hardware and software solution targeting
an outdated air-conditioning system without voiding the warranty of the outdated equipment and
without installing any additional measurements. In addition, the proposed operation is designed to
be easy to operate under the equipment limitation and unskilled labor. More importantly, indoor
temperature setpoint schedules during the DR event are forecasted with some public datasets to
determine the capacity of the energy management system that can reduce the power consumption
in the office building without an effect on the occupants” comfort. To confirm the practicality of the
check for proposed solution, the actual operation of the proposed solution can achieve the maximum power
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plants have the annual overhaul schedule, consumers are also requested to reduce the load
consumption. Then, the utility company and the electricity generating company require a
quick response to reduce the power consumption in both the unpredicted outage and the
power shortage events.

To cope with both the unpredicted outage and power shortages events in Thailand,
the resolution of the National Energy Policy Committee (NEPC) was approved in 2011.
In order to comply with the resolution, the Energy Regulatory Commission (ERC) has
been assigned to conduct a study on the development of measure and scheme solutions
for Thailand. The ERC had approved a new electricity tariff structure in 2015, which
promotes the reduction of electricity usage. The appropriate DR measures for Thailand
can be summarized, such as the Emergency Demand Response Program (EDRP), Critical
Peak Pricing (CPP) and the Interruptible Load Program (ILP). The EDRP is designed to
reduce electricity consumption during peak periods or crisis events, and the DR event will
be sent in a short period, e.g., one day or one hour ahead. In addition, the CPP will help
the participants or customers to plan and manage their electricity usage. In both the EDRP
and CPP, there is no penalty for the participants or customers who join the programs. Even
though the ILP will motivate the participants with the incentive or special tariff rate, there
is a penalty that will be agreed upon in advance. The ERC will promote and encourage the
industrial and commercial users who can join this ILP program to achieve the resolution of
the NEPC.

Both the EDRP and ILP will help us to deal with both emergency and power shortage
events; however, there are the investment and maintenance costs to make the existing
system comply with the DR programs. Comparing the incentive or special tariff, the ad-
ditional cost of improving the existing system is very high. However, many works have
been studied in the literature in recent years related to building DR programs without
concerning in the additional cost and the practical operation. Even though most of the
DR strategies for buildings focus on peak load reduction and energy saving while main-
taining occupant comfort, these related works also require more measurements and the
controllable parameter of the simulation. Many DR strategies are available for Heating,
Ventilating, and Air Conditioning (HVAC) systems, which are responsible for the major
loads in commercial and office buildings: the global temperature adjustment (GTA) [9-11],
the system adjustment (SA) strategies [12], pre-cooling and pre-heating [13,14], duct static
pressure control [15,16], desiccant cooling and chiller water temperature control [17]. How-
ever, prior papers relevant to DR for buildings have generally relied on advanced building
infrastructure and intense modification, which requires a high cost of investment. Many
small buildings, especially in developing countries, still lack building energy management
systems (BEMS), preventing them from joining the DR programs [9]. Moreover, the interior
equipment of some buildings” air conditioners (ACs) cannot be modified due to this voiding
their warranty. That is, only external equipment can be installed to control the ACs [18].
This poses challenges for implementing an automated DR system. Therefore, it is important
to design an effective, simple, yet low-cost solution to popularize DR-capable buildings.

Another important concern in DR strategies for buildings is the impact of occupant
thermal comfort during DR events. In the literature, there are significant differences
made on the assumption of the way how people feel about their thermal comfort [19-22].
The most popular model is to use the Predicted Mean Vote (PMV) proposed by Fanger [23]
to determine the thermal sensation of the occupants. The PMV index represents a “mean
thermal sensation vote for a large group of building occupants for any given combination of
thermal environmental variables, activity and clothing levels” [24]. An equation to calculate
the PMV index uses four measurable quantities, air velocity, air temperature, mean radiant
temperature and relative humidity, and two expected parameters, clothing and metabolism
rate. The resulting index ranges from —3 (cold) to +3 (hot), where —0.5 to +0.5 is defined
as thermal comfort zone by the ASHRAE Standard [20,25]. Despite its application and
quantitative results based on controlled laboratory experiments, the PMV index does
not always represent real situations in buildings since some of the important parameters
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that affect occupant thermal comfort are left out in real-world applications. Moreover, it
requires continuous the measurement and estimation of the changing parameters needed
for calculation. Hence, application in the real environment would require tedious work and
more sensors. Another alternative method for assessing occupant thermal comfort is based
on a field study by Dr. Thomas Bedford [26]. The model relies on the result of a field study
in which the goal is to maintain people’s ordinary living conditions. As concluded in [11],
the PMV index method fails to account for the psychological aspect of the occupant’s
reaction to the changing indoor environment. In addition, the energy optimization is also
taken into consideration. The total electric bill is reduced by heuristic-algorithm-based
optimization models, as shown in [27-29]. The load scheduling and the short-term electric
load forecasting model are also the major part of the optimization as proposed in [30,31].
Therefore, in this work, we will focus on applying the thermal comfort concept to maintain
occupant’s ordinary working conditions during DR events with these concerns.

To implement the DR measurements to customers, especially in the BEMS, integrating
the DR devices into the existing certain load of the building, determining the peak demand
reduction, and maintaining the thermal comfort of the occupants are the objectives of ours
propose. With the minimum installation cost, an Internet of Things (IoT) device with control
buttons for both manual and automatic operations will be taken into our consideration.
Moreover, the energy management system (EMS) with a Human-Machine Interface (HMI)
is used for determining the customer baseline and demand reduction. According to the
building characteristics from the energy management system, the DR control strategy will
play a role in maintaining the thermal comfort of the occupants.

As mention above, most of the DR literature focuses on the simulation and the proof of
concept with adding more measurements. To encourage the building owner to be interested
in the DR program, we present a practical power consumption reduction DR system design
and implementation in a real environment without installing any additional measurements.
We continue the work based on our previous paper [18] to incorporate an automated DR
system. With the recent advancement in IoT devices become cheaper and more accessible,
a solution for DR systems in small buildings can be implemented. We show that with simple
and little modification to the existing ACs of the building, the reduction in the peak power
consumption can be achieved while maintaining the thermal comfort of the occupants by
installing only the computer server, embedded devices, and Ethernet network.

The rest of this paper is organized as follows. Section 2 describes a design of the DR
system. In Section 3, the details of the proposed DR implementation are explained. The
experimental results from the testing building and the discussion are given in Section 4.
Finally, the conclusion of the paper is drawn in Section 6.

2. System Overview

In this section, we present a summary of the system implemented in this work, which
includes the system design, BEMS components, the DR system, and the building character-
istics.

2.1. System Design

The system architecture is shown in Figure 1. The BEMS is separated into four layers of
its responsibility: the market layer, operation layer, application layer, and field devices layer.
Note that layers and their communication are not separated physically. A Human-Machine
Interface (HMI), a Virtual Top Node (VIN), and the EMS have been developed in a single
application. We develop the application with opened APIs for the ease of integration of
new systems in the future. The details of each layer are as follows.

2.1.1. The Market Layer

The market layer consists of a Load Aggregator Management System (LAMS), which
is responsible for sending and receiving information and commands between an energy
market and its clients. The operations and details of the contract agreements between
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the energy market and supply and demand resource party are not the main focus in this
work, and we assume that all the agreements have been completed before start of the
DR program.

Market and Enterprise

LAMS Level 1

10T

® Temperature Controller

DER Customer Premises

Figure 1. Overview of system architecture.

2.1.2. The Operation Layer

The operation layer is an interface for the user to set and control the system through
the HMI, which connects to other systems/functions logically. There are two important
function interactions with HMI: Virtual End Node (VEN) and EMS interactions. An HMI-
VEN interaction is primarily used for the user to accept or decline the DR event (Opt.
in/Opt. out). An HMI-EMS interaction is for the user to setup the EMS to manage its
electrical loads, e.g., AC systems.

2.1.3. The Application Layer

The application layer contains a software which is further separated into two virtual
application logically: VEN and EMS. The VEN application is responsible for receiving and
understanding the OpenADR2.0b protocol. The incoming message is deserialized to the
object and is prompted for the necessary parameters to be extracted by the EMS. For the EMS
application, the electrical load consumption is controlled to meet the requirements from the
user-specified command/request. Note that VEN and EMS exchange data internally within
the application. Figure 2 shows the two different protocols used in the developed software:
OpenADR2.0b and MODBUS TCP/IP. Both protocols are separated into segments and
encapsulated by TCP with a different port number. The packets are ready to be transmitted
through a Network Interface Card (NIC) to an Ethernet switch.
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Figure 2. Internal architecture of the DR gateway and EMS.

2.1.4. The Field Devices Layer

The field devices layer consists of numbers of devices receiving commands from the
EMS: communication devices, monitoring devices, and controllable devices. Figure 3 shows
a physical diagram overview of the connected devices.

For communication devices, a TCP/IP network is used as a Local Area Network (LAN)
for communication with the EMS. We set up a mesh WiFi to connect with all other devices.
Each commercial Siemens 1072040 gateway is used for communicating with a digital power
meter in each zone/floor.

We use the digital power meters for gathering energy information as monitoring
devices. To enable multiple-meter data reading, we connect the meter via RS485, which
supports a multidrop connection. The existing power meters in the building were already
installed with protocol converters.

For controllable devices, we modify the building’s existing AC system temperature
controller to connect with the Siemens I0T2040 gateway. This enables the temperature
controller to receive a command from the EMS via MODBUS RTU, enabling load control
and participation in the DR program.

The system consists of three main components: control devices, communication
devices, and electrical loads. The list of equipment is shown in Table 1. AC systems are
selected as the building electrical load for the DR program. According to the outdated
AC system of the building, installing the new AC system to support the communication
protocol and the automatic control will help the AC system to communicate with the
utility or the load aggregator. However, we propose only installing the computer server,
embedded devices, and Ethernet network to make the lowest investment cost in the
DR solution.



Energies 2022, 15, 1220

6 of 21

OpenADR 2.0b Demand Response Control

Center

Switch

INTRA NETWORK

OpenADR 2.0b
MODBUS TCP

8" FL.

ODBUS RTU
IMODBUS RTU
ODBUS RTU

o) o) )
il B b :

oo

E3

(=]
=
m
S

TC81 TC82 TCO1 TC92

Figure 3. Overview of physical device connection diagram.

Table 1. List of BEMS equipment.

Equipment Detail/Sizing Quantity Remark

ACS81 Trane® 30 kW (PWC-81) 1 existing system

AC82 Trane® 30 kW (PWC-82) 1 existing system

AC92 Trane® 30 kW (PWC-92) 1 existing system

Power meter SATEC EM133 3 exiting system
DR gateway Dell precision workstation PC 1 new investment
IoT device Siemens SIMATIC IoT 5 new investment
Ethernet switch Dell 8-gigabits port 1 new investment
Communication device TP-Link deco mesh Wi-Fi 3 new investment

2.2. Building Characteristics
2.2.1. Site Location

The experiment building is located Metropolitan Electricity Authority (MEA) Rat
Burana District Office, Bangkok, Thailand. The average outside temperature is 32 °C.
A typical indoor temperature for the office building is set to around 25 °C. We select three
office rooms (81, 82, 92) for the experiment, which are located on the eighth and ninth floors
of the building. The existing ACs (Trane®) are installed in separate areas and dedicated for
each office room.

2.2.2. Typical Energy Consumption Profile

On working days, the building ACs operate from 7:15 to 15:30 with a one-hour
shutdown during the office lunch break (12:00-13:00). Due to poor sizing and a lack of
optimal operation of the ACs, the building staff turn on the ACs to full power at all times to
avoid any hot temperature complaints. The total power consumption of the ACs is shown
in Figure 4. The corresponding indoor temperature of each room is shown in Figure 5. Both
the power consumption and the indoor room temperature charts depict the characteristics
of this building. Even though the indoor room temperature was deceased down to 24 °C,
the ACs were at full power operation.
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Figure 4. Typical total power consumption.
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Figure 5. Typical room temperature.

2.2.3. Limitation of the System Design

Since the existing equipment and interior of the ACs cannot be modified because it
would void the warranty, only external equipment can be installed for monitoring and
controlling. Thus, we are limited to designing and implementing the BEMS without an
advanced control scheme. Note that this situation covers a large portion of office buildings
in Thailand and other developing countries.

2.3. The Operation of the Demand Response System

The diagram of the DR system is shown in Figure 3. We develop the DR client gateway
using OpenADR2.0b to coordinate with the BEMS. The modified temperature controller of
the AC system is used for responding to the DR event by setting appropriate temperature
setpoints for each AC in each office room. We implemented the DR program using a signal
from I-ON Communication Corporation (South Korea) that served as the demand response
control center.

2.3.1. Demand Response Event

The ILP DR event is selected in this work to control the operation of ACs in the target
office building, and the OpenADR2.0b is the main messaging protocol for the utility to
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communicate with downstream equipment during the DR event. The ILP uses incentives
to persuade customers to reduce their energy consumption during a specified period of the
day. The utility operator requests the amount energy reduction and duration in advance,
and the customer can respond by accepting or declining the requests. During the DR event,
the customers adjust their energy consumption to adhere the consumption limit.

2.3.2. Determination of Customer Baseline

To calculate the amount of energy saving, the Customer Baseline (CBL) is used as
a reference. CBL can be regarded as the "unbiased estimate of load’. It uses customers’
historical load profiles to predict the amount of electricity that would normally be used
before adopting the DR program. From the operator’s view, it is hard to determine the exact
amount of electricity reduction after a DR program is implemented. Therefore, determining
the CBL is necessary to calculate the incentive for the participants. However, due to many
factors that influence consumption patterns, various CBL calculation methods have been
proposed in the literature [32-36] to improve accuracy. The MAX 5/10 method [36] is
selected in this work due to it being simple and practically accurate.

3. DR Implementation Details

This section describes the actual hardware and control strategy implementation at the
experiment site. We design our system by installing AC controllers in the existing AC room:s,
as shown in Figures 6 and 7. Without modifying the interior of the ACs, a temperature
setpoint monitor and controller (Figure 8) are installed externally. Thus, the setpoint of the
AC can be changed according to the command from the BEMS, which in turn manages the
energy consumption of the system and lowers the installation costs.

Figure 6. Air conditioning unit with IOT2040 installation.
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Figure 8. Temperature Controller (TC) unit.

3.1. DR Request Accept/Decline Determination

In order to execute the DR event, first, the BEMS needs to determine whether to accept
or decline the day-ahead DR requests from the grid operator. The grid operator will send
the DR request to the BEMS, including the amount of power reduction and the period of
the event [37,38]. In our case, all ACs have three possible modes of operation, as shown in
Table 2. In the original operation, all the ACs run at full capacity with two compressors. This
resulting in the highest power consumption during office hours. However, with optimal
control, we can manipulate the operation mode of the AC by scheduling lower power
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consumption modes while trying to minimize the increase in the room temperature and
maintaining acceptable occupant comfort. Figure 9 shows a combination of the possible
power consumption of three ACs with different operation modes. If we run only air blower
mode, we can achieve maximum power consumption reduction, but this would quickly
impact the room temperature to rise to unacceptable thermal discomfort. To maintain
thermal comfort, the “one compressor” operation mode is suitable for the power reduction
scenario as the room temperature would gradually rise and give enough time for the
system to switch back to the “two compressors” mode before the occupants feel any
thermal discomfort. Based on the aforementioned method, the BEMS determines whether
to accept or decline the DR request by checking the power consumption scenarios. If there
is an available match-up of the power reduction capacity and time duration, the BEMS
accepts the DR request, otherwise, it declines. After accepting the DR request, the BEMS
will schedule the operation of the ACs as presented in the following section.

Table 2. Operation modes and power consumption of air-conditioning units.

Air Cgr;ccllietioner Air Blower (kW) One Compressor (kW) Two C?I?‘IAI;; essors
PWC-81 1.9 7.3 12.7
PWC-82 1.9 7.3 13.5
PWC-92 1.8 7.5 13.1

Condition - Return Temperature —1  Return Temperature

3.2. DR Control Strategy

According to the demand response policy in Thailand, the DRCC will send a request
for 15 min, 1 h, or 24 h ahead to the participants to ask if they will join the program.

To manage the power consumption of the AC during a DR program, we have to
understand the characteristics of the ACs in each room. Specifically, each AC consists of
two compressors and one air blower, and we have to study the power consumption of each
device to make scenarios for the DR program. The power consumption and the condition
for turning one compressor on or off can be seen from the scenarios in Figure 9.

45

40 Maximum power consumption level

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Cases

Power consumption (kW)
— — o (%) (%) )
(=] wn (=] wn (=} wn

wn

Figure 9. Difference scenario of total power consumption of ACs.

We manage the indoor temperature in the trial rooms by two compressors, and the
temperature setpoint is set to 19 °C during working hours. That means every compressor
is fully operating when working staff work in the experiment building, and the indoor
temperature during working hours can be seen in Figure 10.
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Figure 10. Return temperature in room 81, 82, and 92 from August to October 2020 in the test building.

In Figure 10, the boxplot shows the return temperature and room temperature in rooms
81, 82, and 92 from August to October in 2020. The blue boxes are the return temperature
between the 25th and 75th percentiles, and the red lines are the median value of the return
temperature. Accordingly, the occupants in room 81 are working at a temperature around
26 to 28 °C. The occupants in rooms 82 and 92 are working at temperatures around 24
to 26 °C. Therefore, this study attempts to manage the room temperature according to
the room temperature range in Figure 10 to satisfy the occupants’ comfort during the DR
event. Moreover, we have reported that the occupants in the building will feel hot and
start complaining about the room temperature when the return temperature is higher than
28 °C. Then, our control strategy sets the upper limit of the room temperature T, j;,;; to
28 °C to avoid this complaint from the occupants of the building.

During the experiment, when the temperature setpoint is set to be such value, we
notice the hysteresis loop control in the room temperature and power consumption. Specif-
ically, the AC system turns on two compressors when the indoor temperature is higher
than that setpoint and turns on one compressor when the indoor temperature is lower than
that setpoint, as shown in Figure 11.

2715 ¢
Room temperature (degree Celsius)

Hysteresis Lgop Control

27.0 +
26.5 + A Temperature setpoint : 25 Celsius
260 T <

Power consumption (kW)
25.5 + + + + + + + + >
70 80 9.0 100 11.0 120 130 140 150 16.0

Figure 11. Room temperature and power consumption of AC hysteresis loop in room 92.
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Figure 11 shows the relation between the room temperature and the power consump-
tion of AC in room 92 when the temperature setpoint is set to 25 °C, where the x-axis
is the power consumption of AC, and the y-axis is the room temperature. This figure
represents that when the room temperature is higher than 27 °C, two compressors are
turned on, and the power consumption is 14.8 kW. On the other hand, when the room
temperature is lower than 26 °C, one compressor is turned on, and the power consumption
is around 8.3 kW. We found that this behavior continues for a while during the morning
and afternoon periods. Therefore, the feasible temperature setpoint can be calculated by
Equation (1):

Tsp = TR,min + tuncertainty (1)

In Equation (1), T is a feasible temperature setpoint that can be used for controlling a
room temperature hysteresis loop. Tg ;i is the lowest room temperature when the ACs
in the room are fully operating, and t,,certainty is the temperature setpoint uncertainty of
the temperature controller, which is the unique value for each temperature controller. As a
result, we acquired t,certainty being equal to “—1” from the experiment.

3.3. Determination of AC Temperature Setpoint

To predict the day-ahead temperature setpoint, we leverage the neural network tech-
nique that is widely used to estimate the future value, such as Room temperature [39,40]
and Load forecast [41,42]. Therefore, we developed the temperature setpoint prediction
model by a classification neural network. Note that this study considers the action plan for
the DR program’s participants when they receive the DR request. Then, the temperature
setpoint prediction is just a part of this action plan. Hence, this work does not take the
method for designing the best model into consideration. This will be a future study.

For inputs of the prediction model, we suppose the outdoor temperature, the outdoor
humidity, the weather condition, and the time of day are features to determine the tem-
perature setpoint. For the outdoor temperature, outdoor humidity, and weather condition
features, Mustafaraj et al. show that the indoor temperature is related to the outdoor
temperature, outdoor humidity, weather conditions, and AC parameters [39]. Due to the
limitation of the existing building, we denote that our system has only the temperature
setpoint controllers, and we have no controllers to adjust another AC parameter. This
study, consequently, will use the forecast information about outdoor temperature, outdoor
humidity, and weather conditions to predict the temperature setpoint. We obtained the
outdoor temperature, the outdoor humidity, and the weather conditions from weather
forecasting services such as Accuweather and Wunderground.

Furthermore, the room temperature in the building used in this study is spatiotemporal.
Specifically, the rooms located on the east side of the building are hotter than the rooms on
the other side in the morning, while the rooms located on the west side of the building are
hotter than the rooms on the other side in the afternoon.

For output, we calculate the feasible temperature setpoint Ty, ;;, for each hour, where
hh is the time of day for each room based on the indoor temperature by Equation (1) with
tuncertainty 18 “—1”. Moreover, we found that we can use the same setpoint for two or more
hours, but the setpoint used in the morning can be different from the setpoint used in the
afternoon. For each day, we divide the feasible temperature setpoint into two periods:
morning and afternoon. Then, we select the most frequent of T, ., Vhh in the same groups
by the MODE function, a statistical function, to be the representative feasible temperature
setpoint Tsp rep,¢ as the setpoint prediction model’s output of group ¢ € {morning, afternoon},
as shown in Figure 12.

In Figure 12, the building is occupied by the office workers from 7:00 to 15:59. The time
of day hh € {7,8,...,15} represents the hour period of time from hh:00 to hh:59. Tp yy,
Ho yhwy Whi, and Ty, are the outdoor temperature, the outdoor humidity, the weather
conditions, and the room temperature at the time of day h#h, respectively. Next, the fea-
sible temperature setpoint T, ;, at time hh can be calculated by using Equation (1) with
tuncertainty = —1. Hence, we can use the most common value of a set of feasible temperature
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setpoints {Ts,7, Tsps, - - -, Tsp,11} to be the representative temperature setpoint in the morn-
ing Tsp rep,morning, and use the most frequent value of a set of feasible temperature setpoints
{Tsp,u, Tsppss---s Tsp,15} to be the representative temperature setpoint in the afternoon

sp,rep,afternoon-

Time 7am | 8am | 9am [10am |11am|12pm| 1pm | 2pm | 3pm

Time of Day 7 8 9 10 11 12 13 14 15
Outdoor Temp. | To7 | Tos | Toe | Toto | Toj1 | Tos2 | Toas | Toaa | Tos
Outdoor Humid | Ho,7 | Hos | Hoge | Ho,10 | Ho,11 | Ho,12 | Ho,13 | Ho,<14 | Ho,1s
Weather Wz Ws Wo | Wio | Wit | Wiz | Wiz | Wis | Wss
Indoor Temp Tr7 | Tre | Tro | Trio | TrR11 | TrR12 | Tr13 | TrR14 | TR1s
Feasible Setpoint | Tsp,7 | Tspg | Tspo | Tsp10 | Tsp,11 | Tsp12 | Tsp,13 | Tsp,4 | Tsp,15

ErSPJEPvmoming = MOde(TSPJ! TSP.B!"" TsPn"ﬂﬁsp,rep,aﬂernoon = MOde(Tsp,12, Tsp,13,-.., Tsp,159

v v

Time of Day 7 8 9 10 11 12 13 14 15
Outdoor Temp. | Toz7 | Tos | Toe | To,0 | Toq1 | Toa2 | Toas | Toa | To,s
Outdoor Humid | Ho7 | Hos | Hos | Ho,1o | Ho,11 | Hoa12 | Hoaa | Hoaa | Hots

Weather W7 | Ws | Wo | Wio | Wit | Wiz | Wiz | Wisa | Wis
Representative _
Setpolnt Tsp,rep,momlng Tsp,rep,aﬂernoon

Figure 12. Temperature setpoint calculation for training the setpoint prediction model.

For the temperature setpoint prediction model, the prediction model consists of three
fully connected layers (FC1, FC2, and FC3), and layer 1’s size, layer 2’s size, and layer
3’s size are 256, 128, and 64, respectively. We apply the dropout technique [43] with a
20% dropout rate for preventing overfitting between layer 2 and layer 3. We also im-
plement the ReLu activation [44] in layer 3. This model uses the softmax function to
be the output of classification, and the number of softmax functions is the number of
classes of setpoints. Finally, we train the model by using the Adaptive Moment Estimation
(Adam) optimizer [45]. The temperature setpoint prediction model can be represented by
Figure 13. This proposed method trains the model offline. Hence, the training process does
not affect the processing time of the DR management procedure. A summary of the DR
event accept/decline decisions and temperature setpoint control diagrams are shown in
Figures 14 and 15, respectively.

Temperature setpoint predator Model

(\ e M M M
Outdoor Temperature
> o 3
X |
Outdoor Humidit & T 3
utdoor Humidity > 5 8 ; = & Temperature Setpointk
e = 2 E 5 >
Weather condition _ 8‘ P (7]
» 5 [&)
rd
Time of day >
/ N / —/ /
256 128 64

Figure 13. The setpoint prediction model, where FC is a fully connected layer.
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[ Receive the DR request ]

l

Predict a ahead Setpoint
ae{1hr,2hr,3hr,.., 24hr}

l

Calculate energy reduction
potential

energy reduction
potential is greater than
request

Accept request ]

No

[ Reject request ]

Stop

Figure 14. A diagram of a DR event accept/decline decision.

( DR Start )
Set thermostat by predicted set
points

I

Monitor the number of
compressors and temperature

Increase setpoint by 1

No
Yes K
@ Decrease setpoint by 1
No
Yes _
W Decrease setpoint by 1
No
Is in DR period?
\‘NO/

( Stop )

Figure 15. A diagram of temperature setpoint control during DR event.

Yes

4. Experimental Results and Discussion
4.1. Experiment on the Temperature Setpoint Estimation

The research team conducted the experiment for collecting the indoor temperature
in rooms 81, 82, and 92 from 1 August 2020 to 31 October 2020. During the experiment,
the temperature setpoints for each room were set to 19 °C by the building management
staff. We found that the indoor temperature in each room is around 23-28 °C, as shown in
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Figure 10. The IoT device, the Siemens SIMATIC I0T2040, collects the indoor temperature
every 15 min in three rooms simultaneously. Then, the collected data are discarded in
room temperature data when no compressor operates. Next, we assume that the room
temperature in the filtered dataset is the return temperature because the setpoint is 19 °C
during data correction. For each day in the dataset, we calculate the feasible temperature
setpoint (1) for each time of day, and separate the data into a morning period and an
afternoon period. In each period, we applied a MODE function and a statistical function
to calculate the predicted setpoint, as in Figure 16.

@) (b) (o)

Figure 16. Return temperature and temperature setpoint for each room in the testing dataset. (a) Re-
turn temperature and temperature setpoint of room 81. (b) Return temperature and temperature
setpoint of room 82. (c) Return temperature and temperature setpoint of room 92.

Finally, we divide the dataset into a training dataset and a testing dataset by 70% and
30%, respectively. In summary, the number of samples for collected data, training data,
and testing data are summarized in Table 3.

Table 3. The number of samples recorded in our experiment.

The Number of Samples
Criteria
Room 81 Room 82 Room 92
Total 8831 8831 8831
ACs operating 1687 1700 1712
Training dataset 1181 1190 1199
Testing dataset 506 510 513

The proposed setpoint prediction model is implemented by using MATLAB version
2021b and Deep Learning Toolbox on Intel Core 15-7360U @ 2.3 GHz with 8 GB RAM
machine. Accordingly, the structure of the model can be seen in Table 4.

In Table 4, layer no. 1 is configured for the four inputs with the z-score normalization.
Layers no. 2-6 and layer no. 8 are configured as in Figure 13. In this paper, the temperature
setpoints in the dataset are classified into six classes (23 °C, 24 °C, 25 °C, 26 °C, 27 °C, and
28 °C); then, layer no. 6 is configured by six fully connected layers. Finally, we use the
cross entropy loss function for the classification output in layer no. 9. After that, we train
the temperature setpoint prediction model by using the Adam optimizer [45] with the
parameters seen in Table 5.
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Table 4. Configuration of the temperature setpoint prediction model.

Layer No. Layer Name Configuration
1 Feature Input 4 features with z-score normalization
2 Fully Connected 256 fully connected layer
3 Fully Connected 128 fully connected layer
4 Dropout 20% dropout
5 Fully Connected 64 fully connected layer
6 ReLU -
7 Fully Connected 6 fully connected layer
8 Softmax -
9 Classification Output Cross Entropy loss function

Table 5. Parameters and values for Adam optimizer used for training the temperature setpoint
prediction model.

Parameter Value
Decay rate of gradient moving average (1) 0.9
Decay rate of squared gradient moving average (52) 0.999
Epsilon e 1.0 x 1078
Initial learning rate 0.005
Gradient Threshold Method L2-norm
Gradient Threshold 1
Factor for L2 regularizer (weight decay) 1.0 x 1074
Max Epochs 500

Next, we train the model by the training dataset and verify the model by the test
dataset. Consequently, the results in Figure 17a—c show the predicted results compared to
the ground-truth and the temperature setpoints in the testing dataset for rooms 81, 82, and
92. It can be seen that each model can predict the estimated setpoints, red circles, which are
similar to the ground-truth setpoints, blue circles.

{#e@ o @ coe cmmm o =
eee o e ememan

(@) (b) (©)
Figure 17. Ground-truth temperature setpoint and estimated temperature setpoint for each room
in the testing dataset. (a) Ground-truth temperature setpoint and estimated temperature setpoint
of room 81. (b) Ground-truth temperature setpoint and estimated temperature setpoint of room 82.
(c) Ground-truth temperature setpoint and estimated temperature setpoint of room 92.

We train and evaluate the temperature setpoint prediction model 20 times, and the
accuracy of each model can be seen in Figure 18a.
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(b)

(©) (d)

Figure 18. Accuracy and Difference of the temperature setpoint prediction models compared to
the ground-truth in the test dataset. (a) Accuracy of the temperature setpoint prediction models.
(b) Histogram of the difference between the ground-truth setpoint and predicted setpoint of the
temperature setpoint prediction models for room 81. (c) Histogram of the difference between the
ground-truth setpoint and predicted setpoint of the temperature setpoint prediction models for room
82. (d) Histogram of the difference between the ground-truth setpoint and predicted setpoint of the
temperature setpoint prediction models for room 92.

In summary, the accuracies in Figure 18a of the model are 65.2% for room 81, 63.53%
for room 82, and 66.73% for room 92. Although the accuracy is not high, we found that
the predicted values are close to the ground-truth values, as in Figure 18b—d. As a result,
the temperature setpoint prediction models have enough accuracy for estimating the energy
reduction potential for deciding the response to the DR request.

4.2. Experiment on the DR Control

For the experiment, we assume a DR event request was sent from the utility operator on
11 October 2021 (day-ahead) with 19 kW power reduction from 8 a.m. to 3 p.m. The BEMS
then made a decision on accepting or declining the request based on the diagram in
Figure 14. In our demonstrated experiment, the DR request was accepted, and the BEMS
replied to the request from the utility operator. In the following day, we tested the proposed
DR method on 12 October 2021. Figure 19 shows the power consumption of the AC units
and the CBL in each room. At 6:45 a.m., the building staff turned on the ACs as normal
operation. Both the CBL and actual power consumption increased to 44.78 kW. When the
DR event started at 8 a.m., the setpoints of all AC units were set to new setpoints according
to Equation (1), forcing the ACs to operate with one compressor. As a result, power
consumption was reduced by 19.80 kW, and all ACs maintained total power consumption
at around 24.98 kW, which is below the DR request. From 8 a.m. to 3 p.m. the power
consumption is maintained as we monitored and kept the room temperature below 28 °C.
The DR event ended at 3 p.m., which is also the end of office hours, and all ACs were
turned off. The corresponding temperature for each room during the DR event is shown in
Figure 20. The temperature was successfully kept below 28 °C by controlling the power
consumption of the AC via temperature setpoint to keep a comfortable temperature for
the occupants.
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Figure 19. Power consumption and CBL on 12 October 2021.
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Figure 20. Room temperature on 12 October 2021.

5. Discussion

In this paper, we emphasize the cost-effective hardware and software solutions in
the demand-side management procedure for the DR program, in which the temperature
setpoint prediction model is just a supporting part of it. We implement the temperature
setpoint prediction model by MATLAB 2021b and Deep Learning Toolbox. We construct
the model without the network and constraint customization because we found that this
model is accurate enough for energy reduction potential estimation for the building used
in this paper. We believe that the more accurate prediction model is better for avoiding the
penalty when the system cannot cope with the energy consumption as promised. However,
the study on improving the prediction model is beyond the scope of this study. Therefore,
the study on the prediction model will be conducted in future work.
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6. Conclusions

This paper presented the onsite implementation of DR with BEMS without voiding
the warranty of the exiting equipment and without any additional measurements. With the
limitation of the building characteristics, we proposed the DR control strategy during the
DR event to reduce the power consumption of AC units with achieving the maximum
power reduction at 43.79% of the maximum power consumption (45.21 kW) while ensuring
the thermal comfort of occupants for more than 6 h. This proposed solution will encourage
the customer to join the DR program or another program of the smart grid operation.
For the air conditioning system in the building, this paper also shows the practical result by
using day-ahead temperature setpoint prediction to accept/decline DR requests from the
utility operator or the load aggregator and schedule the AC temperature setpoint during
the DR event. The collected building and weather data were used to train the setpoint
prediction model. Then, we developed a classification neural network to determine the
temperature setpoint of the ACs. During the DR event, the BEMS constantly monitors
and controls the temperature setpoint of the ACs to maintain room temperature within
the occupant comfort limit. The real-world, onsite experiment results show the practical
applicability of the proposed method by reducing the power consumption of the ACs
according to the DR request without disturbing the occupant’s thermal comfort by keeping
only 1 °C of difference from the typical room temperature. Future work will focus on
integrating the proposed DR system with microgrids and distributed energy generation.
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