

1 **Efficacy of heat-killed and formalin-killed vaccines against *Tilapia tilapinevirus* in juvenile**
2 **Nile tilapia (*Oreochromis niloticus*)**

3 Thao Thu Mai^{1,2,3}, Pattanapon Kayansamruaj⁴, Suwimon Taengphu^{5,6}, Saengchan Senapin^{5,6},
4 Janina Z. Costa⁷, Jorge del-Pozo⁸, Kim D. Thompson⁷, Channarong Rodkhum^{1,2*}, Ha Thanh
5 Dong^{9,10*}

6 ¹Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary
7 Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand

8 ²The International Graduate Program of Veterinary Science and Technology (VST), Faculty of
9 Veterinary Science, Chulalongkorn University, Bangkok, Thailand

10 ³Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh city, Vietnam.

11 ⁴Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart
12 University, Bangkok, Thailand

13 ⁵Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology
14 (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand

15 ⁶National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and
16 Technology Development Agency (NSTDA), Pathum Thani, Thailand

17 ⁷Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK

18 ⁸Infection and Immunity Division, Roslin Institute, Edinburgh, UK

19 ⁹Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand

20 ¹⁰Department of Food, Agriculture and Bioresources, School of Environment, Resources and
21 Development, Asian Institute of Technology, Pathum Thani, Thailand

22
23 **Running head:** Vaccines against *Tilapia tilapinevirus*

24
25 ***Corresponding authors:**

26 H.T. Dong, htdong@ait.ac.th

27 C. Rodkhum, Channarong.R@chula.ac.th

28 **Acknowledgements**

29 This study was financially supported by the GCRF Networks in Vaccines Research and
30 Development, which was co-funded by the MRC and BBSRC and is supported by the International
31 Veterinary Vaccinology Network. Thao Thu Mai acknowledges the PhD scholarship program of
32 Chulalongkorn University for ASEAN and Non-ASEAN countries and the 90th year anniversary
33 of Chulalongkorn University Fund. The authors thank Ms. Putiya Sangpo and Mr. Dinh Hung
34 Nguyen for their technical assistances.

35

36 **Data Availability Statement**

37 The data that support the findings of this study are available on request.

38

39 **Conflict of interests**

40 The authors declare no conflict of interest.

41

42 **Author Contributions**

43 Conceptualization, H.T.D., P.K., K.D.T.; investigation, T.T.M., S.T.; formal analysis, T.T.M.,
44 P.K., H.T.D.; methodology, S.S., S.T., J.Z.C, J.D.P, K.D.T, T.T.M., H.T.D; supervision, H.T.D.,
45 C.R.; writing - original draft, T.T.M, H.T.D., S.S.; review & editing, C.R., S.S., P.K., J.Z.C, J.D.P,
46 K.D.T. All authors have read and agreed to the current version of the manuscript.

47 **Abstract**

48 *Tilapia tilapinevirus* (also known as tilapia lake virus, TiLV) is considered to be a new threat to
49 the global tilapia industry. The objective of this study was to develop simple cell culture-based
50 heat-killed (HKV) and formalin-killed (FKV) vaccines for the prevention of disease caused by
51 TiLV. The fish were immunized with 100 μ L of either HKV or FKV by intraperitoneal injection
52 with each vaccine containing 1.8×10^6 TCID₅₀ inactivated virus. A booster vaccination was carried
53 out at 21-day post vaccination (dpv) using the same protocol. The fish were then challenged with
54 a lethal dose of TiLV at 28 dpv. The expression of five immune genes (*IgM*, *IgD*, *IgT*, *CD4* and
55 *CD8*) in the head kidney and spleen of experimental fish was assessed at 14 and 21 dpv and again
56 after the booster vaccination at 28 dpv. TiLV-specific IgM responses were measured by ELISA at
57 the same time points. The results showed that both vaccines conferred significant protection, with
58 relative percentage survival (RPS) of 71.3% and 79.6% for HKV and FKV, respectively.
59 Significant up-regulation of *IgM* and *IgT* was observed in the head kidney of fish vaccinated with
60 HKV at 21 dpv, while *IgM*, *IgD* and *CD4* expression increased in the head kidney of fish receiving
61 FKV at the same time point. After booster vaccination, *IgT* and *CD8* transcripts were significantly
62 increased in the spleen of fish vaccinated with the HKV, but not with FKV. Both vaccines induced
63 a specific IgM response in both serum and mucus. In summary, this study showed that both HKV
64 and FKV are promising injectable vaccines for the prevention of disease caused by TiLV in Nile
65 tilapia.

66

67 **Keywords**

68 Tilapia lake virus, Nile tilapia, inactivated vaccine, protection, immune responses

69 **1. Introduction**

70 Tilapia (*Oreochromis* sp.) is the second most farmed fish species worldwide after carps, reaching
71 6 million tons in 2020 (Fletcher, 2020), equivalent to a value of US\$ 7.9 billion (IMARC, 2020).
72 As the demand for animal protein as a food source increases, tilapia has been considered an
73 important freshwater fish for low- and middle-income countries (LMICs) due to its inexpensive
74 price, high adaptability to various environmental conditions and ease to culture (Prabu et al., 2019).
75 Intensification of tilapia farming systems has occurred as a result of this growing demand. This
76 has led to an increased risk of emerging infectious diseases caused by bacteria, viruses, parasites
77 and fungi (Dong et al., 2015; Mesalhy, 2013). In 2013, a new disease with a suspected viral
78 etiology emerged in Ecuador (Ferguson et al., 2014), and was named syncytial hepatitis of tilapia
79 (SHT) based on its characteristic histopathological features. Around the same time, a novel RNA
80 virus causing mass mortalities in tilapia was discovered in Israel, termed tilapia lake virus (TiLV)
81 (Eyngor et al., 2014). Subsequent studies, supported with molecular analysis, revealed that the
82 disease episodes in Ecuador and Israel shared the same causative virus, TiLV (Bacharach et al.,
83 2016b; del-Pozo et al., 2014). The virus has recently been classified as *Tilapia tilapinevirus*, in the
84 *Tilapinevirus* genus, within the *Amnooviridae* family (Bacharach et al., 2016c). Currently, TiLV
85 has been reported in 16 countries/region worldwide (Jansen et al., 2019; Surachetpong et al., 2020).
86 Current knowledge indicates that TiLV can infect all stages of fish development, including
87 fertilized eggs, larvae, fry, fingerlings, juveniles and large-size fish (Dong et al., 2017; Senapin et
88 al., 2018) although fingerlings and juveniles appear to be more vulnerable to infection with the
89 virus (Amal et al., 2018; Dong et al., 2017; Ferguson et al., 2014; Surachetpong et al., 2017).
90 Cumulative mortalities of up to 80% have been reported for farmed tilapia in Israel, while in a
91 report from Ecuador the percentage of mortalities appeared to fluctuate from 10-20% up to 80%
92 depending on the fish strain when tilapia fish were transferred to grow out cages, with fish dying
93 within 4-7 days of transfer (Eyngor et al., 2014; Ferguson et al., 2014). The mortality levels caused
94 by TiLV infection in Thailand were also variable, ranging from 20-90% (Dong et al., 2017), and
95 experimental infections also tended to result in high levels of mortality (66-100%) (Behera et al.,
96 2017; Dinh-Hung et al., 2021; Eyngor et al., 2014; Tattiayapong et al., 2017). All of these reports
97 suggest that TiLV is highly virulent and will cause significant mortality loss if introduced to a
98 production site.

99 Vaccines are an effective way to prevent disease caused by either bacteria or viruses in farmed fish
100 (Evensen, 2016). Currently, the majority of licensed vaccines in aquaculture are inactivated
101 vaccines, which contain either single or combined killed pathogens (Ma et al., 2019; Kayansamruaj
102 et al., 2020), inactivated using either physical (e.g. heat, pH, and ultraviolet) or chemical (e.g.
103 formalin, β -propiolactone, glutaraldehyde) processes (Delrue et al., 2012; Lelie et al., 1987).
104 Ideally, when a vaccine is administered, the fish's immune response is stimulated to produce of
105 antibodies and an immunologic memory against the pathogen (Secombes & Belmonte, 2016), so
106 that the immune system responses more effectively if the fish should encounter the pathogen at a
107 late date. However, to improve the efficacy of the vaccine, a booster dose(s) is often required in
108 order to obtain high antibody titers against the pathogen (Angelidis, 2006; Bogwald & Dalmo,
109 2019; Thu Lan et al., 2021). Inactivated vaccines normally stimulate humoral immune responses,
110 involving helper T cells (CD4+ T cells) and antibody-secreting B cells, secreting IgM, IgD or IgT
111 (Smith et al., 2019). The antibodies combat invading pathogens through a variety of mechanisms,
112 including neutralization, phagocytosis, antibody-dependent cellular cytotoxicity, and complement-
113 mediated lysis of pathogens or infected cells (Forthal, 2014). Viral vaccines can also activate cell-
114 mediated immunity, involving cytotoxic T-cells (also known as CD8+ T cells), the function of
115 which is to destroy virus-infected cells (Secombes & Belmonte, 2016; Smith et al., 2019;
116 Somamoto et al., 2002; Toda et al., 2011).

117 Many vaccines traditionally formulated from inactivated bacteria or viruses, have been licensed
118 and are commercially available for a variety of fish species, mainly salmon, trout and carp (Ma et
119 al., 2019). The few studies that have been reported relating to the development of a vaccine to
120 prevent TiLV infections in tilapia. The first TiLV vaccine was developed in Israel using strains of
121 TiLV that were attenuated by 17-20 subsequent passages in cell culture. The prototype for these
122 vaccines had relative percentage survival (RPS) values of over 50% (Bacharach et al., 2016a).
123 More recently, a cell-culture derived vaccine containing virus inactivated with β -propiolactone
124 and adjuvant Montanide IMS 1312 VG, with a virus titer of 10^8 50% tissue culture infectious dose
125 per milliliter ($TCID_{50}$ mL^{-1}) was developed in China. The vaccine gave a relatively high level of
126 protection, with the RPS value of 85.7 %. This vaccine was able to induce specific IgM, as well
127 as upregulate a variety of immune genes (Zeng et al., 2021a). In another study, a DNA vaccine
128 consisting of a pVAX1 DNA vector containing the sequence for TiLV's segment 8, encoding an
129 immunogenic protein VP20, was used for the primary immunization and a recombinant VP20

130 (rVP20) protein was used as a booster vaccine given at 3-week post-vaccination (wpv). This
131 vaccine combination resulted in a RPS value of 72.5 %, compared to 50 % and 52.5 % respectively
132 for the DNA vaccine or rVP20 alone (Zeng et al., 2021b). In the present study, we investigated
133 whether simple cell culture-based vaccines (water-based with no adjuvant), containing either heat-
134 killed or formalin-killed virus, were able to provoke a specific immune response in vaccinated fish
135 and if the vaccines protected them from TiLV infection.

136

137 **2. Materials and methods**

138 **2.1. Fish**

139 Juvenile Nile tilapia (*Oreochromis niloticus*) (body weight, 7.3 ± 1.2 g; length, 5.9 ± 1.1) were
140 obtained from a commercial tilapia hatchery with no previous record of TiLV infection. The fish
141 were placed in 100-liter containers at a density of 60 fish per tank at around 28°C and fed with a
142 commercial diet daily at 3% of body weight for 15 days before performing the vaccination trial.
143 Prior to the experiment, 5 fish were randomly selected to screen for the presence of TiLV using a
144 semi-nested PCR (Taengphu et al., 2020) and bacteria using conventional culture method and
145 found to be negative. Water quality parameters including pH, ammonia, and nitrite concentration
146 was monitored every 3 days using a standard Aqua test kit (Sera, Germany), and water was
147 changed twice per week. The vaccination study was approved by Kasetsart University Institutional
148 Animal Care and Use Committee (ACKU62-FIS-008).

149 **2.2. Virus preparation**

150 TiLV strain TH-2018-K was isolated from Nile tilapia during a TiLV outbreak in Thailand in 2018
151 using E11 cell line following the protocol described previously by Eyngor et al., (2014). The virus
152 was cultured in 75 cm^2 flasks containing confluent E11 cells and 15 ml of L15 medium at 25°C
153 for 5-7 days or until the cytopathic effect (CPE) of around 80 % was obtained in the cell monolayer.
154 The culture supernatant containing the virus was centrifuged at 4,500 g for 5 min at 4°C (Eppendorf
155 5810R) and stored at -80°C . The concentration of the virus was determined by calculating the virus
156 titre as 50% tissue culture infective dose per milliliter ($\text{TCID}_{50} \text{ mL}^{-1}$) (Reed & Muench, 1938).

157 **2.3. Vaccine preparation**

158 TiLV TH-2018-K (1.8×10^7 TCID₅₀ ml⁻¹) was used to prepare both HKV and FKV. Viral
159 inactivation was performed at 60 °C for 2, 2.5, and 3 h or with formalin (QReC) at a final
160 concentration of 0.002%, 0.004%, 0.006%, 0.008% and 0.01% for 24 h at 25°C. Viral infectivity
161 was then checked on E11 cells. Successful inactivation of the virus was confirmed by the absence
162 of a cytopathic effect (CPE) after 7 days with all inactivation conditions tested (Table S1).
163 Subsequently, inactivation of the virus was performed at 60°C for 2.5 h for HKV, while incubation
164 of 0.006% formalin at 25°C for 24 h was used for FKV. The inactivated viral solutions were used
165 as vaccine preparations and were not adjuvanted. These were stored at 4°C until used.

166 **2.4. Immunization, sampling and challenge test**

167 Before immunization, 6 fish were chosen randomly from the fish population for blood and mucus
168 sampling. The vaccine study comprised of three groups (HKV, FKV and control). Each group
169 consisted of two 100-L replicate tanks with 25 fish each. Prior to vaccination, fish were
170 anaesthetized using clove oil (100 ppm). Fish in the vaccine groups were immunized with either
171 HKV or FKV by intraperitoneal (IP) injection with 100 µL of vaccine using a 28G × 13 mm needle.
172 Booster immunization was carried out at 21 dpv with the same dose of vaccine (Table 2). Fish in
173 the control group were treated the same, except L15 medium was used in place of the virus
174 solution. Three fish from each tank were randomly collected at 14, 21 and 28 dpv for blood, mucus
175 and tissue sampling (6 biological replicates per treatment). Before sampling, fish were
176 anaesthetized with clove oil at 100 ppm. Mucus samples were collected from each fish by placing
177 the fish into a plastic bag containing 1 mL phosphate-buffered saline (PBS, 137 mM NaCl, 2.7
178 mM KCl, 10 mM Na₂HPO₄, and 1.8 mM KH₂PO₄) followed by gentle rubbing for 30s. These were
179 then centrifuged at 4,000 g for 10 min. The mucus supernatant samples were collected and stored
180 at -20°C until used. Blood (~ 200 µL) was withdrawn from caudal vessel using a 25G × 16 mm
181 needle and allowed to clot for 2 h at 4°C. Serum was collected after centrifugation the blood at
182 4,000 g for 10 min (Thermo Scientific, UK) and then stored at -20°C. Tissues (head kidney and
183 spleen) were collected, immediately placed in Trizol solution (Invitrogen, UK), and kept at -20°C
184 until RNA extraction. For the challenge test, a viral stock of TiLV strain TH-2018-K (1.8×10^7
185 TCID₅₀ mL⁻¹) was diluted 2 times with sterile distilled water. Each fish was injected IP with 0.1
186 mL of the diluted TiLV solution (9×10^5 TCID₅₀ fish⁻¹) at 28 dpv, and mortalities were monitored
187 daily for 21 days. Representative dead fish from each group were subjected for TiLV diagnosis
188 using an in-house RT-qPCR (Taengphu et al., submitted).

189 **2.5. Immune-related gene expression by RT-qPCR**

190 RNA was extracted using Trizol (Invitrogen, UK) following the protocol recommended by the
191 manufacturer. Genomic DNA contamination was removed using DNase I (Ambion, UK)
192 according to the manufacturer's instructions. After DNase I treatment, RNA samples were re-
193 purified using an equal volume of acid phenol:chloroform (5:1, pH 4.7) (Green & Sambrook, 2019)
194 before checking quality and quantity of extracted RNA with Nanodrop ND-1000
195 Spectrophotometer (Thermo Scientific, UK). DNA contamination in the treated RNA samples was
196 assessed by performing a qPCR cycling with tilapia elongation factor 1 α (*EF-1 α*) primers using
197 No-RT master mix (absence of reverse transcriptase enzyme provided in iScriptTM Reverse
198 Transcription kit, Bio-Rad, USA). The cDNA synthesis (20 μ L reactions) was performed using an
199 iScriptTM Reverse Transcription Supermix (Bio-Rad, USA) containing 100 ng RNA and incubated
200 at 25°C for 5 min for priming, followed by 46°C for 20 min for reverse transcription and then 95°C
201 for 1 min for inactivation of the reverse transcriptase. Immune-related gene expression in the head
202 kidney and spleen were analyzed using a quantitative real-time PCR, with specific primers as listed
203 in Table 1 and iTaq Universal SYBR Supermix (Bio-Rad, USA). The 10 μ L reaction consisted of
204 5.0 μ L 2X Supermix, 0.5 μ L forward and reverse primers (10 μ M each), 1.0 μ L cDNA and 3.0 μ L
205 distilled water. The reaction consisted of an initial activation at 95°C for 2 min, followed by 40
206 amplification cycles of denaturation at 95°C for 30 s, annealing at the optimal temperature of each
207 primer pair (as shown in Table 1), and extension at 72°C for 30 s. Gene expression data for the
208 immune-related genes of vaccinated and control fish were normalized with that of *EF-1 α* gene
209 amplification using the $2^{-\Delta\Delta C_t}$ method (Livak & Schmittgen, 2001).

210 **2.6. Measurement of antibody response by ELISA**

211 Polystyrene 96 well ELISA plates were coated with 0.01% poly-L-lysine solution for 1 h. The
212 plates were then rinsed 3 times with low salt wash buffer (LSWB, 2 mM Tris; 38 mM NaCl;
213 0.005% Tween 20, pH 7.3) before the addition of 100 μ L of either heat- or formalin-inactivated
214 TiLV (1.8×10^7 TCID₅₀ mL⁻¹) overnight at 4°C. The plates were washed 3 times with LSWB,
215 followed by a blocking step with PBS + 1% bovine serum albumin (BSA, Sigma) for 2 h at room
216 temperature (around 28°C). Then, 100 μ L mucus (undiluted) or sera (diluted 1:512 in PBS) were
217 added to each well and incubated overnight at 4°C. The following day, the plates were washed 5
218 times with high salt wash buffer (HSWB, 2 mM Tris; 50 M NaCl; 0.01% Tween 20, pH 7.7) and

219 incubated with anti-tilapia IgM (Soonthonsrima et al., 2019) diluted at the ratio 1:200 in PBS +
220 1% BSA for 2 h at around 28°C. The plates were then washed 5 times with HSWB followed by
221 incubation of goat anti-mouse antibody (Merck, Germany) conjugated with HRP (diluted 1:3000
222 in LSWB + 1% BSA) for 1 h at around 28°C. The plates were finally washed 5 times with HSWB
223 before adding 100 µL of TMB (Merck, Germany) to each well. Color was developed in the dark
224 for 5-10 min before adding 50 µL of 2 M H₂SO₄ stop solution (Merck, Germany). Optical density
225 was read at wavelength 450 nm using the microplate reader (SpectraMax ID3, USA).

226 **2.7. Statistical analysis**

227 GraphPad Prism 6 was used to generate the graphs. Kaplan-Meier analysis was performed and the
228 log-rank test was used to compare the survival curves between vaccinated and control groups. The
229 relative percentage survival (RPS) was calculated using following equation:

230
$$RPS = 1 - \left[\frac{\text{average \% mortality of vaccinated fish}}{\text{average \% mortality of unvaccinated fish}} \right] \times 100$$

231 The differences in relative fold change of immune-related gene expression and specific antibody
232 IgM level were compared using two-way ANOVA followed by the LSD post hoc test. The
233 differences are considered at different levels of significance $p < 0.05$, $p < 0.01$, $p < 0.001$ and
234 $p < 0.0001$.

235

236 **3. Results**

237 **3.1. Efficacy of vaccine**

238 In the challenge experiment, the first mortality occurred at 3-day post challenge (dpc) in the non-
239 vaccinated group (control) and at 5 and 7 dpc in the HKV and FKV groups, respectively (Fig. 1).
240 Mortalities continued until 13-15 dpc. Moribund fish showed gross signs of TiLV infection
241 including abdominal distension, skin erosion, exophthalmos, fin rot, gill pallor and pale liver (Fig.
242 S1). The dead fish from each group were tested positive for TiLV by RT-qPCR. The survival rates
243 were $81.3 \pm 0.0\%$ and $86.3 \pm 0.0\%$ for HKV and FKV groups, respectively, compared to $28.13 \pm$
244 30.9% for the control ($p < 0.0001$). The survival percentage were analysed using Kaplan-Meier
245 curves with the log rank test (Fig. 1). Average RPS values were 71.3 % for the HKV and 79.6 %
246 for the FKV vaccine (Table 2).

247 **3.2. Immune-related gene expression**

248 The relative fold changes of five immune genes (*IgM*, *IgT*, *IgD*, *CD4*, *CD8*) were compared to that
249 of the control group (Fig. 2). In the head kidney, a non-significant increase of *IgM* mRNA relative
250 to the control was noted at 14 dpv, which was followed by significant increase relative to the
251 control at 21 dpv for both HKV and FKV groups (Fig. 2A, $p<0.05$). A similar trend was observed
252 for *IgT* at 14 dpv for both vaccine groups, which was followed by significantly higher expression
253 levels at 21 dpv for the HKV group only (Fig. 2B, $p<0.05$). Regarding mRNA levels of *IgD*, there
254 was significant up-regulation of *IgD* in the FKV group only at 21 dpv (Fig. 2C, $p<0.01$). The *CD4*
255 gene was significantly upregulated at 14 dpv in the HKV only (Fig. 2D, $p<0.05$) and at 21 dpv in
256 the FKV ($p < 0.001$). No statistical difference was observed in *CD8* expression between the
257 vaccinated and control groups at the time point examined (Fig. 2E).

258 In the spleen, non-significant, relative up-regulation of *IgM* expression was noted in both HKV
259 and FKV groups compared to the control at 14 dpv. (Fig. 2F). There was a slight increase of *IgM*
260 mRNA level relative to the control in the HKV group after booster (28 dpv), which were not
261 significant. Also at 28 dpv, *IgT* expression was over 25 times higher in the HKV group ($p<0.05$)
262 and almost 20 times higher in the FKV group (Fig. 2G). A slight significant increase in *IgD*
263 expression was seen in the HKV group at 14-dpv (Fig. 2H, $p<0.05$). No significant increase of
264 *CD4* expression was found at any time point (Fig. 2I); meanwhile, an approximately tenfold
265 increase of *CD8* expression was observed at 28 dpv in the HKV group (Fig. 2J, $p<0.05$).

266 **3.3. Detection of antibody IgM against TiLV in serum and mucus.**

267 Systemic TiLV-specific antibody IgM (anti-TiLV IgM) levels pre-vaccination (0 dpv) and at 14,
268 21 and 28 dpv, as indicated by optical density (OD) at 450 nm, were determined by ELISA (Fig.
269 3A). Before immunization, the average OD value of the fish sera was 0.096 ± 0.009 . The OD
270 readings for HKV, FKV and control groups were 0.254 ± 0.053 , 0.363 ± 0.09 and 0.096 ± 0.015
271 at 14 dpv, respectively. The OD values showed an increase in antibody levels in both groups of
272 vaccinated fish, but were only statistically different in the FKV group ($p<0.01$). A slight decrease
273 was seen in OD readings at 3 wpv in both the HKV and FKV groups relative to the control group
274 (0.249 ± 0.049 , 0.317 ± 0.043 and 0.128 ± 0.017 , respectively). One week after the booster
275 vaccination at 28 dpv, the anti-TiLV IgM levels had increased considerably in both the HKV
276 ($p<0.001$) and the FKV ($p<0.0001$) groups, reaching the highest values obtained between the

277 different sampling points, compared to that of the non-vaccinated group (average OD readings
278 were 0.438 ± 0.127 , 0.483 ± 0.088 , and 0.081 ± 0.01 respectively) (Fig. 3A).

279 A similar pattern was observed with the mucosal anti-TiLV IgM response (Fig. 3B). Before
280 vaccination, the average OD value of fish mucus was 0.068 ± 0.003 . At 14 dpv, the TiLV-specific
281 antibody IgM rose in both of the vaccinated groups, HKV and FKV, compared to the non-
282 vaccinated group (0.251 ± 0.104 , 0.404 ± 0.142 , and 0.07 ± 0.005 , respectively), but a significant
283 difference was only noted for the FKV group ($p < 0.01$). At 3 wpv, the antibody levels were not
284 significantly differ between groups, with OD values of 0.159 ± 0.031 (HKV), 0.290 ± 0.064
285 (FKV), and 0.083 ± 0.007 (control) being recorded. At 4 wpv (after administering the booster
286 vaccination), a considerable increase in anti-TiLV IgM levels was seen in the mucus of the FKV
287 group ($p < 0.001$) (0.585 ± 0.145), whereas the increase measured in HKV fish (0.235 ± 0.044) was
288 not statically different to that of the control group (0.107 ± 0.018). No significant changes in
289 average OD readings were seen between the non-vaccinated group and pre-immunized fish in
290 either sera or mucus (Fig. 3 A-B).

291

292 **4. Discussion**

293 **4.1. Both simple HKV and FKV were effective in protecting tilapia from TiLV infection**

294 Although many different types of vaccines have been developed for aquaculture in recent years,
295 whole-cell inactivated vaccines remain the major type of vaccine licensed for use by the
296 aquaculture industry (Kayansamruaj et al., 2020; Ma et al., 2019). They are safe, relatively simple
297 to produce, and are affordable for farmers, especially for species that are intensively cultured, but
298 low in price like tilapia in LMICs. In this study, we prepared two versions of simple water-based
299 inactivated vaccine (HKV and FKV) for TiLV and assessed the ability of both to protective tilapia
300 against the virus. Both HKV and FKV were able to confer relatively high levels of protection
301 (RPS, 71.3% vs. 79.6%) in vaccinated fish. Differences in methods used to inactivate the virus,
302 vaccine formulation, viral strains, antigen concentration, route of vaccine administration and the
303 population of fish can all contribute to the level of protection obtained from a vaccine (Table 3).
304 Despite this, vaccination is still considered as a promising strategy to protect tilapia from TiLV
305 infection, although the design of the vaccine should be carefully considered to optimize the level
306 of protection obtained. Other inactivated vaccines have shown relatively high levels of protection

307 in fish. For example, other formalin-killed vaccines resulted in RPS values of 79%, 81.9% and
308 74% for infectious hematopoietic necrosis virus in rainbow trout (*Oncorhynchus mykiss*) (Tang et
309 al., 2016), *Betanodavirus* in European sea bass (*Dicentrarchus labrax*) (Nuñez-Ortiz et al., 2016),
310 and scale drop disease virus (SDDV) in Asian sea bass (*Lates calcarifer*) (de Groof et al., 2015),
311 respectively. In addition, a heat-killed *Aeromonas hydrophila* vaccine gave 84% protection in rain-
312 bow trout (Dehghani et al., 2012). Although the efficacy of these and the current vaccines were
313 not tested against heterologous strains of TiLV, the high level of protection elicited against the
314 homologous strain suggests that autogenous inactivated vaccines may be effective as an
315 emergency vaccine to reduce the risk of production losses in affected tilapia farms.

316 **4.2. Immunization with HKV or FKV activated both branches of the tilapia's specific
317 immune system**

318 Upregulation in the expression of *IgM*, *IgD* and *IgT* and *CD4* (genes encoding proteins involved
319 in humoral immunity) and *CD8* (cell-mediated immunity) following immunization with HKV and
320 FKV suggests that the vaccines are able to activate both arms of the specific immune response in
321 Nile tilapia. Protection from these vaccines is, therefore, likely to result from a synergistic effect
322 of humoral (B cell) and cellular immune (T cell) responses. This is similar to the recent report by
323 Zeng et al (2021a), showing that β -propiolactone-inactivated TiLV vaccines induced up-regulation
324 of *MHC-I* and *MHC-II/CD4*, which belong to different arms of the immune system.

325 The increase in *CD4* transcripts at 14 and 21 dpv in fish vaccinated with HKV or FKV may reflect
326 activated naïve *CD4+* cells differentiating into helper T-cell subsets, Th1 and Th2. The Th1 cells
327 produce cytokines that stimulate the expression of anti-viral and inflammatory genes, whereas
328 cytokines secreted by Th2 cells stimulate the differentiation of B-cells into plasma cells to produce
329 specific antibody (Secombes & Wang, 2012; Secombes & Belmonte; 2016; Smith et al., 2019).
330 On the other hand, *CD8* transcription was only seen to be significantly up-regulated in the spleen
331 of the HKV group after booster vaccination, indicating that the HKV may stimulate *CD8+* cell
332 activation, which then differentiate into cytotoxic T-cells. These cells play a crucial role in cell-
333 mediated immunity (Bo et al., 2012; Somamoto et al., 2002; Smith et al., 2019).

334 As well as assessing the expression of *IgM* transcripts, this study also examined the expression of
335 two additional immunoglobulins *IgD* and *IgT*. Similar patterns of up-regulation were found in
336 head kidney of fish after the primary immunization, suggesting that all three antibodies may be

337 involved in the protective response elicited by the vaccines. Interestingly, significant increases in
338 mRNA *IgT* levels were seen in the head kidney before booster vaccination and in the spleen after
339 the booster vaccination for both the HKV and FKV groups, suggesting that IgT may be strongly
340 associated with the protective response against TiLV. Unfortunately, the function of IgT in tilapia
341 remains poorly understood. Functional localization studies in other fish species have shown that
342 IgT plays an important role against infectious pathogens on mucosal surfaces, such as skin, gills
343 and gut (Smith et al., 2019; Salinas et al., 2021; Zhang et al., 2011). Nevertheless, further studies
344 are required to gain a better understanding on the role of IgT in tilapia's defense system, especially
345 in response to infection.

346 Although immune genes were significantly upregulated in the head kidney after primary
347 immunization, this pattern of expression was not observed in the spleen. This suggest that the head
348 kidney, apart from being a primary lymphoid organ, also act as an important secondary lymphoid
349 organ where specific immune responses to the TiLV vaccine occurred. Studies in other fish have
350 shown that the head kidney, containing blast cells, plasma cells and melano macrophages, is an
351 important site for antigen presentation and antibody production (Kumar et al., 2016; Soulliere &
352 Dixon, 2017). This might be similar in tilapia. However, it was unexpected to find no significant
353 up-regulation of *IgM*, *IgT*, *IgD* and *CD4* in the head kidney at 7 days after the booster vaccination
354 at 28 dpi. It is possible that the increase in gene expression occurred later than 7 days after the
355 booster vaccination or in other secondary lymphoid organs (not assessed in this study). Therefore,
356 future studies should investigate a longer time course for gene expression to better understand the
357 dynamics of immune gene responses after booster vaccination.

358 **4.3. HKV and FKV induce both systemic and mucosal IgM**

359 In present study, HKV and FKV were shown to trigger both systemic and mucosal IgM responses,
360 with similar patterns observed between the two vaccines. The increase in systemic and mucosal
361 IgM in teleost is usually derived from the major lymphoid organs, such as head kidney and spleen
362 (Zapata et al., 2006), but also from the mucosa-associated lymphoid organs located in the skin,
363 gills, gut, or nasopharynx (not investigated in this study) (Smith et al., 2019; Salinas et al., 2021).
364 In the present study, up-regulation of IgM expression occurred mainly in the head kidney, and to
365 a less extent in the spleen, suggesting head kidney to be one of the main organs for IgM production
366 in response to the TiLV vaccines. Although the pathway of IgM secretion in the mucosal

367 compartment (mucus) is unclear, it is possible that mucosal antibodies are produced locally in the
368 mucosa-associated lymphoid organs and/or by the systemic immune system (Esteban & Cerezuela,
369 2015; Koppang et al., 2015; Salinas et al., 2011; Salinas & Parra, 2015; Salinas et al., 2021). In
370 other research using Asian seabass, monovalent and bivalent bacterial vaccines induced both
371 systemic and mucosal IgM (Thu-Lan et al., 2021). Similar kinetics have been reported for IgM
372 secretion in the serum of red hybrid tilapia, infected IP with TiLV (Tattiyapong et al., 2020). The
373 levels of serum IgM increased significantly in Nile tilapia after immunization with β -
374 propiolactone-inactivated virus (Zeng et al. 2021a) or with a recombinant vaccine based on
375 segment 8 of TiLV (Zeng et al., 2021b). Mucosal IgM was not investigated in these studies,
376 however. The presence of TiLV-specific IgM in the mucus of vaccinated fish suggests that these
377 vaccines may be able to generate a primary immune response in multiple mucosal organs such as
378 skin and gills, which are crucial sites to prevent the initial invasion of pathogenic agents (Esteban
379 & Cerezuela, 2015; Koppang et al., 2015). The IgM levels produced by FKV was always slightly
380 higher than HKV in both serum and mucus at all sampling points analyzed, indicating that FKV
381 induces stronger systemic and mucosal IgM responses than HKV. This could be one of the factors
382 explaining for slightly higher level of protection conferred by FKV.

383 In this study, increased levels of TiLV specific IgM after booster vaccination in both serum and
384 mucus indicate successful induction of specific immune memory after first immunization.
385 However, low levels of *IgM* mRNA detected at 28 dpv did not reflect the IgM levels measure by
386 ELISA at this time point. It was likely that the earlier *IgM* transcripts had already degraded, while
387 its translated products (antibody) remained. B-cells are the major component involved in humoral
388 adaptive immunity. They are activated by specific antigen binding to the B-cell receptors on the
389 cell, followed by presentation of processed antigens to naïve CD4-Tcells, which then differentiate
390 into helper T-cells. With T cells' help, B-cells differentiate into plasma cells and memory B-cells.
391 Plasma cells are committed to antibody secretion, whereas memory B-cells are responsible for the
392 long-lasting protection from subsequent exposure to the same pathogens (Secombes & Belmonte,
393 2016; Smith et al., 2019).

394 Although systemic and mucosal IgM levels were assessed in the study, we were unable to measure
395 levels of other antibodies i.e. IgD and IgT by ELISA due to a lack of monoclonal antibodies for
396 these immunoglobulin classes in tilapia. Further studies should investigate the cost of the vaccine

397 for commercial production, the persistence of the immune response in vaccinated fish, duration of
398 protection and efficacy testing these vaccines in a commercial setting.

399 In conclusion, this study reported on the efficacy of two simple TiLV inactivated vaccines without
400 adjuvant (HKV and FKV) in preventing TiLV infection in Nile tilapia. The vaccines activated both
401 branches of adaptive immunity, triggered expression of three immunoglobulin classes and elicited
402 both systemic and mucosal IgM responses. Most importantly, these vaccines showed relatively
403 high levels of protection against TiLV infection, and therefore seem very promising for the
404 prevention of disease associated with TiLV.

405

406 **References**

- 407 Angelidis, P. (2006). Immersion booster vaccination effect on sea bass (*Dicentrarchus labrax L.*)
408 juveniles. *Journal of Animal physiolog and Animal nutrition*, 90 (1-2), 46-49. doi:
409 10.1111/j.1439-0396.2005.00572.x
- 410 Amal, M. N. A., Koh, C. B., Nurliyana, M., Suhaiba, M., Nor-Amalina, Z., Santha, S., ... Zamri-
411 Saad, M. (2018). A case of natural co-infection of Tilapia Lake Virus and *Aeromonas*
412 *veronii* in a Malaysian red hybrid tilapia (*Oreochromis niloticus* × *O. mossambicus*) farm
413 experiencing high mortality. *Aquaculture*, 485, 12–16. doi:
414 org/10.1016/j.aquaculture.2017.11.019
- 415 Bøgwald, J., & Dalmo, R. A. (2019). Review on Immersion Vaccines for Fish: An Update 2019.
416 *Microorganisms*, 7(12), 627. doi: org/10.3390/microorganisms7120627
- 417 Bacharach, E., Eldar, A. (2016a). Tilapia lake virus vaccines. *US Patent Application Publication*
418 *no.US2016/0354458A1*. Retrieved from:
419 <https://patents.google.com/patent/US20160354458A1/en>
- 420 Bacharach, E., Mishra, N., Briese, T., Zody, M. C., Tsofack, J. E. K., Zamostiano, R., ... Lipkin,
421 W. I. (2016b). Characterization of a novel orthomyxo-like virus causing mass die-offs of
422 Tilapia. *MBio*, 7(2), e00431-16. doi: org/10.1128/mBio.00431-16
- 423 Bacharach, E., Mishra, N., Briese, T., Eldar, A., Lipkin, W. I., Kuhn, J. H., & Lipkin, W. I.
424 (2016c). ICTV Taxonomic Proposal 2016.016a-dM.A.v2.*Tilapinevirus*. Create the
425 Unassigned Genus *Tilapinevirus*. Retrieved from:
426 <https://talk.ictvonline.org/ICTV/proposals/2016.016a-dM.A.v2.Tilapinevirus.pdf>
- 427 Behera, B. K., Pradhan, P. K., Swaminathan, T. R., Sood, N., & Paria, P. (2017). Emergence of

- 428 Tilapia Lake Virus associated with mortalities of farmed Nile Tilapia *Oreochromis niloticus*
429 (Linnaeus 1758) in India Emergence of Tilapia Lake Virus associated with mortalities of
430 farmed Nile Tilapia *Oreochromis niloticus* (Linnaeus 1758). *Aquaculture*, 484, 168–174.
431 doi: org/10.1016/j.aquaculture.2017.11.025
- 432 Bo, A., O, O., Po, O., & Io, O. (2012). Immune Response of Fish to Viral Infection. *Nature and*
433 *Science*, 10(8), 70-76. doi: 012_9784ns1008_70_76
- 434 De Groof, A., Guelen, L., Deijs, M., van der Wal, Y., Miyata, M., Ng, K. S., ... van der Hoek, L.
435 (2015). A Novel Virus Causes Scale Drop Disease in *Lates calcarifer*. *PLoS Pathogens*,
436 11(8), e1005074. doi: org/10.1371/journal.ppat.1005074
- 437 Delrue I., Verzele D., Madder A., & Nauwynck H. J. (2012). Inactivated virus vaccines from
438 chemistry to prophylaxis: merits, risks and challenges. *Expert Review of Vaccines*, 11(6),
439 695-719. doi: 10.1586/erv.12.38
- 440 Dong, H. T., Siriroob, S., Meemetta, W., Santimanawong, W., Gangnonngiw, W., Pirarat, N., ...
441 Senapin, S. (2017). Emergence of tilapia lake virus in Thailand and an alternative semi-
442 nested RT-PCR for detection. *Aquaculture*, 476, 111–118. doi:
443 org/10.1016/j.aquaculture.2017.04.019
- 444 Dong, H.T., Nguyen, V. V., Le, H. D., Sangsuriya, P., Jitrakorn, S., Saksmerprome, V., ...
445 Rodkhum, C. (2015). Naturally concurrent infections of bacterial and viral pathogens in
446 disease outbreaks in cultured Nile tilapia (*Oreochromis niloticus*) farms. *Aquaculture*, 448,
447 427–435. doi: org/10.1016/j.aquaculture.2015.06.027
- 448 Del-Pozo, J., Mishra, N., Kabuusu, R., Cheetham, S., Eldar, A., Bacharach, E., ... Ferguson, H.
449 W. (2017). Syncytial Hepatitis of Tilapia (*Oreochromis niloticus* L.) is associated with
450 Orthomyxovirus-like virions in hepatocytes. *Veterinary Pathology*, 54(1), 164–170. doi:
451 org/10.1177/0300985816658100
- 452 Dinh-Hung, N., Sangpo, P., Kruangkum, T., Kayansamruaj, P., Rung-ruangkijkrai, T., Senapin,
453 S., ... Dong, H. T. (2021). Dissecting the localization of *Tilapia tilapinevirus* in the brain of
454 the experimentally infected Nile tilapia, *Oreochromis niloticus* (L.). *Journal of Fish*
455 *Diseases*, 00, 1– 12. doi: org/10.1111/jfd.13367
- 456 Dehghani, S., Akhlaghi, M., & Dehghani, M. (2012). Efficacy of formalin-killed, heat-killed and
457 lipopolysaccharide vaccines against motile aeromonads infection in rainbow trout
458 (*Oncorhynchus mykiss*). *Global Veterinaria*, 9(4), 409–415. doi:

- 459 org/10.5829/idosi.gv.2012.9.4.6591
- 460 Evensen, O. (2016). Development of Fish Vaccines: Focusing on Methods. In *Fish vaccines* (pp. 461 53-74). doi: org/10.1007/978-3-0348-0980-1_3
- 462 Esteban, M.A., & Cerezuela, R. (2015). Fish mucosal immunity: Skin. In *Mucosal Health in 463 Aquaculture* (pp 67-93). doi: org/10.1016/B978-0-12-417186-2.00004-2
- 464 Eyngor, M., Zamostiano, R., Tsofack, J. E. K., Berkowitz, A., Bercovier, H., Tinman, S., ... 465 Eldar, A. (2014). Identification of a novel RNA virus lethal to tilapia. *Journal of Clinical 466 Microbiology*, 52(12), 4137–4146. doi: org/10.1128/JCM.00827-14
- 467 Forthal, D. N. (2014). Functions of Antibodies. *Microbiology spectrum*, 2(4), 1–17
- 468 Fletcher, R. (2020, October 6). 2020 tilapia production figures revealed. Retrieved from: 469 <https://thefishsite.com/articles/2020-tilapia-production-figures-revealed>
- 470 Ferguson, H. W., Kabuusu, R., Beltran, S., Reyes, E., Lince, J. A., & del Pozo, J. (2014). 471 Syncytial hepatitis of farmed tilapia, *Oreochromis niloticus* (L.): A case report. *Journal of 472 Fish Diseases*, 37(6), 583–589. doi: org/10.1111/jfd.12142
- 473 Green, M.R., & Sambrook, J. (2019). Removing DNA Contamination from RNA Samples by 474 treatment with RNase-Free DNase I. *Cold Spring Harb Protoc* (pp. 709-710). doi: 475 10.1101/pdb.prot101725.
- 476 IMARC. (2020). Tilapia Market: Global Industry Trends, Share, Size, Growth, Opportunity and 477 Forecast 2021-2026. Retrieved from: <https://www.imarcgroup.com/tilapia-market>
- 478 Jassen, M.D., Dong H.T., Mohan C.V. (2019). Tilapia lake virus: a threat to the global tilapia 479 industry?. *Review in Aquaculture*, 11 (3), 725-739. doi: org/10.1111/raq.12254
- 480 Koppang, E. O., Kvellestad, A., & Fischer, U. (2015). Mucosal Health in Aquaculture Fish 481 mucosal immunity: gill. In *Mucosal Health in Aquaculture* (pp 93 -133). doi: 482 org/10.1016/B978-0-12-417186-2.00005-4
- 483 Kayansamruaj, P., Areechon, N., & Unajak, S. (2020). Development of fish vaccine in Southeast 484 Asia: A challenge for the sustainability of SE Asia aquaculture. *Fish and Shellfish 485 Immunology*, 103, 73–87. doi: org/10.1016/j.fsi.2020.04.031
- 486 Kumar, R., Joy, K.P., Singh, S.M. (2016). Morpho-histology of head kidney of female catfish 487 *Heteropneustes fossilis*: Seasonal variations in melano-macrophage centers, melanin 488 contents and effects of lipopolysaccharide and dexamethasone on melanins. *Fish 489 Physiology and Biochemistry*, 42, 1287–1306. doi:10.1007/s10695-016-0218-2.\

- 490 Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-
491 time quantitative PCR and the 2(-Delta Delta C(T)) method. *Methods*, 25(4):402-8. doi:
492 10.1006/meth.2001.1262
- 493 Lelie, P.N., Reesink, H.W., Lucas, C.J. (1987). Inactivation of 12 viruses by heating steps
494 applied during manufacture of a hepatitis B vaccine. *Journal of Medical Virology*, 23(3),
495 297–301. doi: 10.1002/jmv.1890230313
- 496 Ma, J., Bruce, T. J., Jones, E. M., & Cain, K. D. (2019). A review of fish vaccine development
497 strategies: Conventional methods and modern biotechnological approaches.
498 *Microorganisms*, 7(11). doi: org/10.3390/microorganisms7110569
- 499 Mesalhy, S. (2013, July). A Review of Fish Diseases in the Egyptian Aquaculture. *Cgiar*.
500 Retrieved from:
501 <https://cgspace.cgiar.org/bitstream/handle/10568/34870/EgyptAquacultureSectorDiseaseRe>
502 view.pdf?sequence=1
- 503 Nuñez-Ortiz, N., Pascoli, F., Picchietti, S., Buonocore, F., Bernini, C., Toson, M., ... Toffan, A.
504 (2016). A formalin-inactivated immunogen against viral encephalopathy and retinopathy
505 (VER) disease in European sea bass (*Dicentrarchus labrax*): Immunological and protection
506 effects. *Veterinary Research*, 47(89). doi:org/10.1186/s13567-016-0376-3
- 507 Prabu, E., Rajagopalsamy, C. B. T., Ahilan, B., Jeevagan, I. J. M. A., & Renuhadevi, M. (2019).
508 Tilapia – An Excellent Candidate Species for World Aquaculture: A Review. *Annual
509 Research & Review in Biology*, 31(3), 1-14. doi: org/10.9734/arrb/2019/v31i330052
- 510 Reed, L.J. & Muench, H. (1938). The American. *American Journal of Epidemiology*, 27(3), 493–
511 497. doi: org/10.7723/antiochreview.72.3.0546
- 512 Soulliere, C. & Dixon, B. (2017). Immune System Organs of Bony Fishes. *Reference Module in
513 Life Sciences*. doi.org/10.1016/B978-0-12-809633-8.12179-X
- 514 Secombes, C.J., & Wang, T. (2012). The innate and adaptive immune system of fish. In
515 *Infectious Disease in Aquaculture: Prevention and control* (pp. 3-68). doi:
516 10.1533/9780857095732.1.3
- 517 Secombes, C. J., & Belmonte, R. (2016). Overview of the fish adaptive immune system. In *Fish
518 vaccines* (pp. 35–52). doi: 10.1007/978-3-0348-0980-1_2
- 519 Salinas I., Zhang Y. A., & Sunyer. J. O. (2011). Mucosal immunoglobulins and B cells of
520 Teleost fish Irene. NIH Public Access. *Developmental & Comparative Immunology*,

- 521 35(12), 1346–1365. doi: org/10.1016/j.dci.2011.11.009.Mucosal
- 522 Salinas, I., Fernández-Montero, Á., Ding, Y., & Sunyer, J. O. (2021). Mucosal immunoglobulins
- 523 of teleost fish: a decade of advances. *Developmental & Comparative Immunology*, 121:
- 524 104079. doi: org/10.1016/j.dci.2021.104079
- 525 Salinas, I., & Parra, D. (2015). Fish mucosal immunity: Intestine. In *Mucosal Health in*
- 526 *Aquaculture* (pp 135-170). doi: org/10.1016/B978-0-12-417186-2.00006-6
- 527 Smith, N. C., Rise, M. L., & Christian, S. L. (2019). A Comparison of the Innate and Adaptive
- 528 Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. *Frontiers*
- 529 in *Immunology*, 10, 2292. doi: org/10.3389/fimmu.2019.02292
- 530 Senapin, S., Shyam, K. U., Meemetta, W., Rattanarojpong, T., & Dong, H. T. (2018). Inapparent
- 531 infection cases of tilapia lake virus (TiLV) in farmed tilapia. *Aquaculture*, 487, 51–55. doi:
- 532 10.1016/j.aquaculture.2018.01.007
- 533 Somamoto, T., Nakanishi, T., & Okamoto, N. (2002). Role of specific cell-mediated cytotoxicity
- 534 in protecting fish from viral infections. *Virology*, 297(1), 120–127. doi:
- 535 10.1006/viro.2002.1486
- 536 Soonthonsrima, T., Wangman, P., Chaivisuthangkura, P., Pengsuk, C., Sithigorngul, P., &
- 537 Longyant, S. (2019). Generation of mouse monoclonal antibodies specific to tilapia
- 538 immunoglobulin using fish immunoglobulin/BSA complex for monitoring of the immune
- 539 response in Nile tilapia (*Oreochromis niloticus*). *Aquaculture Research*, 50(1), 277–283.
- 540 doi: 10.1111/are.13894
- 541 Surachetpong, W., Janetanakit, T., Nonthabenjawan, N., Tattiyapong, P., Sirikanchana, K., &
- 542 Amonsin, A. (2017). Outbreaks of Tilapia Lake Virus Infection. *Emerging Infectious*
- 543 *Diseases*, 23(6), 1031–1033. doi: 10.3201/eid2306.161278
- 544 Surachetpong, W., Kumar Roy S. R., Nicholson P. (2020). Tilapia lake virus: The story so far.
- 545 *Journal of Fish Diseases*, 43 (10), 1115-1132. doi: 10.1111/jfd.13237
- 546 Toda, H., Araki, K., Moritomo, T., Nakanishi, T. (2011). Perforin-dependent cytotoxic
- 547 mechanism in killing by CD8 positive T cells in ginbuna crucian carp, *Carassius auratus*
- 548 *langsdownii*. *Development and Comparative Immunology*, 35(1), 88–93. doi:
- 549 10.1016/j.dci.2010.08.010
- 550 Tang, L., Kang, H., Duan, K., Guo, M., Lian, G., Wu, Y., ... Liu, M. (2016). Effects of Three
- 551 Types of Inactivation Agents on the Antibody Response and Immune Protection of

- 552 Inactivated IHNV Vaccine in Rainbow Trout. *Viral Immunology*, 29(7), 430–435.
553 doi:org/10.1089/vim.2016.0035
- 554 Thu Lan, N. G., Salin, K. R., Longyant, S., Senapin, S., & Dong, H. T. (2021). Systemic and
555 mucosal antibody response of freshwater cultured Asian seabass (*Lates calcarifer*) to
556 monovalent and bivalent vaccines against *Streptococcus agalactiae* and *Streptococcus*
557 *iniae*. *Fish and Shellfish Immunology*, 108, 7–13. doi: org/10.1016/j.fsi.2020.11.014
- 558 Tattiyapong, P., Dachavichitlead, W., & Surachetpong, W. (2017). Experimental infection of
559 Tilapia Lake Virus (TiLV) in Nile tilapia (*Oreochromis niloticus*) and red tilapia
560 (*Oreochromis* spp.). *Veterinary Microbiology*, 207, 170–177. doi:
561 org/10.1016/j.vetmic.2017.06.014
- 562 Tattiyapong, P., Dechavichitlead, W., Waltzek, T. B., & Surachetpong, W. (2020). Tilapia
563 develop protective immunity including a humoral response following exposure to tilapia
564 lake virus. *Fish and Shellfish Immunology*, 106, 666–674. doi: 10.1016/j.fsi.2020.08.031
- 565 Taengphu, S., Kayansamruaj, P., Kawato, Y., Deboutteville, J.D., Mohan, C.V., Dong, H.T.,
566 Senapin, S. (2021). Concentration and quantification of Tilapia tilapinevirus from water
567 using a simple iron flocculation coupled with probe-based RT-qPCR. [Manuscript
568 Submitted]
- 569 Taengphu, S., Sangsuriya, P., Phiwsaiya, K., & Pratim, P ...Senapin, S. (2020). Genetic diversity
570 of tilapia lake virus genome segment 1 from 2011 to 2019 and a newly validated semi-
571 nested RT-PCR method. *Aquaculture*, 526. doi: 10.1016/j.aquaculture.2020.735423
- 572 Velázquez, J., Acosta, J., Lugo, J. M., Reyes, E., Herrera, F., González, O., ... Estrada, M. P.
573 (2018). Discovery of immunoglobulin T in Nile tilapia (*Oreochromis niloticus*): A potential
574 molecular marker to understand mucosal immunity in this species. *Developmental and*
575 *Comparative Immunology*, 88, 124–136. doi: org/10.1016/j.dci.2018.07.013
- 576 Wang, B., Wang, P., Wu, Z. H., Lu, Y. S., Wang, Z. L., & Jian, J. C. (2016). Molecular cloning
577 and expression analysis of IgD in nile tilapia (*Oreochromis niloticus*) in response to
578 *Streptococcus agalactiae* stimulus. *International Journal of Molecular Sciences*, 17(3). doi:
579 org/10.3390/ijms17030348
- 580 Zapata, A., Diez, B., Cejalvo, T., Gutiérrez-De Frías, C., & Cortés, A. (2006). Ontogeny of the
581 immune system of fish. *Fish and Shellfish Immunology*, 20(2), 126–136. doi:
582 org/10.1016/j.fsi.2004.09.005

- 583 Zeng, W., Wang, Y., Hu, H., Wang, Q., Bergmann, S. M., Wang, Y., ... Li, Y. (2021a). Cell
584 Culture-Derived Tilapia Lake Virus-Inactivated Vaccine Containing Montanide Adjuvant
585 Provides High Protection against Viral Challenge for Tilapia. *Vaccines*, 9(2), 86. doi:
586 [org/10.3390/vaccines9020086](https://doi.org/10.3390/vaccines9020086)
- 587 Zeng, W., Wang, Y., Chen, X., Wang, Q., Bergmann, S. M., Yang, Y., ... Lan, W. (2021b).
588 Potency and efficacy of VP20-based vaccine against tilapia lake virus using different prime-
589 boost vaccination regimens in tilapia. *Aquaculture*, 539. doi:
590 [10.1016/j.aquaculture.2021.736654](https://doi.org/10.1016/j.aquaculture.2021.736654)
- 591 Zhang, Y. A., Salinas, I., & Oriol Sunyer, J. (2011). Recent findings on the structure and
592 function of teleost IgT. *Fish and Shellfish Immunology*, 31(5), 627–634. doi:
593 [org/10.1016/j.fsi.2011.03.021](https://doi.org/10.1016/j.fsi.2011.03.021)

594 **Tables and Figures**

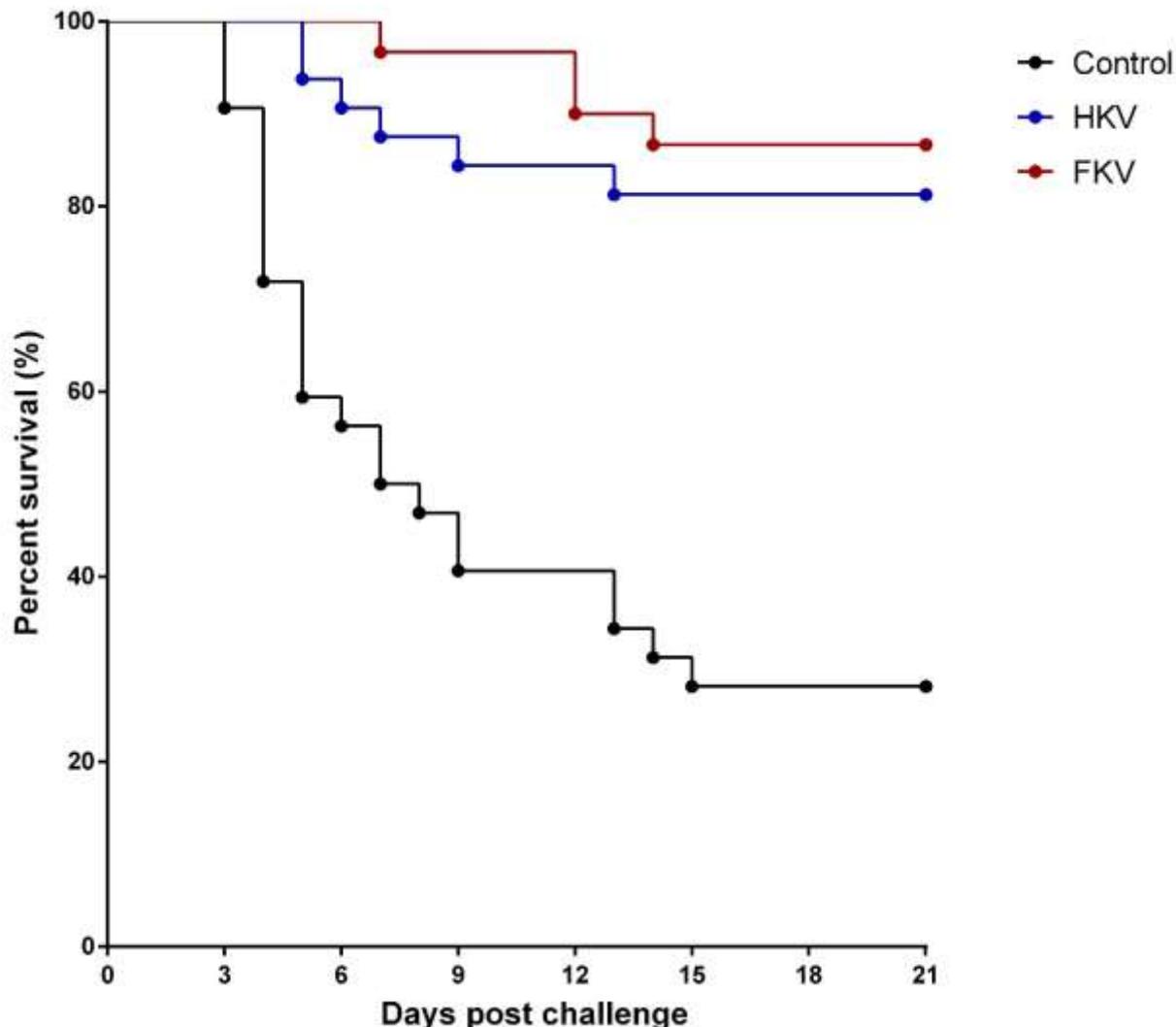
595

596 **Table 1.** Details of primers used for immune-related gene expression in this study.

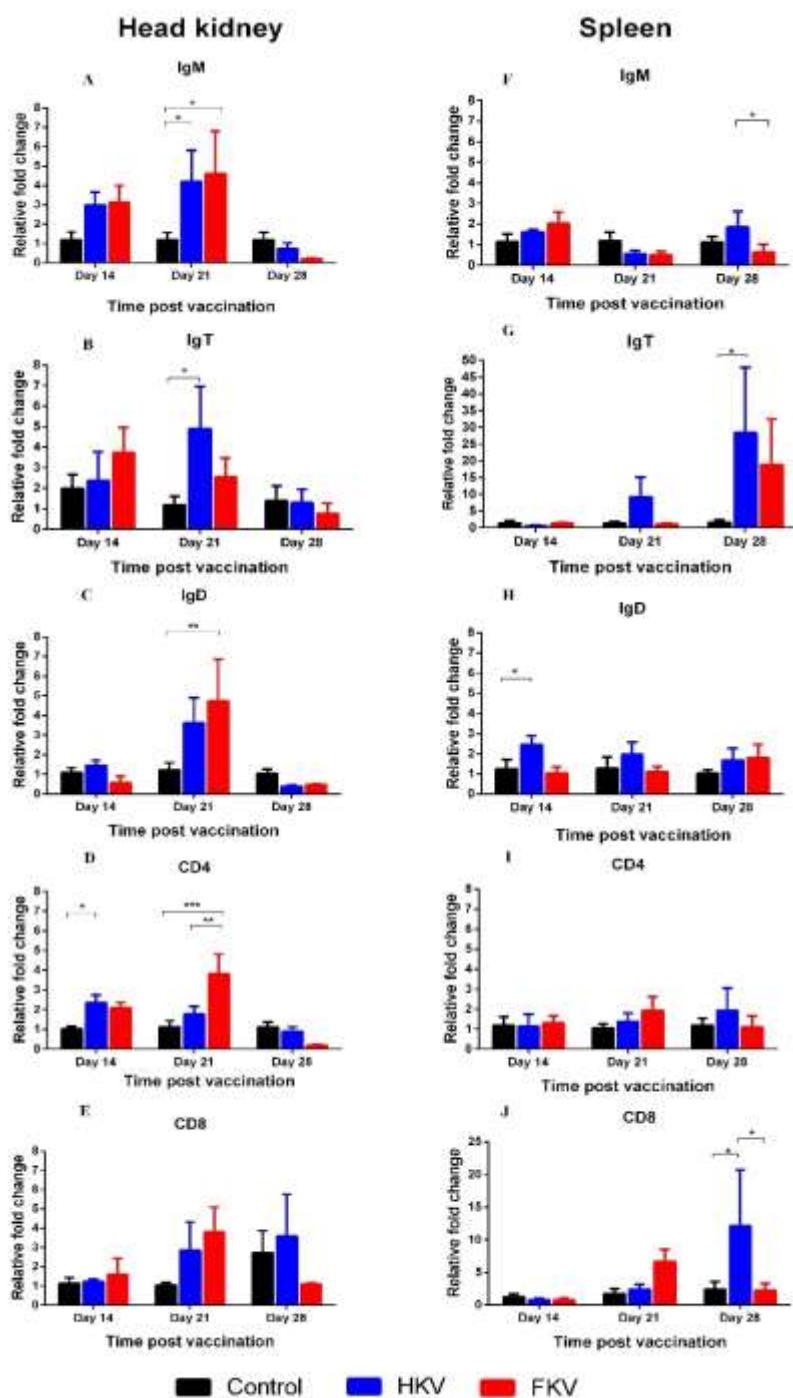
Gene	Oligo sequences	Annealing temperature (°C)	Product size (bp)	Gene functions	References
<i>EF-1α</i>	F-5'-CTACAGCCAGGCTCGTTCG-3' R-5'-CTTGTCACTGGTCTCCAGCA-3'	56	139	Elongation factor (housekeeping gene)	(Velázquez et al., 2018)
<i>IgM</i>	F-5'-GGATGACGAGGAAGCAGACT-3' R-5'-CATCATCCCTTGCCACTGG-3'	53	122	Immunoglobulin M (IgM)	(Velázquez et al., 2018)
<i>IgT</i>	F-5'-TGACCAGAAATGGCGAAGTCTG-3' R-5'-GTTATAGTCACATTCTTAGAATTACC-3'	53	163	Immunoglobulin T (IgT)	(Velázquez et al., 2018)
<i>IgD</i>	F-5'-AACACCACCTGTCCCTGAAT-3' R-5'-GGGTGAAAACCACATTCCAAC-3'	61	127	Immunoglobulin D (IgD)	(Wang et al., 2016)
<i>CD4</i>	F-5'-GCTCCAGTGTGACGTGAAA-3' R-5'-TACAGGTTGAGTTGAGCTG-3'	61	106	Receptor on helper T-cell (CD4 $^{+}$)	XM_025911776.1, designed in this study
<i>CD8</i>	F-5'-GCTGGTAGCTCTGGCCTTT-3' R'-5'-TGTGATGGTGTGGGCATCTC-3'	49.5	91	Receptor on cytotoxic T-cell (CD8 $^{+}$)	XM_005450353.3*, designed in this study

597 *homolog (98% nucleotide sequence identity) of *Oreochromis aureus* *CD8 α* (XM_031747820.2).

598 **Table 2.** Details of experimental groups and challenge results

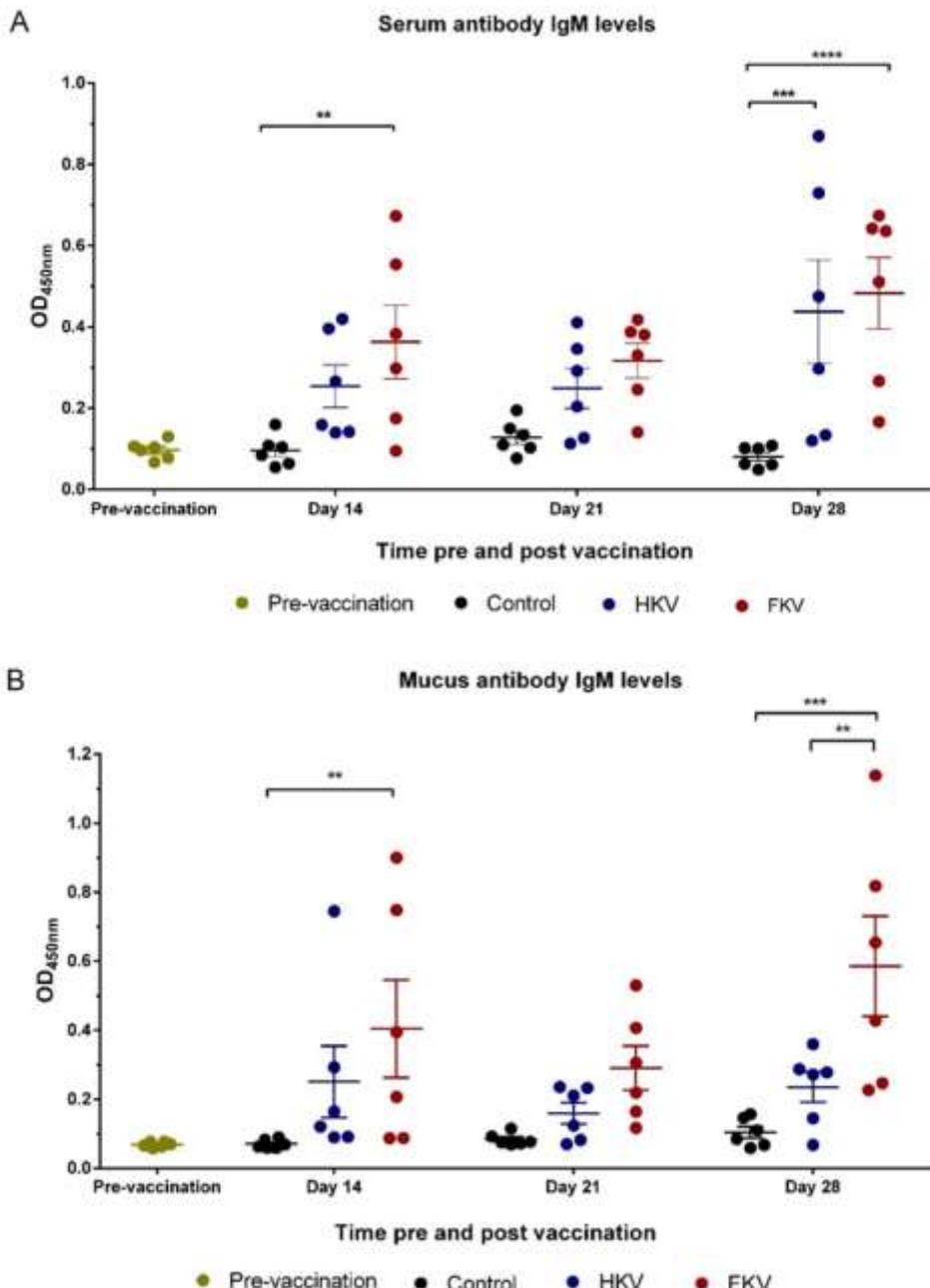

Treatment	Administration route	No of fish challenged	Primary vaccination (TCID ₅₀ fish ⁻¹)	Booster vaccination (TCID ₅₀ fish ⁻¹)	Challenge (TCID ₅₀ fish ⁻¹)	Survival rate (%)	RPS (%)	Significant level (compared to control)
			Day 0	Day 21	Day 28			
Control (L15 media)	IP	16 ($\times 2$ rep.)	0	0	9×10^5	28.13 ± 30.9	NA	
HKV	IP	16 ($\times 2$ rep.)	1.8×10^6	1.8×10^6	9×10^5	81.3 ± 0.0	71.3	$p < 0.0001$
FKV	IP	15 ($\times 2$ rep.)	1.8×10^6	1.8×10^6	9×10^5	86.3 ± 0.0	79.6	$p < 0.0001$

599 HKV, heat-killed vaccine group; FKV, formalin killed vaccine group; rep, replicate; NA, not applicable; IP, intraperitoneal injection


600 **Table 3.** Summary of TiLV vaccines and their efficacy

Vaccine type	Description	Country of origin	Dose (TCID ₅₀ fish ⁻¹)	Administration route	Adjuvant	% RPS or survival rate	Reference
Live attenuated	17 and 20 passages (P17 & P20) on cell culture	Israel	1.2 × 10 ⁷ (P17) and 8.9 × 10 ⁶ (P20)	IP	No	> 50 ^a	Bacharach et al., 2016a
DNA vaccine	Segment 8 (VP20)	China	5 µg	IM	No	50 ^b	Zeng et al., 2021b
Recombinant vaccine			20 µg	IM	M402 (China)	52.5 ^b	
DNA + recombinant vaccine			5 µg of DNA vaccine (prime) + 20 µg of recombinant vaccine (booster)	IM	M402 for booster	72.5 ^b	
Inactivated	β-propiolactone	China	10 ⁵ ; 10 ⁶ ; 10 ⁷	IM	Montanide IMS 1312 VG (Seppic, France)	32.1 ^a - 85.7 ^a	Zeng et al., 2021a
				IM	No	14.3 ^a - 42.9 ^a	
	Heat	Thailand	1.8 × 10 ⁶	IP	No	71.3 ^a	This study
	Formalin		1.8 × 10 ⁶	IP	No	79.6 ^a	

601 IP, intraperitoneal injection; IM: intramuscular injection; a: Relative percentage survival (RPS); b: survival rate



602
603 **Figure 1.** Average percent survival of heat-killed and formaldehyde-killed vaccinated groups
604 (HKV vs. FKV) compared to the non-vaccinated group (Control) during 21 days post challenge.
605 with TiLV (strain TH-2018-K). Statistical analysis of cumulative survival between both vaccinated
606 groups and the control were analyzed using Kaplan-Meier curve with log-rank test ($p < 0.0001$).

607

608 **Figure 2.** Fold change in gene expressions between non-vaccinated and vaccinated fish at 14, 21
609 and 28 - day post vaccination. Data are presented as the mean \pm SE (n=6). Control, non-vaccinated
610 group; HKV, heat-killed vaccine group; FKV, formalin-killed vaccine group. Asterisks show
611 significant levels between groups. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

612

613 **Figure 3.** Optical Density (OD) at 540 nm for IgM levels against TiLV in fish sera (diluted 1:512)
614 (A) and mucus (undiluted) (B). Data are presented as the mean \pm SE (n=6). Control, non-
615 vaccinated group; HKV, heat-killed vaccine group; FKV, formalin-killed vaccine group. Asterisks
616 indicate significant levels between groups. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$.