

1 **Ozone nanobubble treatment effectively reduced pathogenic Gram positive**
2 **and negative bacteria in freshwater and safe for tilapia**

3
4 Chayuda Jhunkeaw^{1†}, Nareerat Khongcharoen^{1†}, Naruporn Rungrueng^{1†}, Pattiya Sangpo¹,
5 Wattana Panphut¹, Anat Thapinta¹, Saengchan Senapin^{2,3}, Sophie St-Hilaire⁴, Ha Thanh Dong^{1*}

6
7 ¹Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300,
8 Thailand

9 ²Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology
10 (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand

11 ³National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and
12 Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand

13 ⁴Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary
14 Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong

15
16 **Running title:** NB-O₃ reduces pathogenic bacteria in water

17 [†]Contribute equally

18 *Corresponding author: HT Dong (hathanh.do@ssru.ac.th)

19 **Abstract**

20 High concentrations of pathogenic bacteria in water usually results in outbreaks of bacterial
21 diseases in farmed fish. Here, we explored the potential application of an emerging nanobubble
22 technology in freshwater aquaculture. Specifically, we aimed to determine if this technology was
23 effective at reducing the concentration of pathogenic bacteria in the water, and to assess whether
24 it was safe for fish. An ozone nanobubble (NB-O₃) treatment protocol was established based on
25 examination of nanobubble size, concentration, disinfection property, and impact on fish health.
26 A 10-min treatment with NB-O₃ in 50 L water generated approximately $2-3 \times 10^7$ bubbles with
27 majority sizes less than 130 nm and ozone level of ~800 mV ORP. A single treatment with water
28 contaminated with either *Streptococcus agalactiae* or *Aeromonas veronii* effectively reduced
29 96.11-97.92 % of the bacterial load. This same protocol was repeated 3 times with 99.93-99.99 %
30 reduction in the bacterial concentration. In comparison, bacterial concentration the control tanks
31 remained the same level during the experiments. In fish-cultured water with the presence of
32 organic matter (e.g. mucus, feces, bacterial flora, feed, etc.), the disinfection property of NB-O₃
33 was reduced i.e bacterial concentration was reduced by 42.94 %, 84.94 % and 99.27 % after the
34 first, second and third treatments, respectively. To evaluate the safety of NB-O₃ to fish, juvenile
35 Nile tilapia were exposed to NB-O₃ treatment for 10 minutes. No mortality was observed during
36 the treatment or 48 h post treatment. Gill histology examination revealed that a single NB-O₃
37 treatment caused no alteration morphology. However, damage in the gill filaments was noticed in
38 the fish receiving two or three consecutive exposures within the same day. Results of all the
39 experiments conducted in this study suggest that NB-O₃ technology is promising for controlling
40 pathogenic bacteria in aquaculture systems, and may be useful at reducing the risk of bacterial
41 disease outbreaks in farmed fish.

42 **Keywords:** bacterial load, disinfection, NB-O₃, ozone nanobubble, tilapia

43 Introduction

44 The aquaculture sector has played a vital role in global food security. It supplies protein for
45 approximately 4.5 billion peoples and employs 19.3 million people worldwide (Béné et al., 2015;
46 FAO, 2018). Similar to other food sectors, aquaculture has faced increasing challenges with
47 infectious diseases. Control of these diseases has led to an increase in the use of antimicrobials
48 (Watts et al., 2017; World Bank, 2014). Of particular importance to public health has been the
49 increase in antimicrobial resistance (AMR). Alternatives for these products to control bacterial
50 infections in all food production sectors have increased over the last few years (Reverter et al.,
51 2020; Watts et al., 2017). In the aquaculture sector, previous and current approaches focus mainly
52 on antibacterial compounds derived from natural products, probiotics, immunostimulants, and
53 vaccines for prevention strategies (Reverter et al., 2020; Watts et al., 2017).

54 Other prevention strategies, usually used in closed recirculating systems to reduce the bacterial
55 concentration that fish are exposed to, include water treatments with UV or Ozone. Both of these
56 treatments have issues for the aquaculture industry. UV requires that water be very clean when it
57 is exposed to the light source, which renders it less than ideal in pond culture. Ozone has a low
58 dissolution property, rapid decomposition in water and can be lethal to fish (Huyben et al., 2018;
59 Xia et al., 2019). More effective non-chemical water treatment technology is needed to improve
60 water quality for aquaculture systems such as intensive pond culture systems.

61 Nanobubble technology is an emerging technology for wastewater treatment (Agarwal et al., 2011;
62 Yamasaki et al., 2005) and recently being applied in aquaculture for the increasing concentration
63 of dissolved oxygen in intensive aquaculture systems (Agarwal et al., 2011; Anzai et al., 2019;
64 Mahasri et al., 2018; Rahmawati et al., 2020). This technology involves the injection of nano or
65 ultrafine bubbles with a chosen gas into water (Agarwal et al., 2011; Anzai et al., 2019). Unlike
66 macro- and microbubbles, these nanobubbles with a diameter less than 200 nm, have neutral
67 buoyancy, thus remain in water for days (Agarwal et al., 2011; Takahashi et al., 2007).

68 Kurita et al. (2017) investigated the effect of exposing parasitic planktonic crustaceans to
69 nanobubbles created from ozone (NB-O₃). They reported that a 25 min treatment with NB-O₃
70 successfully reduced 63% of the parasites compared to the untreated group. Most importantly, this
71 treatment condition was safe for both sea cucumbers (*Apostichopus japonicas*) and sea urchins
72 (*Strongylocentrotus intermedius*), which are commonly infected with these pathogenic crustaceans

73 in Japanese aquaculture systems. In another study, Imaizumi et al. (2018) reported that NB-O₃
74 could be used for disinfection of *Vibrio parahaemolyticus*, a unique strain causing early mortality
75 syndrome/acute hepatopancreatic necrosis disease (EMS/AHPND) in whiteleg shrimp (*Penaeus*
76 *vannamei*). However, in their study NB-O₃ showed a negative effect on shrimp when administered
77 at a high level (970 mV ORP). When the NB-O₃ treated water was diluted by 50% and the results
78 revealed that all shrimp exposing to pathogenic *V. parahaemolyticus* survived from the bacterial
79 infection, while all shrimp died in the group without the NB-O₃ treatment (Imaizumi et al., 2018).

80 Preliminary results of NB-O₃ in marine aquaculture is promising. The impact of nanobubbles in
81 water of different salinity suggests that this technology may be even more effective in fresh water
82 (Li et al., 2013). However, there is a lack of studies on its effect on fresh water fish and their
83 pathogens. This study aims at the assess whether NB-O₃ can be used on fresh water fish pathogens
84 and is safe for tilapia.

85

86 **Materials and Methods**

87 **Concentration and size of nanobubbles**

88 Two trials were carried out separately using the nanobubble generator (model: aQua+075MO;
89 maker: AquaPro Solutions Pte Ltd, Singapore) to determine the size of the air and oxygen
90 nanobubbles. The generator was operated in 100 L-fiberglass tanks containing 50 L distilled water
91 for 30 min, with either natural air or oxygen gas with a flow rate of 1 L/min. 50 mL of water was
92 sampled from each tank at 10, 15, 20, and 30 min. Water samples prior to the addition of
93 nanobubbles were used as baseline standards. The concentration and size of nanobubbles were
94 determined by NanoSight NS300 (Malvern Panalytical Ltd) with three replicates for each sample.
95 Ozone nanobubble measurement was not done due to its oxidation effect on the NanoSight
96 machine.

97 **Effect of ozone nanobubbles (NB-O₃) treatment on water parameters**

98 The experiment was performed in two separate tanks to evaluate the effect of NB-O₃ on water
99 parameters. Each tank contained 50 L of de-chlorinated tap water. Nanobubble generator was
100 operated for 10 min in each tank. The temperature in degree Celsius (T°), dissolved oxygen (DO),
101 pH and oxidation reduction potential (ORP) were measured using a multi-parameter meter (YSI

102 Professional Plus) every 1-2 min during 10 min-run and 15 min after stopping the nanobubble
103 generator.

104 **Bacterial isolates and growth conditions**

105 The Gram-positive bacterium *Streptococcus agalactiae* isolated from a tilapia farm which was
106 experiencing an outbreak of Streptococcosis, and Gram negative bacterium *Aeromonas veronii*
107 associated with hemorrhagic septicemia in tilapia (Dong et al., 2017) were used in this study. Prior
108 to experiments, the bacterial isolates were recovered from bacterial stocks stored at -80 °C using
109 tryptic soy agar (TSA) medium, incubated at 30 °C. To prepare bacterial inoculum, single bacterial
110 colonies were inoculated in 10 mL of tryptic soy broth (TSB) overnight at 30 °C on a shaker
111 platform (150 rpm). Five mL of bacterial culture was then sub-cultured in 500 mL of TSB,
112 incubated with gentle shaking (150 rpm) at 30 °C until OD₆₀₀ reached 0.8 (equivalent to ~10⁸
113 CFU/mL). For subsequent trials, 100 mL of the bacterial culture was added into a tank containing
114 50 L de-chlorinated tap water.

115 **Effect of treatment time on disinfection property of NB-O₃**

116 An initial trial was carried out to investigate the effect of treatment time on the disinfection
117 property of NB-O₃. *S. agalactiae* was used as a representative bacterium in this time-course trial.
118 The experiment was performed in two 100 L fiberglass tanks containing 50 L of de-chlorinated
119 tap water each mixed with 100 mL bacterial culture (OD₆₀₀ = 0.8). One tank was treated with NB-
120 O₃ while another tank was served as a control without NB-O₃. Water was sampled from the four
121 corners and the center of the tank (1 mL per spot). The samples were pooled together for
122 conventional plate count enumeration at different time points. Samples were collect prior to
123 inoculation (0 min), during treatment (5, 10 and 15 min) and after treatment (5, 10, and 15 min).
124 The samples were 10 fold-serially diluted with sterile saline solution (NaCl 0.85%) and 100 µL of
125 each dilution was spread on TSA in duplicates, incubated at 30 °C for 36 h. Dilutions with a number
126 of colonies ranging from 30-300 were used for counting and mean bacterial colonies of two
127 replicate plates were calculated and expressed as CFU/mL. The percentage of bacterial reduction
128 was calculated based on the formula below.

129
$$\% \text{ reduction} = \left(\frac{\text{Mean bacterial } \frac{\text{CFU}}{\text{mL}} \text{ before treatment} - \text{Mean bacterial } \frac{\text{CFU}}{\text{mL}} \text{ after treatment}}{\text{Mean bacterial } \frac{\text{CFU}}{\text{mL}} \text{ before treatment}} \right) \times 100$$

130 We compared the reduction in bacterial concentration in the tank exposed to ozone and the control
131 tank for differences.

132 **Effect of NB-O₃ on pathogenic Gram-positive and Gram-negative bacteria**

133 To evaluate the effect of NB-O₃ on bacterial pathogens of tilapia, *S. agalactiae* and *A. veronii* were
134 used as representative Gram positive and Gram-negative bacteria, respectively. Each set of
135 experiment comprised of 1 control tank (having normal aerator) and 3 treatment tanks (10 min-
136 treating with NB-O₃ 1 to 3 times at 15 min intervals). Each tank containing 50 L de-chlorinated
137 tap water was mixed with 100 mL of bacterial suspension (OD₆₀₀ = 0.8) as described above. Water
138 was sampled from control and treatment tanks before (0 min) and 15 min after the end of each
139 treatment to establish the bacterial concentration and the percentage of bacterial reduction.
140 Temperature, pH, DO and ORP were also recorded during the experiment.

141 To investigate the ultrastructure of bacteria before and after treatment with NB-O₃, two
142 experimental tanks were set up in the same manner as the aforementioned treatment tanks, one
143 tank contained *S. agalactiae* and the other contained *A. veronii*. Each tank was treated with NB-
144 O₃ for 10 min. Water (200 ml) was collected and concentrated to a 0.5 mL suspension before and
145 15 minutes after the NB-O₃ treatment. The bacterial suspension was smeared on coverslips coated
146 with Poly-L-lysine (Sigma-Aldrich) and air-dried for 3 hrs. The samples were subsequently fixed
147 with glutaraldehyde 2.5% and 1% osmium tetroxide before dehydration with ethanol as described
148 by Thanomsub et al. (2002). The ultrastructure of the bacteria was examined and photographed
149 under a scanning electron microscope (SEM) (SU8000, Japan) operated at 10 kV.

150 **Effect of NB-O₃ treatment on total bacteria in fish-culture water**

151 Investigation of the disinfection property of NB-O₃ was also evaluated using “culture” water
152 (water from the fish-culture tanks which contained organic matter e.g. fish feces, mucus, left over
153 feed and unknown aquatic bacterial flora). Fish-culture water was taken from tanks containing
154 juvenile Nile tilapia (*Oreochromis niloticus*). A trial using three 10 min- NB-O₃ exposure times
155 administered 15 minutes apart was applied in to three fiberglass tanks containing 50 L fish-cultured
156 water each. Water sampling scheme for total bacterial counts was conducted before and 15 min
157 after the end of each treatment. Water temperature, pH, DO and ORP were monitored.

158 **Effect of NB-O₃ on fish health and gill morphology**

159 Animal use protocol in this study was granted by the Thai Institutional Animal Care and Use
160 Committee (MUSC62-039-503). To investigate whether NB-O₃ treatment had negative effects on
161 gill morphology and fish life, we carried out a trial which included 2 control and 2 treatment tanks,
162 each tank containing 20 apparently healthy *O. niloticus* juveniles of 6-8 g body weight. The 100 L
163 fiberglass tanks had 50 L of de-chlorinated tap water. For the treatment tanks, NB-O₃ was applied
164 at 15 minute intervals 3 times for 10 minutes. The control tanks were treated with normal aeration.
165 Two fish from each tank were randomly sampled after every treatment for wet-mount examination
166 and histological study of the gills and the remaining fish were monitored for 48 h. For histological
167 analysis, gill arches from one side of each fish were preserved in 10% neutral buffer formalin with
168 a ratio of 1 sample/10 fixative (v/v) for 24 h before being placed in 70% ethanol for storage. The
169 samples were then processed for routine histology and stained with hematoxylin and eosin (H&E).
170 Gill morphology of the experimental fish was examined under a microscope equipped with a
171 digital camera. We compared fish behavior, the gills of treated and untreated fish visually. Fish
172 were also monitored for mortality over a period of 48 hours post treatment.

173

174 **Results**

175 **Concentration and size of nanobubbles**

176 The results of NanoSight readings from the air nanobubbles (NB-Air) (Fig. 1A) and the oxygen
177 nanobubbles (NB-O₂) (Fig. 1B) were similar. Majority of nanobubbles (or particles) were less than
178 130 nm in size. The concentration of these bubbles after a 10 min treatment was of $2.39 \times 10^7 \pm$
179 1.01×10^7 particles/mL for NB-Air and $3.03 \times 10^7 \pm 1.11 \times 10^6$ particles/mL for NB-O₂. Increasing
180 treatment times (15, 20 and 30 min) generated larger bubbles with quantity in the same order of
181 magnitude (Fig. 1). The result confirmed that the nanobubbler used in this study produced
182 nanobubbles and 10 min operation in 50 L of water generated the most uniform nano-sizes. Thus,
183 this scheme was also applied to generate ozone nanobubbles (NB-O₃).

184 **Effect of NB-O₃ treatment on water parameters**

185 Changes of water parameters (T°, DO, pH and ORP) during and after treatment with NB-O₃ were
186 consistently similar between the two trials (Fig. 2). Significant changes were observed in DO and
187 ORP values while T° increased slightly (~2°C) and pH remained relatively stable during and after
188 NB-O₃ treatment. With respect to DO, the value increased rapidly reaching to 23-25 mg/L after 10

189 min treatment and reduced slowly to ~20 mg/L 15 min post treatment. By contrast, ORP increased
190 quickly, reaching over 700 mV within 6 min and ~800 mV within 10 min and dropped back to the
191 starting level (~300 mV) 15 min post treatment.

192 **A 10-min NB-O₃ treatment reduced >90% bacterial loads in water**

193 As shown in Fig. 3, similar bacterial loads (*S. agalactiae*) at the starting point were used in the
194 control tank (1.17×10^6 /mL) and treatment tank (1.83×10^6 /mL). However, upon NB-O₃
195 treatment, bacterial density reduced quickly during exposure time in the treatment tank. The
196 percentage drop in concentration in the treated group during the treatment at 5, 10 and 15 min were
197 62.30%, 97.76% and 99.40%, respectively, indicating that disinfection occurred rapidly during the
198 treatment process. Bacterial concentration remained low 15 min after treatment. In contrast,
199 bacterial concentration in the control tank remained stable at ~ 10^6 CFU/mL during the same time
200 period (Fig. 3). With respect to water quality, changes were observed only in the treatment tank.
201 DO increased from 6.2 mg/L (before treatment) to 21.8 mg/L (at 5 min), 25.8 mg/L (at 10 min)
202 and 27.9 mg/L (at 15 min) and dropped to 23.3 mg/L at 15 min post treatment. Water temperature
203 increased approximately 1 °C every 5 min of the treatment, from 26.5 °C (before treatment) to 29.2
204 °C (at 15 min) and remained at this temperature 15 min post treatment. Relatively no change was
205 observed in pH (7.6-7.7) and ORP (293-306 mV) during the experiment.

206 **NB-O₃ treatment effectively reduced both pathogenic Gram positive and negative bacteria**

207 The trial with *S. agalactiae* started with similar bacterial loads; 1.17×10^6 CFU/mL in the control
208 tank and 3.45×10^6 CFU/mL in treatment tanks (Fig. 4A). A single 10-min treatment with NB-O₃
209 effectively reduced 96.11% bacterial load in the tank. When the same protocol was repeated for
210 the second and third time, 99.93% and 99.99% bacteria were inactivated, respectively. The
211 bacterial concentration in the control tank (without the NB-O₃ treatment) was maintained at 10^6
212 CFU/mL (Fig. 4A). Similar patterns were also observed in the trials with the Gram negative
213 bacterium *A. veronii*. Average initial bacterial counts of *A. veronii* for control and treatment tanks
214 were 1.03×10^6 CFU/mL and 1.65×10^6 CFU/mL, respectively. Following the 1st, 2nd and 3rd NB-
215 O₃ exposure, bacterial loads were reduced by 97.92, 99.99 and 99.99%, respectively (Fig. 4B). No
216 significant changes in bacterial counts were observed in the control tank during the experiment
217 (Fig. 4B). Changes in water quality were shown in Table 1. Temperature changes in the NB-O₃
218 treatment tanks were 1.9-2.6 °C after the 1st treatment, and 4.3-4.7 °C after 3rd treatment, whereas

219 pH values were relatively stable at 7.4 to 8.0. Notably, DO increased sharply (from 3.9-4.4 to 26.4-
220 29.9 mg/L) and was maintained at this high level after every treatment, while ORP values did not
221 increase as much as seen in the water study without bacteria (Fig. 2).

222 Ultrastructural examination of the bacterial surface by SEM revealed that the majority of bacterial
223 cells (both *S. agalactiae* and *A. veronii*) were collapsed and destroyed after treatment with NB-O₃
224 for 10 min compared to the normal intact surface structure of bacteria before treatment (Fig. 5).

225 **Effect of NB-O₃ treatment on total bacterial counts in fish-cultured water**

226 In this trial, the bacterial load was compared before and after treatment. Before treatment, the total
227 bacterial concentration in the fish-cultured water was $6.93 \times 10^5 \pm 7.81 \times 10^5$ CFU/mL (Fig. 6).
228 After exposure to NB-O₃ for 10 min, 42.94% of the bacteria was inactivated. When the same
229 protocol was repeated, 84.94% and 99.27% bacteria were reduced in these treatments (Fig. 6).

230 During the experiment, DO increased sharply from very low at the beginning 0.6 ± 0.1 mg/L to
231 27.7 ± 0.6 mg/L after the first 10 min treatment. The DO was 30.8 ± 7.7 mg/L after the second 10
232 min treatment, and 28.7 ± 7.6 mg/L after the third treatment. Water temperature was increased
233 slightly from 26.7 ± 0.3 to 28.3 ± 0.4 , 29.8 ± 0.3 and 31.2 ± 0.2 °C after the 1st, 2nd and 3rd treatment,
234 respectively. In contrast, pH and ORP were stable during the experiment (7.5-7.6 for pH, 210-250
235 mV for ORP).

236 **Effect of NB-O₃ on fish health and gill morphology**

237 No Fish died during the NB-O₃ treatments or up to 48 h post treatment when we stopped the
238 experiment. However, abnormal signs were observed in the gills in all fish examined after
239 receiving the second and third treatments. These signs included reddening at the base of the fins,
240 erratic swimming, and the attachment of bubbles to the body surface. These bubbles disappeared
241 after several minutes of fish movement.

242 The wet-mount examination of the gills revealed no significant difference between control and
243 treatments at any of the treatment times (Fig. 7A-D). There were no gross clinical signs of gas
244 bubble disease. H&E stained sections of the gills showed the normal structure of the gills in the
245 first treatment group (Fig. 7F) compared to the control group (Fig. 7E). However, abnormal
246 changes were observed in the fish exposed to the second treatment. Aggregates of basal cells at
247 the base of the secondary lamellae were apparent with increasing severity corresponding to the

248 dose of ozone exposure (Fig. 7G, arrows). Gills in the third experiment had some loss of the
249 secondary lamella (Fig. 7H, arrows) and infiltration of red blood cells (blood congestion) (Fig.
250 7H).

251 During the treatment, water parameter (T° , DO and pH) fluctuations were similar (Table 2) to the
252 experiment with clean water spiked with *S. agalactiae* or *A. veronii* and NB-03 with the exception
253 that tanks exposed to ozone had ORP levels of 860-885 mV after each 10 min treatment.

254 Discussion

255 Application of ozone gas using nanobubble technology is relatively new to aquaculture. A previous
256 study reported the sterilization efficacy of NB-O₃ against pathogenic *V. parahaemolyticus*, a Gram
257 negative bacteria causing disease in marine shrimp (Imaizumi et al., 2018). In this study, we first
258 revealed that NB-O₃ has disinfection property against two common bacterial pathogens of
259 freshwater farmed tilapia, *S. agalactiae* and *A. veronii*.

260 The disinfection effectiveness of NB-O₃ likely depended on the organic load in the water. In clean
261 de-chlorinated tap water spiked with a known concentration of either *S. agalactiae* or *A. veronii*,
262 a single treatment (10 min) with NB-03 could successfully reduce more than 96% of the bacteria.
263 However, the same protocol applied to water that was taken from a tilapia-cultured tank, resulted
264 in a reduction in the disinfection potential by roughly half. Ozone is known as a strong oxidizing
265 agent (Powell et al., 2016; Summerfelt, 2003); thus, it was possible that organic matter (e.g. feces,
266 mucus, etc.) in the dirty tank water competed for the oxidation potential of the NB-03 thus slowing
267 down the speed of disinfection. This finding suggests that increased treatment time or increasing
268 the frequency of treatments, as was evaluated in this study, may be required for water with
269 abundant organic matter.

270 Interestingly, we also noticed that when bacteria (organic matter) was added to water,
271 oxidation reaction potential (ORP) value did not increase as seen in the treatment with clean water
272 that did not have bacteria. Similarly, ORP did not increase during treatment with the fish-cultured
273 water (rich of organic matter). This indicated that the measurement of ORP as an indicator of O₃
274 level administered by the nanobubbler is not reliable in the presence of organic matter. It was
275 probably due to the rapid oxidation and degradation of O₃ molecules when contacting organic
276 matters. Therefore, to accurately measure ORP in NB-O₃ water, clean water without organic

277 matters is required. In clean water, ORP dropped relatively quick and returned to normal after we
278 ceased to introduce NB-O₃ (Fig. 2), indicating that O₃ molecules might be unstable even in the
279 form of nanobubbles. This is consistent with the high levels of DO maintained after treatment (Fig.
280 2), most likely derived from the degradation of O₃ into O₂ molecules (Batakliev et al., 2014). If
281 this is the case, the treatment of NB-O₃ in aquaculture farms could have dual benefits: disinfection
282 of bacteria and improvement of DO.

283 In this study, extreme treatment conditions (repeating treatments 3 times at 15 minute intervals)
284 was designed to evaluate the acute effect of NB-O₃ on the fish. Although multiple NB-O₃
285 treatments were not harmful to fish life, increased exposure caused damage to the fish gills. In fact,
286 a single treatment with 10-min NB-O₃ is enough to effectively reduce bacterial loads in water, and
287 it was safe for fish. If more than one 10-minute treatment of NB-O₃ was used there was some
288 evidence of irritation to the gills. In reality, if this technology is applied in fish ponds, chances of
289 contact between fish and NB-O₃ will inevitably be low. However, given the evidence of gill
290 damage after 3 consecutive treatments more in-depth investigations are required prior to scaling
291 up NB-O₃ technology for commercial applications.

292 One of the limitations of this study was the limited sample size with the experiments. Our tank
293 numbers were limited by the number of nanobubble generators we had. Also we could not include
294 a normal ozone air-stone treatment group due to the personnel safety issue in our laboratory.
295 However, when we consider all the experiments together there is strong evidence to suggest that
296 NB-O₃ technology is not only a promising disinfection method but also enriches dissolved oxygen
297 in freshwater aquaculture and in low dose it is not harmful to the fish. As a disease prevention tool,
298 NB-O₃ treatment might be a novel approach to controlling overgrowth of pathogenic bacteria in
299 water, thus reducing the risk of bacterial diseases. This nonchemical disinfection technology may
300 be a promising alternatives to antibiotics as a means of reducing antibiotic use in aquaculture, and
301 possibly inadvertently reducing the risk of AMR. We are currently investigating the effect of NB-
302 O₃ on fish immunity and stress response, microbiome, plankton profiles and growth performance.

303 **Acknowledgements**

304 This work was carried out with financial support from UK government – Department of Health
305 and Social Care (DHSC), Global AMR Innovation fund (GAMRIF) and the International
306 Development Research Center (IDRC), Ottawa, Canada.

307 **Disclaimers**

308 The views expressed herein do not necessarily represent those of IDRC or its Board of Governors.

309 **Credit Author Statement**

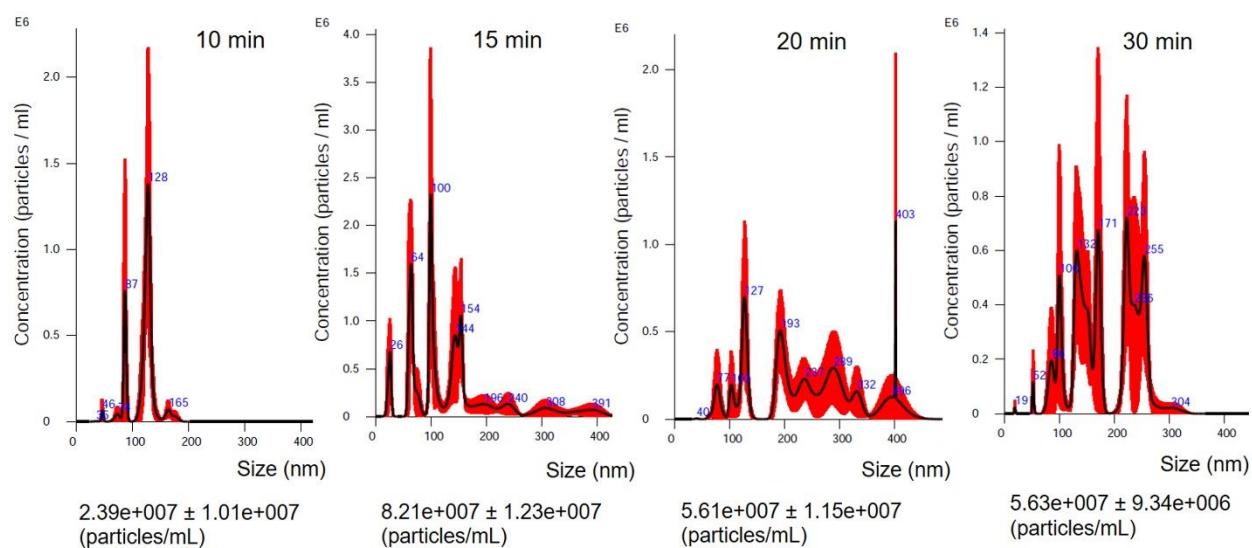
310 HTD, SSH: Conceptualization, Methodology. HTD, SS, SSH: Data curation, Writing- Original
311 draft preparation. CJ, NK, NP, PS: Visualization, Investigation. HTD, WP, AT: Supervision,
312 Validation. HTD, SS, SSH, WP, AT: Writing- Reviewing and Editing. HTD, SSH: Funding
313 acquisition.

314 **Tables and Figures**

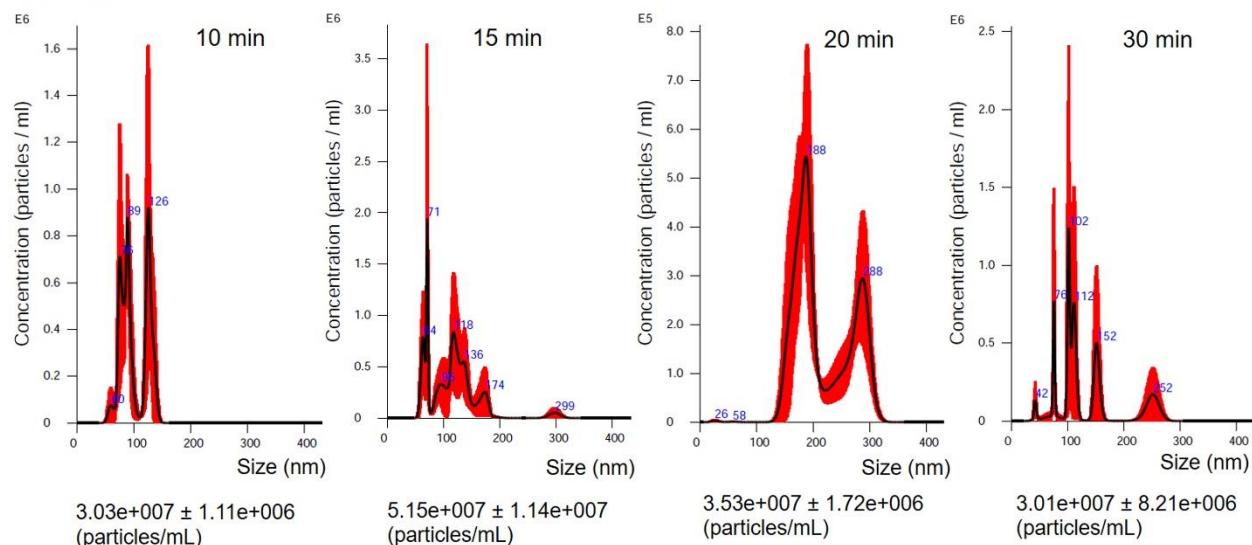
315 **Table 1:** Comparative water parameters in control and NB-O₃ treatment groups with the presence
316 of either *S. agalactiae* or *A. veronii* in the water

Parameter	Measurement time	<i>S. agalactiae</i>		<i>A. veronii</i>	
		Control	NB-O ₃ treatment	Control	NB-O ₃ treatment
T°	Before treatment	26.9	27.2 ± 0.3	27.5	25.9 ± 0.8
	10 min (1 st)	26.9	29.8 ± 1.3	27.4	27.8 ± 0.6
	10 min (2 nd)	27.0	30.4 ± 0.2	27.3	29.3 ± 0.6
	10 min (3 rd)	27.0	31.5 ± 0.3	27.4	30.6 ± 0.5
DO	Before treatment	4.3	3.9 ± 0.5	4.7	4.4 ± 0.2
	10 min (1 st)	4.3	27.8 ± 1.6	4.6	30.3 ± 2.4
	10 min (2 nd)	4.2	26.9 ± 0.4	4.6	29.9 ± 0.1
	10 min (3 rd)	4.2	26.4 ± 0.6	4.5	29.5 ± 1.0
pH	Before treatment	7.8	7.6 ± 0.2	7.8	8.0 ± 0.1
	10 min (1 st)	7.8	7.5 ± 0.0	8.0	7.8 ± 0.1
	10 min (2 nd)	7.8	7.4 ± 0.0	7.9	7.7 ± 0.1
	10 min (3 rd)	7.8	7.4 ± 0.0	7.9	7.6 ± 0.0
ORP	Before treatment	325	290 ± 16	279	294 ± 6
	10 min (1 st)	314	281 ± 7	289	271 ± 8
	10 min (2 nd)	306	275 ± 4	261	270 ± 6
	10 min (3 rd)	304	273 ± 3	265	272 ± 4

317 T°, temperature in degree Celsius; DO, dissolved oxygen; ORP, oxidation reduction potential.

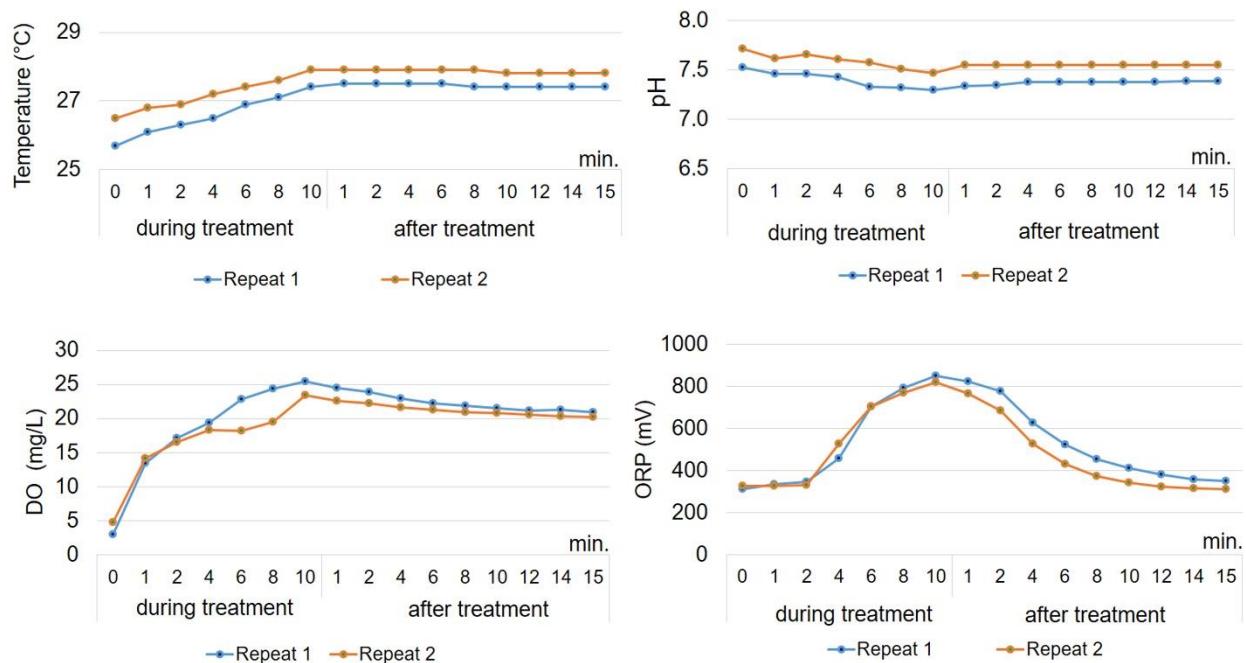

318 Values in the NB-O₃ treatment are expressed as mean ± SD from 3 replicates.

319 **Table 2:** Water parameter fluctuation in fish tanks with and without and NB-O₃ treatment.

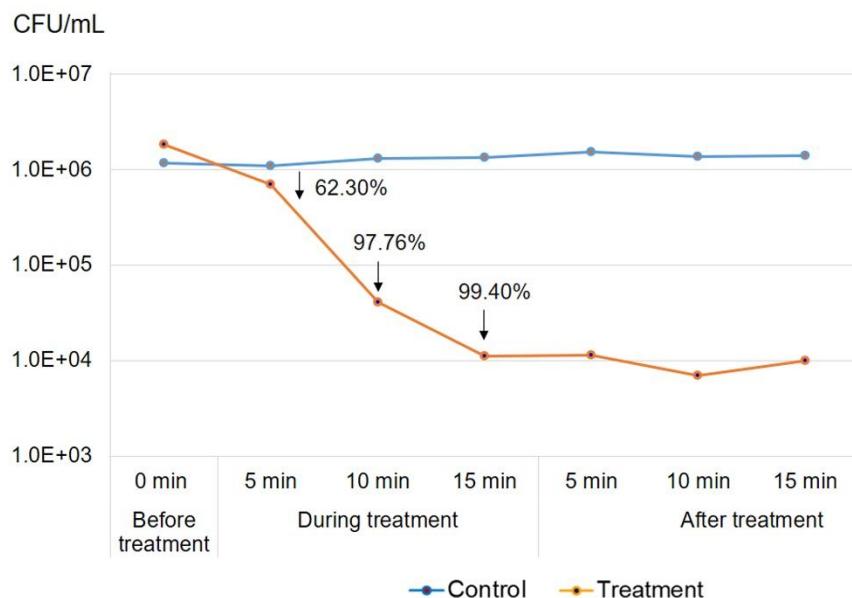

Parameter	Measurement time	Control	NB-O ₃ treatment
T°	Before treatment	28.7 ± 0.1	28.8 ± 0.0
	10 min (1 st)	ND	29.6 ± 0.5
	10 min (2 nd)	ND	30.7 ± 0.4
	10 min (3 rd)	26.7 ± 0.1	31.6 ± 0.3
DO	Before treatment	4.9 ± 0.1	4.6 ± 0.1
	10 min (1 st)	ND	28.2 ± 0.1
	10 min (2 nd)	ND	28.5 ± 0.6
	10 min (3 rd)	5.1 ± 0.0	26.9 ± 0.2
pH	Before treatment	8.0 ± 0.0	8.0 ± 0.0
	10 min (1 st)	ND	7.6 ± 0.1
	10 min (2 nd)	ND	7.6 ± 0.1
	10 min (3 rd)	7.15 ± 0.2	7.3 ± 0.0
ORP*	Before treatment	314 ± 13	337 ± 6
	10 min (1 st)	ND	860 ± 42
	10 min (2 nd)	ND	875 ± 18
	10 min (3 rd)	313 ± 12	885 ± 15

320 T°, temperature in degree Celsius; DO, dissolved oxygen; ORP, oxidation reduction potential; ND,
321 not done. Values are expressed as mean ± SD from 3 replicates. *ORP dropped to normal (~330
322 mV) after 15 min of every treatment time.

(A) Air Nanobubbles

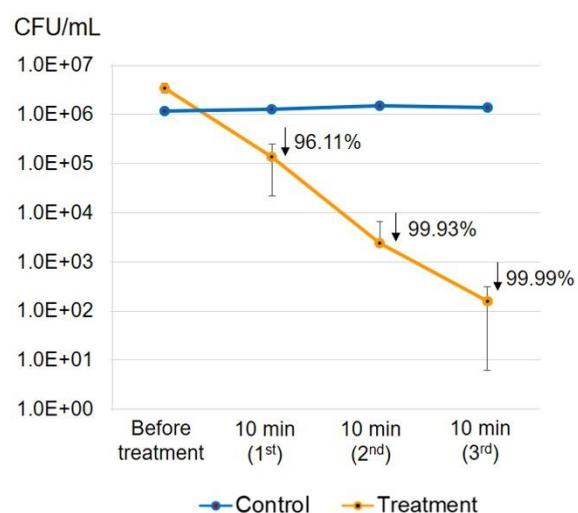


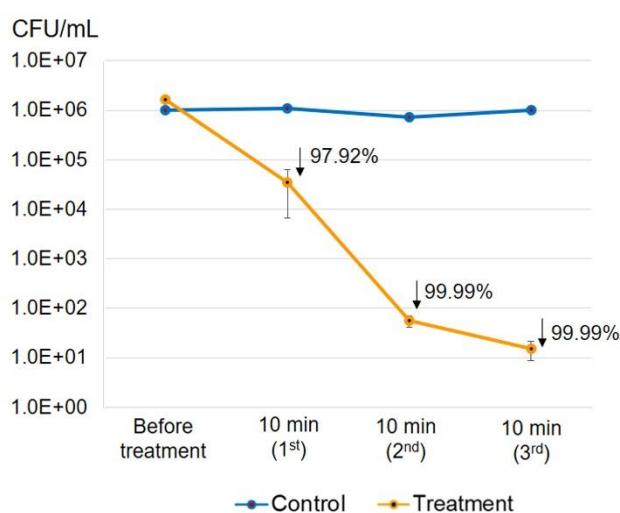
(B) Oxygen Nanobubbles


323

324 **Figure 1:** Concentration and size of bubbles generated using air (A) or oxygen (B) following
325 treatment for 10, 15, 20 and 30 min. Peaks represent the concentration of dominant bubbles with
326 similar sizes and blue numbers indicate the bubble sizes. Total concentrations of bubbles are shown
327 at the bottom of each graph. Values were calculated from 3 replicate experiments.

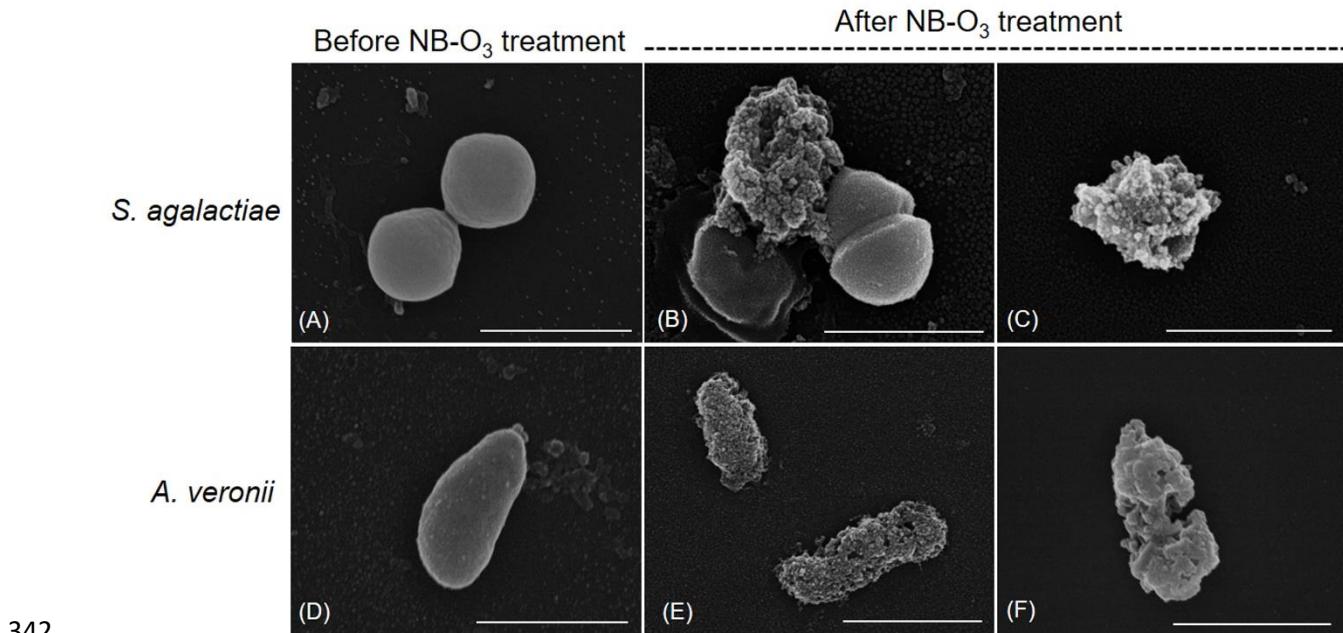
328

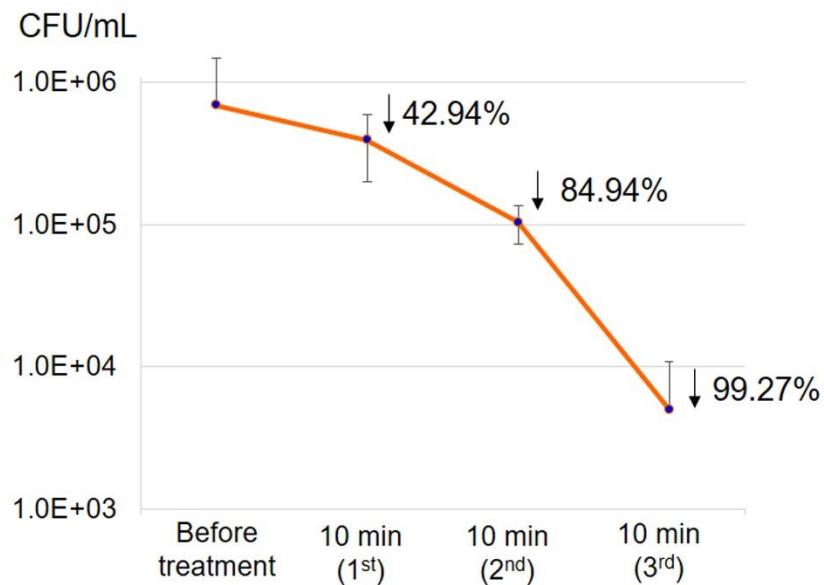

329 **Figure 2:** Water parameters (temperature, pH, DO and ORP) during 10 min treatment and 15 min
330 after exposure to ozone nanobubbles. The experiment was carried out in 2 replicates.


331

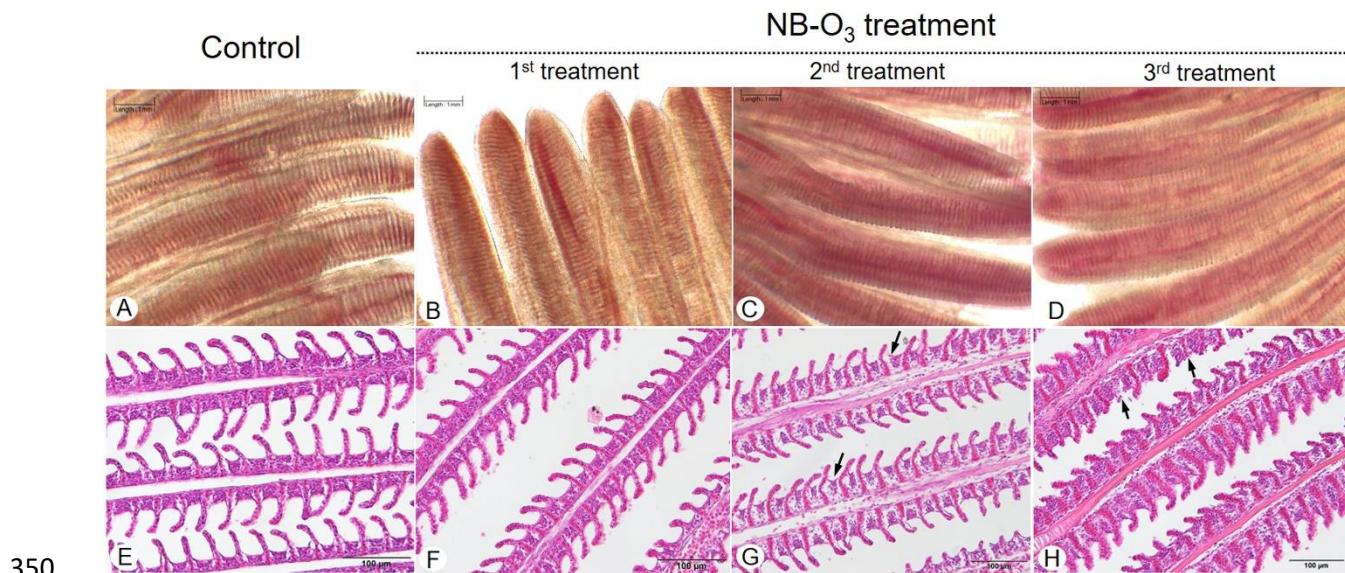
332 **Figure 3:** Number of *S. agalactiae* colony counts from the water with and without NB-O₃ exposure
333 (treatment and control group, respectively). NB-O₃ treatment was performed for 15 min and
334 stopped for 15 min. The water sample was collected from both the control and treatment groups
335 every 5 min for plate count. Arrows indicated significant % reduction of bacterial counts compared
336 to the starting point of the NB-O₃ treatment group

(A) Effect of NB-O₃ on *S. agalactiae*




(B) Effect of NB-O₃ on *A. veronii*

337


338 **Figure 4:** Bacterial counts of *S. agalactiae* (A) and *A. veronii* (B) upon exposure to NB-O₃ 10 min
339 three times continuously (orange lines) compared to that of the control water without NB-O₃ (blue
340 lines). Arrows indicated % reduction of bacterial loads compared to the starting bacterial
341 concentration. Bars represent standard deviation from 3 replicates.

346

347 **Figure 6:** Total bacterial counts from fish-cultured water upon exposure to NB-O₃ 10 min three
348 times continuously. Arrows indicated % reduction of bacterial loads compared to the starting
349 bacterial concentration. Bars represent standard deviation from 3 replicates.

Figure 7: Photomicrographs of wet-mount (A-D) and H&E stained sections (E-H) of the gills of tilapia from control and NB-O₃ treatment. No significant difference in gill morphology by wet-mount between control (A) and treatment (B-D) groups. H&E staining revealed the normal structure of the gill filaments in both control (E) and the first treatment with NB-O₃ (F). Slight damage and shrunken of the basal lamellae (arrows) were observed in the fish received second exposure (G) and increasing damage of the gill filaments, loss of some secondary lamella (arrows) and severe blood congestion in the secondary lamellae were observed in the fish received the third exposure (H).

359 **References**

360 Agarwal, A., Ng, W.J., Liu, Y., 2011. Principle and applications of microbubble and nanobubble
361 technology for water treatment. *Chemosphere*. 84, 1175-1180.

362 Anzai, S., Yokohama-shi., Kanagawa., 2019. Ultrafine bubble generation device for aquaculture
363 or wastewater treatment. United States. Patent No. US 2019 / 0262783 A1.

364 Batakliev, T., Georgiev, V., Anachkov, M., Rakovsky, S., Zaikov, G.E., 2014. Ozone
365 decomposition. *Interdiscip Toxicol*. 7, 47-59.

366 Béné, C., Barange, M., Subasinghe, R., Andersen, P.P., Merino, G., Hemre, G.I., Williams, M.,
367 2015. Feeding 9 billion by 2050 – Putting fish back on the menu. *Food Sec*. 7, 261–274.

368 Dong, H.T., Techatanakitarnan, C., Jindakittkul, P., Thaiprayoon, A., Taengphu, S.,
369 Charoensapsri, W., Khunrae, P., Rattanarojpong, T., Senapin, S., 2017. *Aeromonas jandaei*
370 and *Aeromonas veronii* caused disease and mortality in Nile tilapia, *Oreochromis niloticus*
371 (L.). *J Fish Dis*. 40, 1395-1403.

372 FAO, 2018. Food and Agriculture Organization of the United Nations. The state of world fisheries
373 and Aquaculture 2018- Meeting the sustainable development goals. Rome. Licence: CC
374 BY-NC-SA 3.0 IGO.

375 Huyben, D., Bevan, D., Stevenson, R., Zhou, H., Moccia, R., 2018. Evaluation of membrane
376 filtration and UV irradiation to control bacterial loads in recirculation aquaculture systems.
377 *Aquacult Int*. 26, 1531–1540.

378 Imaizumi, K., Tinwongger, S., Kondo, H., Hirono, I., 2018. Disinfection of an EMS/AHPND
379 strain of *Vibrio parahaemolyticus* using ozone nanobubbles. *J Fish Dis*. 41, 725-727.

380 Kurita, Y., Chiba, I., Kijima, A., 2017. Physical eradication of small planktonic crustaceans from
381 aquaculture tanks with cavitation treatment. *Aquaculture International*. 25, 2127– 2133.

382 Li, H., Hu, L., Xia, Z., 2013. Impact of Groundwater Salinity on Bioremediation Enhanced by
383 Micro-Nano Bubbles. *Materials (Basel)*. 6, 3676-3687.

384 Mahasri, G., Saskia, A., Apandi, P.S., Dewi, N.N., Rozi., N.M., U., 2018. Development of an
385 aquaculture system using nanobubble technology for the optimisation of dissolved oxygen
386 in culture media for nile tilapia (*Oreochromis niloticus*). *IOP Conf. Ser.: Earth Environ.*
387 *Sci.* 137, 012046.

388 Powell, A., Scolding, J.W.S., 2016. Direct application of ozone in aquaculture systems. *Rev*
389 *Aquacult*. 10, 424-438.

390 Rahmawati, A.I., Saputra, R.N., Hidayatullah, A., Dwiarto, A., Junaedi, H., Cahyadi, D., Saputra,
391 H.K.H., Prabowo, W.T., Kartamiharja, U.K.A., Shafira, H., Noviyanto, A., Rochman,
392 N.T., 2020. Enhancement of *Penaeus vannamei* shrimp growth using nanobubble in indoor
393 raceway pond. *Aquaculture and Fisheries*. In Press.

394 Reverter, M., Sarter, S., Caruso, D., Avarre, J.C., Combe, M., Pepey, E., Pouyaud, L., Heredía,
395 S.H., de Verdal, H., Gozlan, R.E., 2020. Aquaculture at the crossroads of global warming
396 and antimicrobial resistance. *Nat Commun* 11, 1870.

397 Summerfelt, S.T., 2003. Ozonation and UV irradiation - an introduction and examples of current
398 applications. *Aquacult Eng.* 28, 21-36.

399 Takahashi, M., Chiba, K., Li, P., 2007. Free-radical generation from collapsing microbubbles in
400 the absence of a dynamic stimulus. *J Phys Chem B.* 111, 1343-1347.

401 Thanomsub, B., Anupunpisit, V., Chanphetch, S., Watcharachaipong, T., Poonkhum, R.,
402 Srisukonth, C., 2002. Effects of ozone treatment on cell growth and ultrastructural changes
403 in bacteria. *J Gen Appl Microbiol.* 48, 193–199.

404 Watts, J.E.M., Schreier, H.J., Lanska, L., Hale, M.S., 2017. The Rising Tide of Antimicrobial
405 Resistance in Aquaculture: Sources, Sinks and Solutions. *Mar Drugs.* 15.

406 World Bank, 2014. Reducing disease risks in aquaculture. World Bank Report #88257-GLB.

407 Xia, Z., Hu, L., 2019. Treatment of organics contaminated wastewater by ozone micro-nano-
408 bubbles. *Water.* 11, 55.

409 Yamasaki, K., Sakata, K., Chuhjoh, K., 2005. Water treatment method and water treatment system.
410 United States Patent No. US 7662288 B2