

1 **Pre-treatment of Nile tilapia (*Oreochromis niloticus*) with ozone nanobubbles**  
2 **improve efficacy of heat-killed *Streptococcus agalactiae* immersion vaccine**

3 Nguyen Vu Linh<sup>1</sup>, Le Thanh Dien<sup>2</sup>, Pattiya Sangpo<sup>3</sup>, Saengchan Senapin<sup>3,4</sup>, Anat Thapinta<sup>5</sup>,  
4 Wattana Panphut<sup>5</sup>, Sophie St-Hilaire<sup>6</sup>, Channarong Rodkhum<sup>1\*</sup>, Ha Thanh Dong<sup>5,7\*</sup>

5 <sup>1</sup> Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary  
6 Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330,  
7 Thailand

8 <sup>2</sup> Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam

9 <sup>3</sup> Fish Health Platform, Centex of Excellence for Shrimp Molecular Biology and Biotechnology  
10 (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand

11 <sup>4</sup> National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and  
12 Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand

13 <sup>5</sup> Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300,  
14 Thailand

15 <sup>6</sup> Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary  
16 Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong

17 <sup>7</sup> Department of Food, Agriculture and Bioresources, School of Environment, Resources and  
18 Development, Asian Institute of Technology, Pathum Thani, 12120, Thailand

19 **\*Corresponding authors:**

20 C.Rodkhum ([channarong.r@chula.ac.th](mailto:channarong.r@chula.ac.th))

21 H.T.Dong ([htdong@ait.ac.th](mailto:htdong@ait.ac.th))

22 **Highlights**

23 • Immune response and efficacy of a heat-killed *Streptococcus agalactiae* immersion vaccine  
24 for Nile tilapia with and without pre-treatment with NB-O<sub>3</sub> were accessed.

25 • Bacterial antigen uptake in the NB-O<sub>3</sub>-VAC compared to the AT-VAC groups was increased  
26 1.32 and 1.80-fold at 3 and 6 h post-vaccination, respectively.

27 • Vaccinated group that received pre-treatment with NB-O<sub>3</sub> had slightly to significantly higher  
28 levels of *IgM*, *IgD*, and *IgT* mRNA expression; IgM levels; and survival rate.

29 • Pre-treatment with NB-O<sub>3</sub> may be a novel strategy for improving efficacy of immersion  
30 vaccine in aquaculture

31 **Abstract**

32 Nanobubble technology has shown appealing technical benefits and potential applications in  
33 aquaculture. We recently found that treatment with ozone nanobubbles (NB-O<sub>3</sub>) activated  
34 expression of several immune-related genes leading to effective response to subsequent exposure  
35 to fish pathogens. In this study, we investigated whether pre-treatment of Nile tilapia (*Oreochromis*  
36 *niloticus*) with NB-O<sub>3</sub> can enhance specific immune responses and improve efficacy of immersion  
37 vaccination against *Streptococcus agalactiae*. Spleen and head kidney of fish in the vaccinated  
38 groups showed a substantial upregulation in expression levels of three immunoglobulin classes  
39 (*IgM*, *IgD*, and *IgT*) compared with the unvaccinated control groups. At day 21 post-immunization,  
40 the relative expression was greatest (approx. 3.2 to 4.1 folds). Both systemic and mucosal *IgM*  
41 antibodies were elicited in vaccinated groups. As the result, the cumulative survival rate of the  
42 vaccinated groups was found to be higher than that of the unvaccinated groups, with a relative  
43 percent survival (RPS) ranging from 52.9-70.5%. However, fish in the vaccinated groups that  
44 received pre-treatment with NB-O<sub>3</sub>, bacterial antigen uptakes, expression levels of *IgM*, *IgD*, and  
45 *IgT*, as well as the specific-*IgM* antibody levels and percent survival, were all slightly or  
46 significantly higher than that of the vaccinated group without pre-treatment with NB-O<sub>3</sub>. Taken  
47 together, our findings suggest that utilizing pre-treatment with NB-O<sub>3</sub> may improve the immune  
48 response and efficacy of immersion vaccination in Nile tilapia.

49 **Keywords:** Ozone nanobubble; Immersion vaccination; Immunoglobulin genes; Nile tilapia;

50 Heat-killed vaccine

51 **1. Introduction**

52 Aquaculture has grown at an unprecedented rate worldwide over the past two decades [1]. This  
53 expansion has resulted in larger and more numerous farms within watersheds, which enhances the  
54 risk of host-dependent pathogen transmission and makes disease management more challenging  
55 [2-4]. Disease outbreaks are a major cause of economic losses in aquaculture, including Nile tilapia  
56 (*Oreochromis niloticus*) [5-8]. As a result of these developments, the use of chemotherapy to  
57 control diseases has increased. Recently, numerous antibiotics have been used in aquaculture to  
58 minimize losses due to bacterial diseases. When an antibiotic treatment is unsuccessful, the farmer  
59 typically switches to another antibiotic or increases the dose of the medication, both of which result  
60 in greater antibiotic usage [9], which is problematic for the development of antimicrobial  
61 resistance (AMR).

62 Disease prevention is the most rational approach to resolving the problems associated with  
63 antibiotic treatments, as it reduces the need for these products. Reduced antibiotic usage in aquatic  
64 systems will eventually decrease the risk of AMR in these sectors, which may directly affect AMR  
65 risk in human populations. Prevention of disease can be accomplished through a number of ways,  
66 which include reducing exposure to pathogens and/or improving host resistance to disease [10,11].  
67 The latter can be achieved through vaccination [12]. To date, vaccination has been shown to be  
68 the most efficient method for combating pathogenic infections or conferring struggle to target  
69 pathogens. Numerous successful vaccines have been produced that provide effective protection in  
70 fish, including subunit vaccines, inactivated vaccines, DNA vaccines, and vaccines with live  
71 attenuation [13-16]. However, issues of vaccination also limit their use. Historically,  
72 immunizations have been administered through injection, which is time consuming and difficult  
73 to deliver to young fish [17]. While oral and immersion vaccinations are simple to administer with

74 minimum stress to the fish, they often generate limited immune responses [12,18-20]. Improving  
75 immersion vaccines would go a long way to preventing infectious diseases on fish farms [12].  
76 A new technology that injects nanobubbles into liquids and helps reduce bacterial counts in water  
77 may reduce pathogen burdens on fish farms [21-24]. In our previous investigations, ozone  
78 nanobubbles were found to be efficient in reducing bacterial concentrations in water and  
79 upregulating the innate immune system of fish, resulting in increased fish survival during  
80 pathogenic infections. When Nile tilapia were infected with a pathogenic multidrug-  
81 resistant *Aeromonas hydrophila*, they displayed a higher survival rate when exposed to treatments  
82 with ozone nanobubbles (NB-O<sub>3</sub>) [25-27]. Given the stimulation of the innate immune system in  
83 the treated groups, we hypothesized that this technology might improve the efficacy of immersion  
84 vaccines. This study aimed to investigate: 1) whether treatment of Nile tilapia with NB-O<sub>3</sub> can  
85 enhance specific immune responses to vaccine, and 2) whether simultaneous treatment with NB-  
86 O<sub>3</sub> can improve the efficacy of immersion vaccination against *S. agalactiae*.

87 **2. Materials and Methods**

88 **2.1 Animals and ethical issues**

89 A total of 360 apparently healthy Nile tilapia fish were provided by a tilapia hatchery (Department  
90 of Fisheries, Thailand). Experimental fish were maintained in fiberglass tanks (100 L), which were  
91 continuously aerated for 2 weeks and equipped with a cotton filter before the vaccination trials.  
92 Prior to conducting additional experiments, 10 randomly selected fish were subjected to bacterial  
93 and parasite examinations to guarantee their health. The Thai Institutional Animal Care and Use  
94 Committee authorized all animal operations (approval no. MUSC64-024-573).

95 **2.2 Bacterial culture and heat-killed vaccine preparation**

96 *Streptococcus agalactiae* strain 2809, identified from a tilapia field outbreak, was used for this

97 research (Centex Shrimp, Mahidol University, Thailand). It was retrieved from frozen glycerol  
98 stocks and cultivated for 24 h at 28 °C on tryptic soy agar (TSA, Becton, Dickinson and Company,  
99 USA), followed by culturing in 100 mL of tryptic soy broth (TSB, Becton, Dickinson and  
100 Company, USA) for 18 h. The bacterial cells were inactivated using the heat-killed method at 56  
101 °C for 30 min in a water bath [28]. To confirm bacterial inactivation, an aliquot of 0.1 mL of killed  
102 bacterial suspension was plated onto TSA and *S. agalactiae* selective agar bases (SSA, HiMedia,  
103 India) and incubated for 48 h at 28 °C. The absence of bacterial growth indicated successful  
104 inactivation. The heat inactivated *S. agalactiae* without adjuvant was used as immersion vaccine  
105 in this study.

106 **2.3 Fish vaccination and challenge**

107 Two weeks after acclimation, 360 fish (15.62 ± 0.45 g) were randomly allocated into 4  
108 experimental groups: ozone nanobubbles without vaccine (NB-O<sub>3</sub>-noVAC) group (G1), ozone  
109 nanobubbles with vaccine (NB-O<sub>3</sub>-VAC) group (G2), an air-stone with vaccine (AT-VAC) group  
110 (G3), and an air-stone without vaccine (AT-noVAC) group (G4). Each treatment was performed  
111 in duplicates with 45 fish per tank. Firstly, the nanobubble tanks (G1, G2) were subjected to NB-  
112 O<sub>3</sub> for 10 min according to a previously reported protocol [27]. After 3 h, the vaccinated groups  
113 (G2, G3) were immunized with heat-killed *S. agalactiae* vaccine ( $1.56 \times 10^9$  CFU/mL) by adding  
114 1 L of inactivated vaccine to each tank containing 50 L of water and 45 fish to reach a final  
115 concentration of  $1.67 \times 10^7$  CFU/mL. The other non-vaccinated groups (G1, G4) were carried out  
116 in the same manner using TSB without inactivated bacteria as the control group. Following a 12-  
117 hour immersion vaccination, fish were transferred to new aeration tanks and maintained at  $30 \pm 1$   
118 °C for 21 d.

119 The efficiency of vaccines against *S. agalactiae* was assessed using an experimental challenge

120 with *S. agalactiae* on day 21 after vaccination. The experimental trials were conducted in 100 L  
121 dechlorinated tap water tanks, including 20 fish per tank. The fish immunized with heat-killed  
122 vaccines (n = 20) were injected intraperitoneally with *S. agalactiae* at a dose of  $10^7$  CFU/fish. By  
123 contrast, the NB-O<sub>3</sub>-noVAC and AT-noVAC groups received injections of 0.1 mL of 1× PBS.  
124 Fish mortality was monitored for 14 d (Fig. 1).

125 **2.4 Sample collection**

126 To investigate the uptake of vaccine into fish bodies of Nile tilapia through gills, six representative  
127 fish (six biological replicates/group) were selected at different periods (3 and 6 h) post-immersion  
128 vaccination. Prior to sample collection, the fish were euthanized with a lethal dose of clove oil  
129 (250 ppm). The gill tissues from each fish were collected and stored in 95% ethanol at a ratio of  
130 1:10 (v/v) tissue:ethanol until further analysis.

131 To collect the mucus and serum samples for enzyme-linked immunosorbent assay (ELISA), six  
132 random fish were selected at different intervals: days 0 (baseline), 7, 14, and 21. Mucus samples  
133 were collected by gently rubbing the fish in a plastic bag that contained 1 mL of 1× PBS and 0.02%  
134 sodium azide [29]. Blood samples were obtained from the tail vein of fish using a syringe fitted  
135 with a 23-G needle. The serum and mucus were then collected and kept at -20 °C for further  
136 analysis.

137 To analyze mRNA expression of three immunoglobulin genes encoding *IgM*, *IgD*, and *IgT*, the  
138 fish tissues (spleen and head kidney) were collected at different periods (days 7, 14, and 21) after  
139 immunization. Investigated tissues (40–50 mg) from six randomly chosen fish (mentioned earlier)  
140 were collected and stored in sterile tubes supplemented with 200 µL Trizol (Invitrogen, USA) at  
141 -20 °C until examinations.

142 **2.5 qPCR assay for quantifying *S. agalactiae***

143 Quantitative PCR was performed according to the protocol reported by Leigh et al. [30]. Primers  
144 *SagroEL-F/R*, which targets the *groEL* gene of *S. agalactiae* (accession number EU003621). A  
145 142-bp product amplified from *S. agalactiae* 2809 was cloned into pGEM and the recombinant  
146 plasmid, namely pSNB1, was used as a positive control and for standard curve construction. Serial  
147 dilutions of the pSNB1 plasmid spiked with 200 ng of tilapia DNA were used to construct a  
148 standard curve for quantifying *S. agalactiae*. Fish gill DNA was isolated using the conventional  
149 phenol-chloroform method [31,32] and 200 ng of each DNA sample was subjected to qPCR assays  
150 using the CFX Connect<sup>TM</sup> Real-time System (Bio-Rad, USA). The resulting  $C_q$  value was used to  
151 compute bacterial DNA in the fish gills using the equation: copy number =  $10^{(C_t - \text{Intercept})/\text{Slope}}$ .  
152 qPCR for each template was performed in triplicate and calculated as bacterial load per 1  $\mu$ g DNA  
153 template.

154 **2.6 qPCR assay for immune gene expression study**

155 Total RNA was isolated from tissue samples (spleen and head kidney) using the Trizol method  
156 according to the manufacturer's procedures. First-strand complementary DNA synthesis and qPCR  
157 were performed following the procedures reported by Linh et al. [27]. The primers specific for  
158 tilapia *IgM*, *IgD*, *IgT*, and  $\beta$ -*actin* used for qPCR are listed in Table 1. The  $2^{-\Delta\Delta C_t}$  method was used  
159 to analyze relative gene expression data [33]. Transcript levels of AT-noVAC groups on day 7  
160 were set at 1.

161 **2.7 Serum and mucus antibody assays**

162 The mucosal and systemic IgM antibody levels of Nile tilapia were detected using ELISA. Mucus  
163 and serum ELISA assays were performed in the same manner as previously reported [27], with  
164 minor modifications. Briefly, mucus or serum samples were collected from six representative fish

165 of each time point (days 0, 7, 14, and 21). Two-fold serial dilutions were performed to determine  
166 the optimal dilution. The ELISA dilutions for mucus and serum were 1:16 and 1:512, respectively.

167 **2.8 Statistical analysis**

168 SPSS program (ver. 22.0) was used to conduct all statistical analyses. The Kaplan–Meier method  
169 was used to evaluate the survival rates in challenge trials, and a log-rank test was used to compare  
170 the treatment groups. One-way analysis of variance (ANOVA) was used to evaluate expression of  
171 immunoglobulin genes. Duncan's post hoc tests were used to compare mean values. The Kruskal–  
172 Wallis test was used to examine the ELISA data. Bonferroni test was used to compare various  
173 groups.  $P \leq 0.05$  was considered statistically significant.

174 **3. Results**

175 **3.1 Quantification of bacterial uptake into the fish gills after immunization**

176 The qPCR for *S. agalactiae* performed in the current research showed a detection limit of 100  
177 copies/µL of target template with an amplification efficiency of 90.2% and an  $R^2 = 0.991$ . The  
178 mean  $C_q \pm$  standard deviation (SD) for the detection limit was  $36.64 \pm 0.54$  (Fig. 2). That is to say,  
179 samples with  $C_q \leq 36.14$  were considered *S. agalactiae* positive. The mean bacterial uptake  $\pm$  SD  
180 in the NB-O<sub>3</sub>-VAC groups was  $2032.40 \pm 2053.45$  and  $5669.50 \pm 2763.31$  per 1 µg DNA template,  
181 whereas a lower value ( $1539.61 \pm 585.91$  and  $3223.92 \pm 970.96$ ) was observed in the AT-VAC  
182 groups at 3 and 6 h post-immunization. The bacterial DNA present in the gills in the NB-O<sub>3</sub>-VAC  
183 was 1.32 and 1.80-fold higher compared to that in the AT-VAC groups after 3 and 6 h of  
184 vaccination, respectively (Table 2).

185 **3.2 Expression of specific immune-related genes**

186 Different expression levels of three immunoglobulin genes encoding *IgM*, *IgD*, and *IgT* in the  
187 spleen and the head kidney were observed for the different treatment groups (Fig. 3). On day 14,  
188 a significant increase in *IgM* expression in the spleen (approximately 2.5 folds) was observed in  
189 the vaccinated groups that received pre-treatment with NB-O<sub>3</sub> (NB-O<sub>3</sub>-VAC) compared with the  
190 unvaccinated groups (NB-O<sub>3</sub>-noVAC and AT-noVAC), while no significant difference was  
191 observed between any of the treatment groups on day 7 or day 21 post-vaccination. A significant  
192 upregulation in the spleen of *IgD* (approximately 2-fold) was found in the vaccinated groups that  
193 received pre-treatment with NB-O<sub>3</sub> (NB-O<sub>3</sub>-VAC) at day 21 compared with the unvaccinated  
194 groups (NB-O<sub>3</sub>-noVAC and AT-noVAC), whereas no significant differences were observed in the  
195 spleen among all treatment groups at day 7 or 14 post-vaccination. On day 7 post-vaccination,  
196 neither the vaccinated nor the unvaccinated groups demonstrated substantial changes in *IgT*

197 expression in the spleen of fish. *IgT* expression showed a higher relative change in both vaccinated  
198 groups compared to the unvaccinated groups at all time points. However, these differences were  
199 not statistically significant. At days 14 and 21 post-vaccination, *IgT* expression was substantially  
200 increased (approx. 2.8–4.1 folds) in the spleen of the NB-O<sub>3</sub>-VAC and AT-VAC groups compared  
201 to the fish in the NB-O<sub>3</sub>-noVAC and AT-noVAC groups. The highest expression was obtained in  
202 the NB-O<sub>3</sub>-VAC group (approximately 4.1-fold) at day 21 post-vaccination (Fig. 3A).

203 In the head kidney tissues, the relative expression of *IgM* was significantly increased in both the  
204 AT-VAC and NB-O<sub>3</sub>-VAC groups at day 14 (approx. 1.8–2.2 folds) and 21 (approx. 2.2–3.6 folds)  
205 post-vaccination, with significantly higher levels in the NB-O<sub>3</sub>-VAC fish. *IgM* expression in the  
206 NB-O<sub>3</sub>-VAC group was considerably upregulated compared with *IgM* expression in the AT-VAC  
207 group on day 21 post-vaccination. On day 7 post-vaccination, no significant variations in *IgM*  
208 expression were observed in any groups.

209 On days 7, 14, and 21 after immersion vaccination, *IgD* expression was essentially constant, and  
210 no alteration was detected in any of the treatment groups. There was a considerable increase in *IgT*  
211 of the AT-VAC and NB-O<sub>3</sub>-VAC groups (approx. 1.9–3.6 folds) compared with the NB-O<sub>3</sub>-  
212 noVAC and AT-noVAC groups at day 21 post-vaccination. Notably, expression levels of fish in  
213 the NB-O<sub>3</sub>-VAC groups were much higher than those of fish in the AT-VAC groups (Fig. 3B).

### 214 **3.3 Analysis of specific-IgM antibody response**

215 The systemic antibody response of the vaccinated fish showed substantially greater levels ( $P <$   
216 0.05) of specific IgM antibodies in their serum by indirect ELISA methods on days 7, 14, and 21  
217 compared to fish that were not vaccinated. No significant specific antibody titer was detected in  
218 fish pre-vaccination (at day 0); however, the production of IgM serum in the vaccinated fish that  
219 received pre-treatment with NB-O<sub>3</sub> was, on average slightly higher than that of vaccinated fish

220 that did not receive pre-treatment with NB-O<sub>3</sub> on day 7 ( $0.138 \pm 0.005$  vs.  $0.116 \pm 0.006$ ), day 14  
221 ( $0.144 \pm 0.02$  vs.  $0.138 \pm 0.015$ ), and day 21 ( $0.146 \pm 0.06$  vs.  $0.09 \pm 0.005$ ) post-vaccination,  
222 respectively. Similar to pre-vaccination fish, no significant systemic antibody response was  
223 detected in any of the unvaccinated fish on any of the sample days (Fig. 4A).

224 Analysis of IgM levels in the mucous membranes of tilapia after vaccination displayed a similar  
225 pattern to the systemic antibody response; however, lower OD<sub>450 nm</sub> reading values of mucosal  
226 antibody titers were observed on days 7, 14, and 21 post-vaccination compared to the systemic  
227 antibody response measurements. Specific-IgM antibody responses in the vaccinated groups that  
228 received pre-treatment with NB-O<sub>3</sub> were all slightly higher than those of the vaccinated group  
229 without pre-treatment with NB-O<sub>3</sub> on days 7, 14, and 21. On day 14 post-vaccination, the mucosal  
230 IgM of fish in the vaccinated groups (NB-O<sub>3</sub>-VAC) had significantly higher antibody levels than  
231 those in the unvaccinated groups (NB-O<sub>3</sub>-noVAC and AT-noVAC). On the other days, all  
232 differences were not statistically significant (Fig. 4B).

233 **3.4 Cumulative survival of vaccinated fish after challenging with *S. agalactiae***

234 Mortality was noted on day 3 post-challenge and persisted until day 6 and day 9 post-challenge for  
235 fish in the NB-O<sub>3</sub>-VAC and AT-VAC groups, respectively. However, fish mortality occurred  
236 earlier in the unvaccinated groups than in the vaccinated groups (on day 2) and persisted until day  
237 8 post-challenge. The NB-O<sub>3</sub>-VAC group had the highest RPS of  $70.5 \pm 8.31\%$ , followed by the  
238 RPS in the AT-VAC group ( $52.9 \pm 16.63\%$ ) (Fig. 5A). This study demonstrated a significant  
239 difference ( $P=0.003$ ) between the NB-O<sub>3</sub>-VAC and the AT-noVAC groups. The AT-VAC groups  
240 also displayed a substantial difference compared to the AT-noVAC groups ( $P = 0.02$ ) (Fig. 5B).  
241 Fish that died during the challenge experiment exhibited typical clinical signs of *S. agalactiae*  
242 infection. *Streptococcus agalactiae* was isolated from a representative group of moribund and dead

243 fish on SSA.

244 **4. Discussion**

245 Based on the results of antigen uptake, antibody assay, expression levels of three immunoglobulin  
246 genes, and RPS, this study indicated that pre-treatment with NB-O<sub>3</sub> improved immune responses  
247 in Nile tilapia to heat-killed *S. agalactiae* immersion vaccine. This approach represents a  
248 promising strategy for the prevention of streptococcus infections in Nile tilapia. Recently, several  
249 advantages of NB-O<sub>3</sub> have been reported in terms of reducing the concentration of certain  
250 pathogenic bacteria and increasing dissolved oxygen (DO) in water. It has been suggested that NB-  
251 O<sub>3</sub> could act as an “immunostimulant” to activate the fish innate immune system against bacterial  
252 infections [27] and improve the survivability of Nile tilapia challenged with *Aeromonas*  
253 *hydrophila* [25]. Notably, the findings of our investigation revealed that better bacterial antigen  
254 uptake into the gill tissues after 3 and 6 h immunization is achieved with fish in the vaccinated  
255 group that received a pre-treatment with NB-O<sub>3</sub> (NB-O<sub>3</sub>-VAC) compared with fish in the AT-  
256 VAC group. It is possible that ozone nanobubbles in the NB-O<sub>3</sub>-VAC groups activated innate  
257 immune system, which modulated immune cells in response to infections [25-27]. When these  
258 innate immune cells are stimulated, they perform several response mechanisms to antigens,  
259 including phagocytosis, degranulation, and production of cytokines, which may trigger and/or  
260 recruit other leukocytes (e.g., neutrophils, macrophages, and dendritic cells) to the fish gills, and  
261 it is highly tempting to speculate that pre-treatment with NB-O<sub>3</sub> might cause a temporary  
262 disruption of epithelial cells, leading to reducing barrier, increasing antigen uptake, and producing  
263 a greater immune response. Another possible explanation for the improved antigen absorption may  
264 be the physical and biological properties of ozone nanobubbles that require further investigation.  
265 Antigens may have been taken up by the gills or skins during immersion vaccination and processed

266 by the innate immune system (e.g., phagocytes), where subsequent responses resulted in adaptive  
267 immune system and protected the immunized fish [34]. Indeed, pre-treatment with NB-O<sub>3</sub> appears  
268 to have aided in the uptake of bacterial antigens during immersion vaccination. Several studies  
269 have previously demonstrated that enhanced antigen uptake results in increased protection [35,36].  
270 These findings indicate that NB-O<sub>3</sub> may be useful for improving the efficiency of immersion  
271 immunization in Nile tilapia.

272 In the current study, our data showed that fish in the vaccinated groups that received pre-treatment  
273 with NB-O<sub>3</sub> had an increase in mRNA expression of three immunoglobulin classes (*IgM*, *IgD*, and  
274 *IgT*) compared to other treatment groups, including vaccinated fish that were not treated with NB-  
275 O<sub>3</sub>. Immunoglobulins (Ig) are important players in adaptive immune responses because they  
276 recognize and eliminate infections through a variety of mechanisms [37]. The immunoglobulin M  
277 (IgM) is the most abundant Ig in the plasma and the primary participant in systemic immunity,  
278 whereas the immunoglobulin T (IgT) is found in mucosal secretions and represented the primary  
279 Ig in mucosal immunity. The immunoglobulin D (IgD) is presumably involved in vertebrate  
280 immune responses, its relevance in Nile tilapia, however, remains unclear [38-40]. Specific  
281 immune gene expressions (*IgM*, *IgD*, and *IgT*) of fish in the vaccinated groups that received pre-  
282 treatment with NB-O<sub>3</sub> were all slightly or significantly higher compared to fish in the other groups,  
283 reflecting the important role of NB-O<sub>3</sub> in transporting vaccine antigens to the lymphoid organs and  
284 subsequent induction of mucosal and/or systemic immunity. Interestingly, our works demonstrate  
285 for the first time that immersion immunization induces a mucosal IgD response in Nile tilapia. The  
286 considerable elevations of *IgM*, *IgD*, and *IgT* in the spleens or head kidneys suggest that these  
287 immunoglobulins may play an essential role in defending fish against *S. agalactiae* infection.  
288 The interaction between the cumulative survival of fish-immunized and antibody titers in the

289 mucus and serum of Nile tilapia [41], Asian seabass [42], and Atlantic cod [43] highlights the  
290 critical role of antibody-mediated immunity in protecting fish against streptococcal infections.  
291 This concept was consistent with our observation; there were higher survival in the groups of fish  
292 with the higher antibody titers and these fish were more common in the NB-O<sub>3</sub> treatment group  
293 [27]. The results obtained in this study are in agreement with a previous study, which induced  
294 significant protection in Asian seabass (*Lates calcarifer*), demonstrated by an RPS value ranging  
295 from 75–85% in both monovalent and bivalent vaccine groups after challenge with the inactivated  
296 *S. agalactiae* and *S. iniae* [42] or better RPS value (59.3 59.3% and 77.8%) was achieved with fish  
297 in the vaccinated group supplemented with adjuvants (aluminum hydroxide and FIA) compared  
298 with fish in the other groups without adjuvants [44]. Our previous study reported that pre-treatment  
299 with NB-O<sub>3</sub> stimulated expression of immune-related genes of the fish innate immune system [27].  
300 This may explain better responses of adaptive immune system after vaccination. Furthermore, the  
301 high RPS obtained in the current study in the NB-O<sub>3</sub> group may be partially due to the contribution  
302 of specific immune mechanisms and the induction of mucosal and systemic IgM antibodies, as  
303 evidenced by upregulation of *IgM* in the spleens or head kidneys and an increase of total IgM in  
304 the mucus and serum of vaccinated fish.  
305 There are still many questions to be addressed regarding the mechanisms of gene regulation as  
306 well as the mechanism of immunological responses in Nile tilapia. Further studies are needed to  
307 corroborate these findings and develop a deeper understanding of the mechanism of the immune  
308 stimulation observed in this study.  
309 In conclusion, this study reported that pre-treatment with NB-O<sub>3</sub> is a promising strategy for  
310 enhancing the efficacy of immersion vaccines against bacterial infections in tilapia, which has  
311 potential to be applied in aquaculture on a large scale.

312 **Data availability**

313 The authors declare that they do not have any shared data available.

314

315 **Author contributions**

316 **Nguyen Vu Linh:** Investigation, Methodology, Formal analysis, Writing – original draft,  
317 Software, and Resources. **Le Thanh Dien:** Investigation and Methodology. **Pattiya Sangpo:**  
318 Investigation and Methodology. **Saengchan Senapin:** Data curation and Writing - review &  
319 editing. **Anat Thapinta:** Supervision and Validation. **Wattana Panphut:** Supervision and  
320 Validation. **Sophie St-Hilaire:** Writing - review & editing, Funding acquisition, and Project  
321 administration. **Channarong Rodkhum:** Supervision and Validation. **Ha Thanh Dong:**  
322 Conceptualization, Data curation, Writing – review & editing, Supervision, Validation, Funding  
323 acquisition, and Project administration.

324

325 **Disclaimers**

326 The views expressed herein do not necessarily represent those of IDRC or its Board of Governors.

327 **Declaration of Competing Interest**

328 The authors declare that there are no conflicts of interest.

329

330 **Acknowledgments**

331 This research project received financial support from the UK government - Department of Health  
332 and Social Care (DHSC), Global AMR Innovation Fund (GAMRIF), and the International  
333 Development Research Center (IDRC), Ottawa, Canada. Nguyen Vu Linh has been supported by

334 the Chulalongkorn University, Ratchadapisek Somphot Fund for Postdoctoral Fellowship. The  
335 authors like to express their gratitude to Mr. Nguyen Dinh-Hung for his technical support.

336 **References**

337 [1] FAO, The State of World Fisheries and Aquaculture, Sustainability in action, Rome, (2020),  
338 <https://doi.org/10.4060/ca9229en>.

339 [2] R. Miller, H. Harbottle, Antimicrobial Drug Resistance in Fish Pathogens, *Microbiol. Spectrum*  
340 6 (1) (2018) 6–1, <https://doi.org/10.1128/microbiolspec.ARBA-0017-2017>.

341 [3] T. Xie, X. Xu, Q. Wu, J. Zhang, J. Cheng, Prevalence, Molecular Characterization, and  
342 Antibiotic Susceptibility of *Vibrio parahaemolyticus* from Ready-to-Eat Foods in China, *Front.*  
343 *Microbiol.* 7 (2016) 1–10, <https://doi.org/10.3389/fmicb.2016.00549>.

344 [4] O.E. Heuer, H. Kruse, K. Grave, P. Collignon, I. Karunasagar, F.J. Angulo, Human health  
345 consequences of use of antimicrobial agents in aquaculture, *Clin. Infect. Dis.* 49 (8) (2009) 1248–  
346 1253, <https://doi.org/10.1086/605667>.

347 [5] P.T. Woo, Protective immunity in fish against protozoan diseases, *Parassitologia* 49 (3) (2007)  
348 85–191, <https://pubmed.ncbi.nlm.nih.gov/18410078/>.

349 [6] Y. Muktar, S. Tesfaye, B. Tesfaye, Present status and future prospects of fish vaccination: a  
350 review, *J. Veterinar. Sci. Technol.* 7 (2) (2016) 299, <http://doi.org/10.4172/2157-7579.1000299>.

351 [7] S.E. Ali, M.D. Jansen, C.V. Mohan, J. Delamare-Debouteville, H. Charo-Karisa, Key risk  
352 factors, farming practices and economic losses associated with tilapia mortality in Egypt,  
353 *Aquaculture* 527 (2020) 735438, <https://doi.org/10.1016/j.aquaculture.2020.735438>.

354 [8] M.D. Jansen, H.T. Dong, C.V. Mohan, Tilapia lake virus: a threat to the global tilapia industry?,  
355 *Reviews in Aquaculture* 11 (3) (2019) 725–39, <https://doi.org/10.1111/raq.12254>.

356 [9] Y. Shen, H. Zhou, J. Jiao Xu, Y. Wang, Q. Zhang, R. Timothy, T.R. Walsh, B. Shao, C. Wu,  
357 Y. Hu, L. Yang, Z. Shen, Z. Wu, Q. Sun, Y. Ou, Y. Wang, S. Wang, Y. Wu, C. Cai, J. Li, J. Shen,  
358 R. Zhang, Y. Wang, Anthropogenic and environmental factors associated with high incidence of

359 *mcr-1* carriage in humans across Chin, *Nature Microbiology* 3 (9) (2018) 1054–1062,  
360 <https://doi.org/10.1038/s41564-018-0205-8>.

361 [10] D. Price, J. Sanchez, J. McClure, S. McConkey, R. Ibarra, S. St-Hilaire, Assessing  
362 concentration of antibiotics in tissue during oral treatments against piscirickettsiosis, *Prev. Vet.*  
363 *Med.* 156 (2018) 16–21, <https://doi.org/10.1016/j.prevetmed.2018.04.014>.

364 [11] A.E. Toranzo, J.L. Romalde, B. Magariños, J.L. Barja, Present and future of aquaculture  
365 vaccines against fish bacterial diseases, *Options Mediterr.* 86 (2009) 155–176,  
366 <http://om.ciheam.org/article.php?IDPDF=801069>.

367 [12] S. Yun, S.S. Giri, H.J. Kim, S.G. Kim, S.W. Kim, J.W. Kang, S.J. Han, J. Kwon, W.T. Oh,  
368 C. Chi, J.W. Jun, Enhanced bath immersion vaccination through microbubble treatment in the  
369 cyprinid loach, *Fish & Shellfish Immunology* 91 (2019) 12–28,  
370 <https://doi.org/10.1016/j.fsi.2019.05.021>.

371 [13] T. Langemann, V.J. Koller, A. Muhammad, P. Kudela, U.B. Mayr, W. Lubitz, The Bacterial  
372 ghost platform system: production and applications, *Bioeng Bugs* 1 (2010) 326–336,  
373 <https://doi.org/10.4161/bbug.1.5.12540>.

374 [14] J. Ma, T.J. Bruce, E.M. Jones, K.D. Cain, A review of fish vaccine development strategies:  
375 Conventional methods and modern biotechnological approaches, *Microorganisms* 7 (11) (2019)  
376 569, <https://doi.org/10.3390/microorganisms7110569>.

377 [15] S. Jorge, O.A. Dellagostin, The development of veterinary vaccines: a review of traditional  
378 methods and modern biotechnology approaches, *Biotechnology Research and Innovation* 1 (1)  
379 (2017) 6–13, <https://doi.org/10.1016/j.biori.2017.10.001>.

380 [16] H. Su, J. Su, Cyprinid viral diseases and vaccine development, *Fish & Shellfish Immunol.* 83  
381 (2018) 84–95, <https://doi.org/10.1016/j.fsi.2018.09.003>.

382 [17] C.M. Caipang, J.B. Lucanas, C.M. Lay-yag, Updates on the vaccination against bacterial  
383 diseases in tilapia, *Oreochromis* spp. and Asian seabass, *Lates calcarifer*, AACL Bioflux 7 (3)  
384 (2014) 184–93, <http://bioflux.com.ro/docs/2014.184-193.pdf>.

385 [18] D. Parra, F.E. Reyes-Lopez, L. Tort, Mucosal immunity and B cells in teleosts: effect of  
386 vaccination and stress, Front. Immunol. 6 (2015) 354, <https://doi.org/10.3389/fimmu.2015.00354>.

387 [19] D. Parra, F.E. Reyes-Lopez, L. Tort, Mucosal immunity and B cells in teleosts: effect of  
388 vaccination and stress, Frontiers in Immunology 6 (2015) 354,  
389 <https://doi.org/10.3389/fimmu.2015.00354>.

390 [20] J. Bøgwald, R.A. Dalmo, Review on immersion vaccines for fish: An update 2019,  
391 Microorganisms 7 (12) (2019) 627, <https://doi.org/10.3390/microorganisms7120627>.

392 [21] A. Agarwal, W.J. Ng, Y. Liu, Principle and applications of microbubble and nanobubble  
393 technology for water treatment, Chemospher 84 (9) (2011) 1175–1180,  
394 <https://doi.org/10.1016/j.chemosphere.2011.05.054>.

395 [22] G. Kaushik, A. Chel, Microbubble technology: emerging field for water treatment. Bubble  
396 Science Engineering & Technology, 5 (1-2) (2014) 33–38,  
397 <https://doi.org/10.1179/1758897914Y.0000000010>

398 [23] P. Khan, W. Zhu, F. Huang, W. Gao, N.A. Khan, Micro–nanobubble technology and water-  
399 related application, Water Supply 20 (6) (2020) 2021–35, <https://doi.org/10.2166/ws.2020.121>.

400 [24] J. Zhu, H. An, M. Alheshibri, L. Liu, P.M.J. Terpstra, G. Liu, V.S.J. Craig, Cleaning with  
401 Bulk Nanobubbles, Langmuir. 32 (43) (2016) 11203–11211,  
402 <https://doi.org/10.1021/acs.langmuir.6b01004>.

403 [25] L.T. Dien, N.V. Linh, P. Sangpo, S. Senapin, S. St-Hilaire, C. Rodkhum, H.T. Dong, Ozone  
404 nanobubble treatments improve survivability of Nile tilapia (*Oreochromis niloticus*) challenged

405 with a pathogenic multi-drug-resistant *Aeromonas hydrophila*, *Journal of Fish Diseases* 44 (9)  
406 (2021) 1435–47, <https://doi.org/10.1111/jfd.13451>

407 [26] C. Jhunkeaw, N. Khongcharoen, N. Rungrueng, P. Sangpo, W. Panphut, A. Thapinta, S.  
408 Senapin, S. St-Hilaire, H.T. Dong, Ozone nanobubble treatment in freshwater effectively reduced  
409 pathogenic fish bacteria and is safe for Nile tilapia (*Oreochromis niloticus*), *Aquaculture* 534  
410 736286, <https://doi.org/10.1016/j.aquaculture.2020.736286>.

411 [27] N.V. Linh, W. Panphut, A. Thapinta, S. Senapin, S. St-Hilaire, C. Rodkhum, H.T. Dong,  
412 Ozone nanobubble modulates the innate defense system of Nile tilapia (*Oreochromis niloticus*)  
413 against *Streptococcus agalactiae*, *Fish & Shellfish Immunology* 112 (2021) 64–73,  
414 <https://doi.org/10.1016/j.fsi.2021.02.015>.

415 [28] B.K. Hvalbye, I.S. Aaberge, M. Løvik, B. Haneberg, Intranasal immunization with heat-  
416 inactivated *Streptococcus pneumoniae* protects mice against systemic pneumococcal infection,  
417 *Infection & Immunity* 67 (9) (1999) 4320-5, <https://doi.org/10.1128/IAI.67.9.4320-4325.1999>.

418 [29] N. Abu Nor, M. Zamri-Saad, I.S. Md Yasin, A. Salleh, F. Mustaffa-Kamal, M.F. Matori, M.N.  
419 Azmai, Efficacy of whole cell inactivated *Vibrio harveyi* vaccine against Vibriosis in a marine red  
420 hybrid Tilapia (*Oreochromis niloticus* x *O. mossambicus*) model, *Vaccines* 8 (4) (2020) 734,  
421 <https://doi.org/10.3390/vaccines8040734>.

422 [30] W.J. Leigh, R.N. Zadoks, J.Z. Costa, A. Jaglarz, K.D. Thompson, Development and  
423 evaluation of a quantitative polymerase chain reaction for aquatic *Streptococcus agalactiae* based  
424 on the *groEL* gene, *Journal of Applied Microbiology* 129 (1) (2020) 63–74,  
425 <https://doi.org/10.1111/jam.14556>.

426 [31] S. Senapin, H.T. Dong, W. Meemetta, A. Siriphongphaew, W. Charoensapsri, W.  
427 Santimanawong, W.A. Turner, C. Rodkhum, B. Withyachumnarnkul, R. Vanichviriyakit, *Hahella*

428 *chejuensis* is the etiological agent of a novel red egg disease in tilapia (*Oreochromis* spp.)  
429 hatcheries in Thailand, Aquaculture 454 (2016) 1–7,  
430 <https://doi.org/10.1016/j.aquaculture.2015.12.013>

431 [32] W. Meemetta, J.A. Domingos, H.T. Dong, S. Senapin, Development of a SYBR Green  
432 quantitative PCR assay for detection of *Lates calcarifer* herpesvirus (LCHV) in farmed  
433 barramundi, Journal of Virological Methods 285 (2020) 113920,  
434 <https://doi.org/10.1016/j.jviromet.2020.113920>

435 [33] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using realtime  
436 quantitative PCR and the  $2^{-\Delta\Delta C_t}$  method, Methods 25 (4) (2001) 402–408.  
437 <https://doi.org/10.1006/meth.2001.1262>.

438 [34] J.A. Knight, Free radicals, antioxidants, and the immune system, Ann. Clin. Lab. Sci. 30 (2)  
439 (2000) 145–158, <https://pubmed.ncbi.nlm.nih.gov/10807157/>.

440 [35] D.F. Amend, D.C. Fender, Uptake of bovine serum albumin by rainbow trout from  
441 hypersmotic solutions: a model for vaccinating fish, Science 192 (4241) (1976) 793–4,  
442 <https://doi.org/10.1126/science.1265480>.

443 [36] R.L. Thune, J.A. Plumb, Evaluation of hyperosmotic infiltration for the administration of  
444 antigen to channel catfish (*Ictalurus punctatus*), Aquaculture 36 (1-2) (1984) 1–8,  
445 [https://doi.org/10.1016/0044-8486\(84\)90049-8](https://doi.org/10.1016/0044-8486(84)90049-8).

446 [37] J.S. Marshall, R. Warrington, W. Watson, H.L. Kim, An introduction to immunology and  
447 immunopathology, Allergy Asthma Clin. Immunol. 14 (2) (2018) 1–10,  
448 <https://doi.org/10.1186/s13223-018-0278-1>.

449 [38] G. Kato, T. Takano, T. Sakai, T. Matsuyama, C. Nakayasu, *Vibrio anguillarum* bacterin  
450 uptake via the gills of Japanese flounder and subsequent immune responses, Fish Shellfish  
451 Immunol. 35 (5) (2013) 1591–1597, <https://doi.org/10.1016/j.fsi.2013.09.007>.

452 [39] R. Korbut, F. Mehrdana, P.W. Kania, M.H. Larsen, D. Frees, I. Dalsgaard, LvG. Jørgensen,  
453 Antigen uptake during different life stages of zebrafish (*Danio rerio*) using a GFP-tagged *Yersinia*  
454 *ruckeri*, PloS One 11 (7) (2016) e0158968, <https://doi.org/10.1371/journal.pone.0158968>.

455 [40] B. Wang, P. Wang, Z.H. Wu, Y.S. Lu, Z.L. Wang, J.C. Jian, Molecular cloning and expression  
456 analysis of IgD in Nile Tilapia (*Oreochromis niloticus*) in response to *Streptococcus agalactiae*  
457 stimulus, Int. J. Mol. Sci. 17 (3) (2016) 348, <https://doi.org/10.3390/ijms17030348>.

458 [41] H.M. Munang'Andu, J. Paul, Ø. Evensen, An overview of vaccination strategies and antigen  
459 delivery systems for *Streptococcus agalactiae* vaccines in Nile tilapia (*Oreochromis niloticus*),  
460 Vaccines, 4 (4) (2016) 48, <https://doi.org/10.1016/j.dci.2021.103993>.

461 [42] N.G. Lan, K.R. Salin, S. Longyant, S. Senapin, H.T. Dong, Systemic and mucosal antibody  
462 response of freshwater cultured Asian seabass (*Lates calcarifer*) to monovalent and bivalent  
463 vaccines against *Streptococcus agalactiae* and *Streptococcus iniae*, Fish & Shellfish Immunology  
464 108 (2021) 7–13, <https://doi.org/10.1016/j.fsi.2020.11.014>.

465 [43] J. Stenvik, M. Schrøder, K. Olsen, A. Zapata, T.Ø. Jørgensen, Expression of immunoglobulin  
466 heavy chain transcripts (VH-families, IgM, and IgD) in head kidney and spleen of the Atlantic cod  
467 (*Gadus morhua* L.), Developmental & Comparative Immunology 25 (4) (2001) 291–302,  
468 [https://doi.org/10.1016/s0145-305x\(00\)00056-2](https://doi.org/10.1016/s0145-305x(00)00056-2).

469 [44] M. Noia, F. Fontenla-Iglesias, A. Valle, V. Blanco-Abad, J.M. Leiro, J. Lamas,  
470 Characterization of the turbot *Scophthalmus maximus* (L.) myeloperoxidase. An insight into the

471 evolution of vertebrate peroxidases, Dev. Comp. Immunol. 118 (2021) 103993,  
472 <https://doi.org/10.1016/j.dci.2021.103993>.

473 [45] E. Wangkaghart, S. Deville, B. Wang, P. Srisapoome, T. Wang, C.J. Secombes, Immune  
474 Response and Protective Efficacy of Two New Adjuvants, MontanideTM ISA 763B VG and  
475 MontanideTM GEL02, Administered with a *Streptococcus agalactiae* Ghost Vaccine in Nile  
476 tilapia (*Oreochromis niloticus*), Fish & Shellfish Immunology 116 (2021) 19–29,  
477 <https://doi.org/10.1016/j.fsi.2021.06.014>.

478 [46] J. Velázquez, J. Acosta, J.M. Lugo, E. Reyes, F. Herrera, O. González, A. Morales, Y. Carpio,  
479 M.P. Estrada, Discovery of immunoglobulin T in Nile tilapia (*Oreochromis niloticus*): A potential  
480 molecular marker to understand mucosal immunity in this species, Developmental & Comparative  
481 Immunology 88 (2018) 124–36, <https://doi.org/10.1016/j.dci.2018.07.013>.

482 [47] K. Shahin, A.P. Shinn, M. Metselaar, J.G. Ramirez-Paredes, S.J. Monaghan, K.D. Thompson,  
483 R. Hoare, A. Adams, Efficacy of an inactivated whole-cell injection vaccine for Nile tilapia,  
484 *Oreochromis niloticus* (L), against multiple isolates of *Francisella noatunensis* subsp. *orientalis*  
485 from diverse geographical regions, Fish & Shellfish Immunology 89 (2019) 217–27,  
486 <https://doi.org/10.1016/j.fsi.2019.03.071>.

487

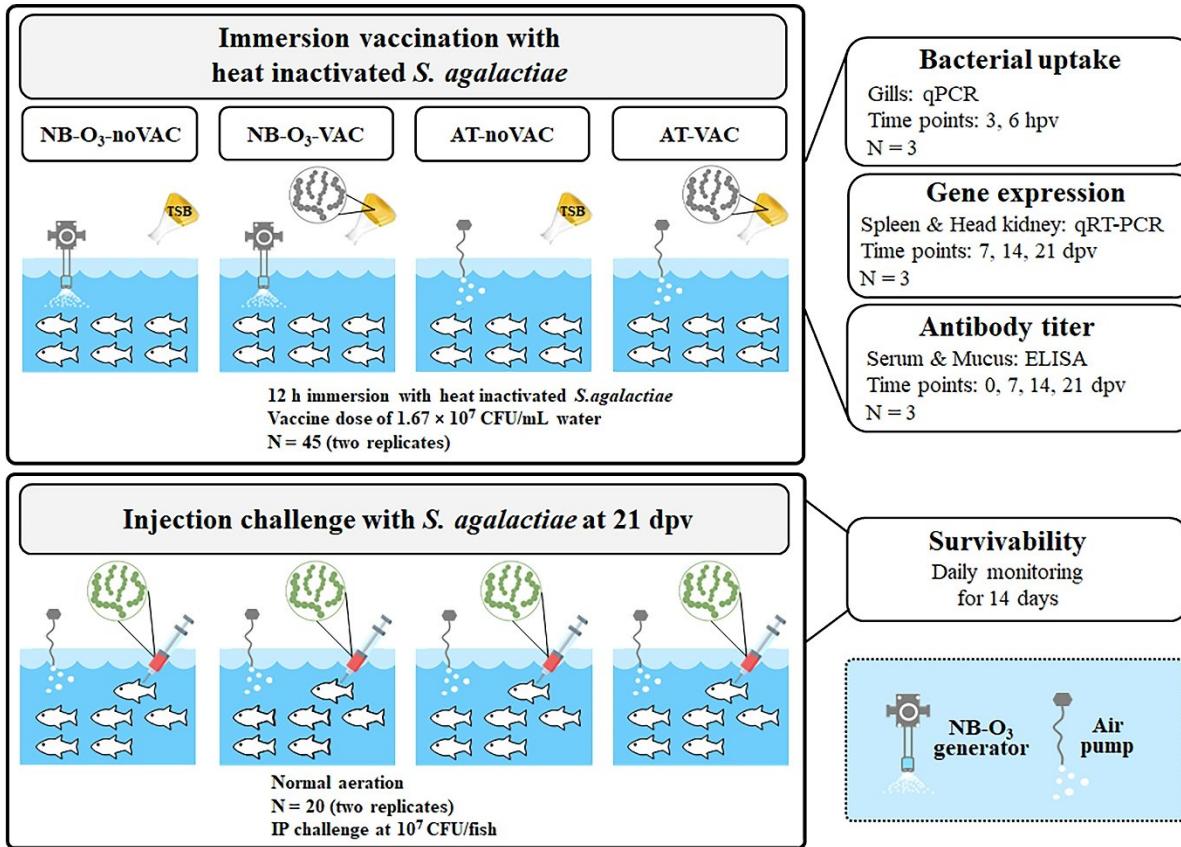
488

489 **Tables and Figures**

490 **Table 1:** Primers used in this study

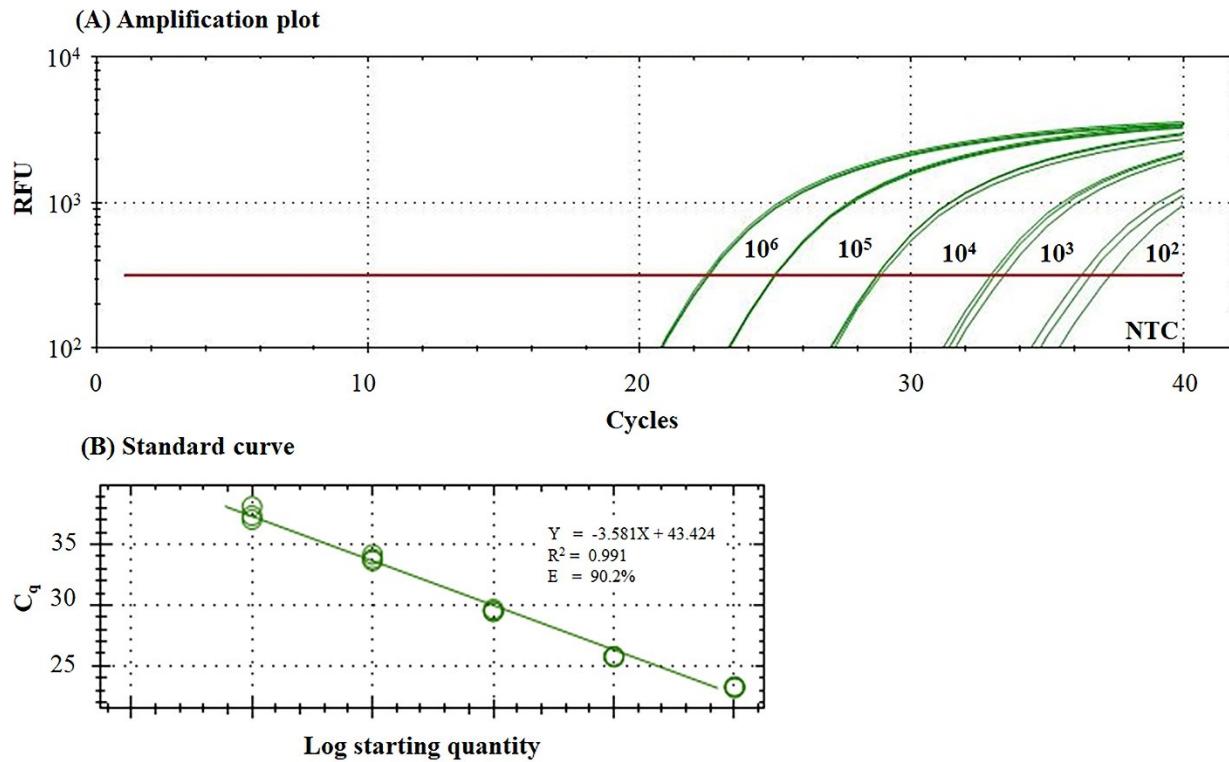
| Primers        | Oligo sequence (5' - 3')                                    | Product size (bp) | Annealing temperature (°C) | Reference |
|----------------|-------------------------------------------------------------|-------------------|----------------------------|-----------|
| IgM            | F: GGATGACGAGGAAGCAGACT<br>R: CATCATCCCTTGCCACTGG           | 122               | 59                         | [45]      |
| IgD            | F: AACACCACCCCTGTCCCTGAAT<br>R: GGGTAAAAACACATTCCAGC        | 127               | 61                         | [40]      |
| IgT            | F: TGACCAGAAATGGCGAAGTATG<br>R: GTTACAGTCACATTCTCTGGAATTACC | 128               | 56                         | [46]      |
| $\beta$ -actin | F: CCACACAGTGCCCCATACTACGA<br>R: CCACGCTCTGTCAGGATCTTCA     | 144               | 60                         | [47]      |

491 \* F: forward primer, R: reverse primer, bp: base pair


492

493 **Table 2:** Quantification of *Streptococcus agalactiae* DNA on gill tissues by quantitative  
494 polymerase chain reaction (qPCR)

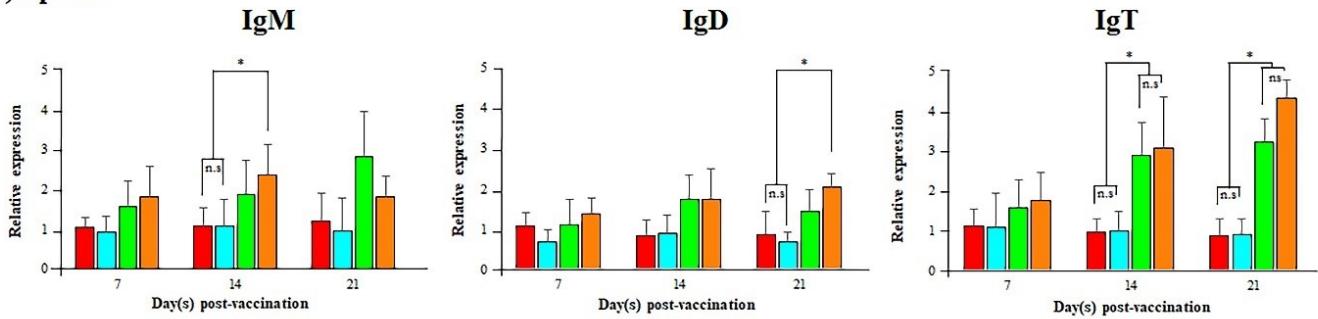
| Samples                                    | 3 h post-vaccination |                                  | 6 h post-vaccination |                                  |
|--------------------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|
|                                            | Mean C <sub>q</sub>  | Bacterial loads/1µg DNA template | Mean C <sub>q</sub>  | Bacterial loads/1µg DNA template |
| <b>NB-O<sub>3</sub> and vaccine groups</b> |                      |                                  |                      |                                  |
| NB-O <sub>3</sub> -VAC-1                   | 32.55                | 5445.77                          | 32.07                | 7419.79                          |
| NB-O <sub>3</sub> -VAC-2                   | 36.74                | -                                | 33.83                | 2393.43                          |
| NB-O <sub>3</sub> -VAC-3                   | 35.82                | 664.35                           | 31.56                | 10270.22                         |
| NB-O <sub>3</sub> -VAC-4                   | 35.82                | 664.35                           | 32.82                | 4550.15                          |
| NB-O <sub>3</sub> -VAC-5                   | 35.34                | 905.39                           | 32.83                | 4531.08                          |
| NB-O <sub>3</sub> -VAC-6                   | 33.77                | 2482.13                          | 32.73                | 4852.34                          |
| Mean                                       |                      | 2032.40 ± 2053.45                |                      | 5669.50 ± 2763.31                |
| <b>AT and vaccine groups</b>               |                      |                                  |                      |                                  |
| AT-VAC-1                                   | 37.13                | -                                | 33.20                | 3570.26                          |
| AT-VAC-2                                   | 36.26                | -                                | 33.21                | 3559.03                          |
| AT-VAC-3                                   | 34.30                | 1765.36                          | 33.33                | 3303.40                          |
| AT-VAC-4                                   | 35.54                | 793.42                           | 34.77                | 1304.34                          |
| AT-VAC-5                                   | 33.97                | 2178.44                          | 33.21                | 3559.03                          |
| AT-VAC-6                                   | 34.64                | 1421.23                          | 33.01                | 4047.45                          |
| Mean                                       |                      | 1539.61 ± 585.9                  |                      | 3223.92 ± 970.96                 |


495 “-”, under the detection limit

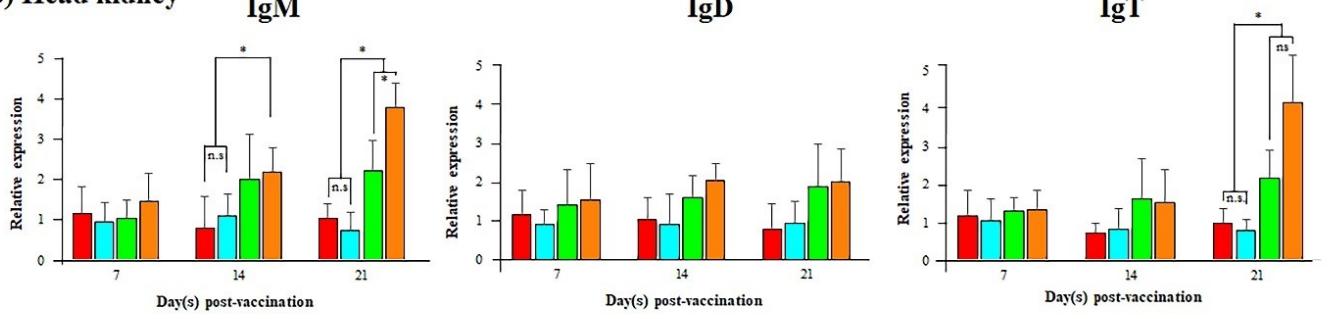
496



497

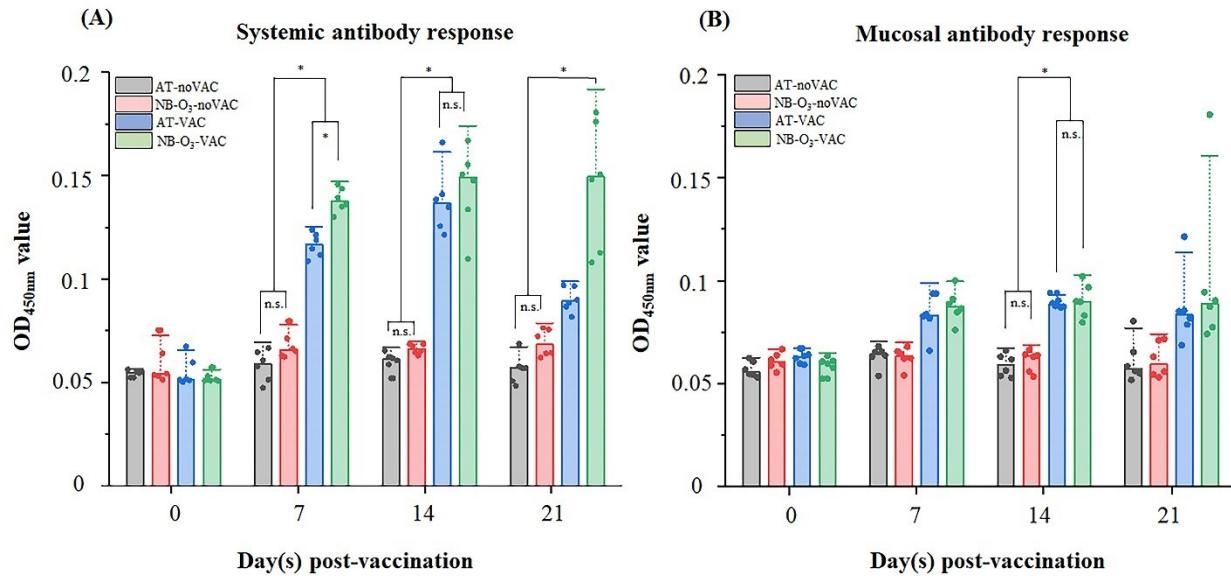

498 **Fig. 1.** Schematic diagram of experimental design illustrating before and after immersion  
499 vaccination, and Nile tilapia species used. AT-noVAC, air-stone with no vaccine; NB-O<sub>3</sub>-noVAC,  
500 ozone nanobubbles without vaccine; AT-VAC, air-stone with vaccine; NB-O<sub>3</sub>-VAC, ozone  
501 nanobubbles with vaccine. TSB: Tryptic Soy Broth media.




502  
503  
504  
505  
506  
507  
508

**Fig. 2.** Detection of *Streptococcus agalactiae* using quantitative polymerase chain reaction (qPCR). (A) Amplification plots of positive control plasmid pSNB1 serial dilutions from 10<sup>6</sup> to 10<sup>2</sup> copies with 200 ng spiked fish DNA in each reaction. Three technical duplicates are included for each dilution. (B) A standard curve is constructed by plotting C<sub>q</sub> values versus log<sub>10</sub> concentrations. Formula for calculating copy number, R<sup>2</sup>, and E value are presented in the box.

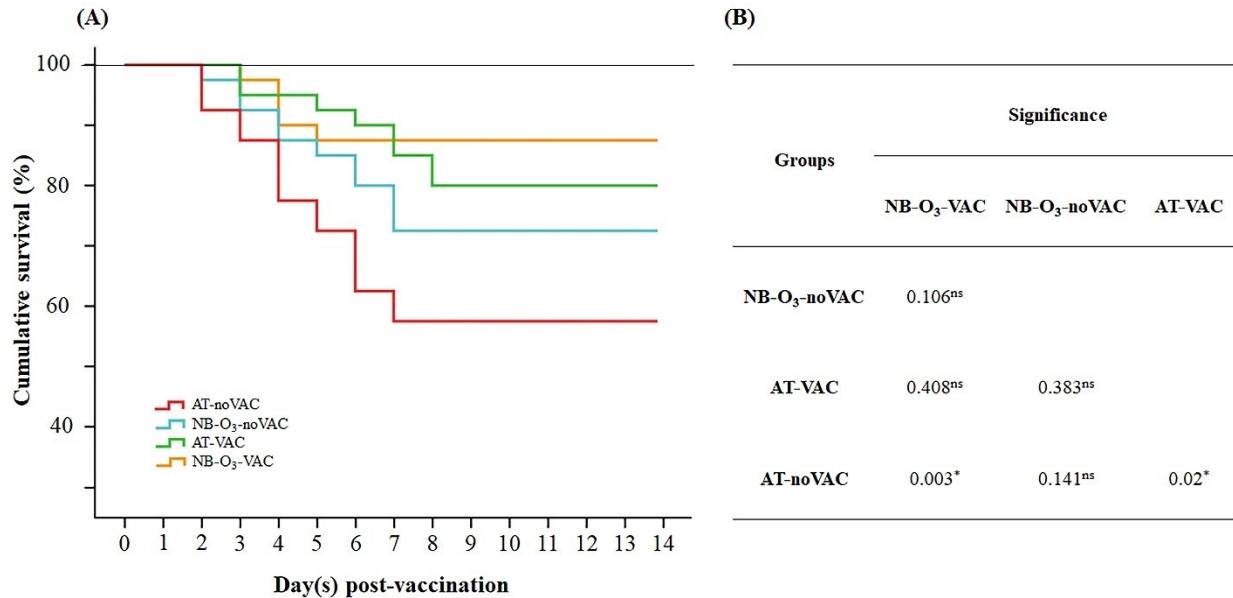
**(A) Spleen**




**(B) Head kidney**



509


510 **Fig. 3.** Comparative *IgM*, *IgD*, and *IgT* expression levels in the spleen and head kidney of the  
511 control and treated fish (n = 6) on days 7, 14, and 21 after immunization. The expression levels of  
512 three immunoglobulin genes were normalized by  $\beta$ -actin. Transcript levels of AT-noVAC groups  
513 at day 7 were set as 1. Error bar indicates standard deviation; “\*” indicates a statistical significance  
514 ( $P < 0.05$ ).



515

516 **Fig. 4.** Specific antibody titer in the serum (A) and mucus (B) of Nile tilapia on days 0, 7, 14, and  
517 21 of the immersion vaccination trials determined by ELISA. Serum and mucus antibody titers  
518 were determined using 1:512 and 1:16 dilutions, respectively. The optical density (OD) values  
519 were determined at 450 nm. Data are shown in mean  $\pm$  standard deviation (SD), with each dot  
520 representing one biological replicate ( $n = 6$ ). Statistical significance was determined by Kruskal–  
521 Wallis test. “\*” indicates a statistical significance ( $P < 0.05$ ), whereas “ns” indicates non-  
522 significant.

523



524

525 **Fig. 5.** Kaplan–Meier analysis of (A) the cumulative survival of Nile tilapia (n = 40) challenged  
526 with *S. agalactiae* at day 21 post-vaccination. AT-noVAC, air-stone with no vaccine; NB-O<sub>3</sub>-  
527 noVAC, ozone nanobubbles without vaccine; AT-VAC, air-stone with vaccine; NB-O<sub>3</sub>-VAC,  
528 ozone nanobubbles with vaccine. The average cumulative survival of two trials is shown in the  
529 data. (B) The log-rank test was used to assess differences between the study treatments. “\*”  
530 indicates a statistical significance ( $P < 0.05$ ), whereas “ns” indicates non-significant.