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Abstract

Simulations of the welding process for butt joints using finite element analysis (FEA) of the effect of
porosity are presented. The metal used was aluminium alloy (grade 2024), and the filler material was
alloy ER5356. The simulations were performed using the commercial software ANSYS, considering a
double ellipsoid heat source, temperature-dependent material properties, material deposits, mechan-
ical analysis, transient heat transfer, and defects (porosity). In this study, the FEA simulations were
constructed for two types of heat source (single- and double-ellipsoid) used in gas tungsten arc
welding (GTAW), and the calculated residual stress results were compared with the experimental
values. Two double ellipsoid models were constructed for cases with and without porosity. The
porosity was measured by three-dimensional (3D) computed tomography (CT), and the size and
location of pores were mapped onto the weld bead created by the birth-and-death technique.

1. Introductions

Aluminium alloys (2xxx and 7xxx series) are mostly used to produce aerospace components with high specific
strength [1, 2] and high-strength precipitation hardening. The 2024 aluminium alloy is typically employed in
automobile, aerospace, and radar fields because of its high strength, low density, and excellent heat resistance
[3, 4]. For instance, it may be used to make the skin, frames, panels, piston, blades, cylinder head, and screws
during the production of aircraft and liquid-fuel tanks of rockets.

Gas tungsten arc welding (GTAW), which is distinguished by high controllability and low cost of equipment,
is widely used for sheet precision welding. It is also known as tungsten inert gas (TIG) and is a well-known
welding technique for a wide range of materials [5]. Gas tungsten arc welding uses a non-consumed tungsten
electrode with inert gas, such as argon, as a shielding gas [6]. Thus, the arc welding of aluminium alloy is of great
importance in producing high-strength alloy, which leads to lighter and cheaper structures [7].

One of the major problems associated with the welding of aluminium alloys is the formation of gas porosity
[8]. Porosity is an important factor responsible for the degradation of mechanical properties. Large porosity
affects the mechanical properties of welded joints. It is essential to identify the cause of porosity formation to
prevent its occurrence. The major reason for the formation of pores is hydrogen. Hydrogen present in the weld
metal or arc atmosphere is often the root cause of the formation of a variety of defects, but also an important
reason for the reduction in the mechanical properties of the weld metal. Hydrogen is the only gas in molten
aluminum which has significant solubility. The welded pool will absorb and dissolve hydrogen during the
welding of aluminum alloy in proportion to its partial pressure in the arc atmosphere. The solubility of hydrogen
in the molten aluminum is about 20 times higher than that in the solid aluminum. Thus, once hydrogen has

© 2020 The Author(s). Published by IOP Publishing Ltd
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Table 1. The welding experimental conditions of 8 welding

specimens.
Arc current Welding speed Wire feed rate
No. (A) (mm min~") (mm min~")
1 180 240 700
2 180 240 400
3 180 210 700
4 180 210 400
5 130 240 700
6 130 240 400
7 130 210 700
8 130 210 400

been introduced into the weld pool in welding, weld porosities would form while the weld pool containing
dissolved gases above the solubility limit in solid aluminium [8].

After welding, the current detection of internal porosity is often achieved using an x-ray process, which is
also used offline. The high cost of welding quality inspection has become a bottleneck restricting the
development of high-efficiency welding technology. In this research, porosities were analyzed by preliminary
radiographic test (RT) and three-dimensional (3D) computed tomography (CT). In the simulation of pores
characteristics, the size and position of the pores were obtained from RT and CT and then used to create a CAD
model that is closest to reality as possible. There are 8 actual workpieces of welded. The workpiece has the most
size and pores distribution characteristics (sample number 7), which will be simulated in this step by using the
SOLIDWORKS program. FEA was implemented by creating a simulation of GTAW and pores characteristics
occurring by using ANSYS Software. In the analysis of the distribution of residual stress in the welds, the
porosities effect that affects the residual stress in the welds from the GTAW, an element type of SOLID 90, which
is a single degree of independence, as the heat-based element is used for this analysis. By determining the thermal
and mechanical properties of aluminum alloy grade 2024 as shown in table 1. Since each temperature is not
stable, the properties of each temperature are not equal. The simulation, therefore, requires different thermal
and mechanical properties at different temperatures.

Residual stresses occur throughout the area of solidified weld metal, and the heat-affected zone (HAZ) ina
welded joint [9] and distortion in welding are primarily caused by the transient thermal cycles in the vicinity of
the weld [7]. Due to the high intensity of the localised heat source, a non-uniform transient temperature field
occurs. Many techniques have been used to measure residual stress in aluminium alloy, including the hole-
drilling method [10], the x-ray diffraction (XRD) method [11, 12], and the holographic interferometry method
[13], just to name the most popular. In this research, XRD, which is typically used to measure residual stress [14],
was used to measure residual stress in longitudinal and transverse directions.

Many researchers have studied the prediction of welding residual stresses. Finite element analysis (FEA) has
been utilised by several authors to perform welding simulation and to forecast welded residual stress in different
types of joints and materials [ 15—17]. A finite element simulation is an essential tool for accurately predicting
welding distortion and residual stresses in welded structures [9]. Fricke et al [18] used the full 3D pipe welding
model and presented residual stress on two different diameters of the pipe. Oddy et al [19] reported that the
prediction of the temperature field requires a nonlinear transient 3D analysis. The consequences of some
welding parameters on residual stresses [ 15] have been studied by Ribycki et al [20], who investigated the effect of
wall thickness and pipe diameter using the axisymmetric FEA model with lateral symmetry for multi-pass
welding of stainless steel pipes. In weld simulation, computational software on an FEA program such as ANSYS,
ABAQUS, MSC/MARC, and SYSWELD are popular [21, 22]. The FEA package ANSYS is used in this research.
It is one of the most efficient pieces of finite element (FE) calculation software and is used to evaluate residual
stress, the effect of porosity, and the analysis of basic structural and heat-transfer problems. Zubairuddin et al
[21] used SYSWELD software for the thermo-mechanical analysis and created a 3D meshed model for the
simulation and used a double ellipsoidal heat source distribution for the thermal analysis. Klobcar et al [23] used
ABAQUS computer for finite element modeling of the GTA weld-surfacing process. The model developed was
applied to predict deformation and residual stresses, and to detect areas critical to cracking when complex-
geometry tooling was repaired. Moreover, Na et al [3] studied metals heat-treated under high pressure on 2024
aluminium alloy while restricting expansion-deformation heat-treatment by using the ABAQUS finite element
software, and the effects of the mould material properties.

From the foregoing, it was found that the creation of a three-dimensional finite element model on the
analysis of pore sizes and distributions did not produce much research. Besides, Wei [24] used a linear
discriminant analysis (LDA) prediction rule for weld surface porosity in gas metal arc welding (GMAW) based
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Figure 1. Butt-joint welded specimen.

on a statistical analysis of arc current. Therefore, recent work has led to the development of such a model, for the
prediction of residual stress, size, and distribution of pores in the bead on plate welds in 2024 aluminium alloy.
Process modeling and experimentation are both used to address the key problems in the retention of good post-
weld microstructures and properties and the control of residual stress and distortion for welding of 2024
aluminium alloy or other materials.

The objective of this research was to investigate the possibility of ‘pores’ in a corresponding 3D finite element
model with the XRD method for the purpose of calculating the magnitude and distribution of the welding
residual stresses. In this work, first, a comparison between the single heat source model and the double-ellipsoid
heat source model by FEA and XRD was conducted. Then, a comparison of the results of the FEA with porosity,
FEA without porosity, and actual XRD results was carried out. To create a finite element model, the porosity in
GTAW, pore shape, and pore distribution were entered into the FEA program from 3D with computed
tomography and SolidWorks programs [25]. To this end, 3D FEA based on statistical analysis and a prediction
model for porosity defects was developed and verified under welding conditions. Therefore, the models
mimicked a real welding situation where porosity occurs in the weld bead.

2. Material and welding procedure

To achieve maximum efficiency from the test, the experimental design or research method design is needed by
using scientific processes. The welding conditions are defined by the full factorial design method. From the
literature review that studied the welding of aluminum alloy by GTAW, it’s found that the factors may affect the
size, the characteristics of the porous distribution and the residual stress values occur, all 3 factors including (1)
arc current, (2) welding speed and (3) wire feed rate. In this research, each factor has 2 levels which are high level
and low level. The welding experimental conditions of 8 welding specimens as shown in table 1. Itis reliable to
predict the residual of other welding conditions based on the given welding conditions. In the simulation of
pores characteristics, the size and position of the pores were obtained from RT and CT. The RT found that
sample number 7 had in the most pores. With budget constraints, the measurement of the work is quite high and
expensive, therefore we will choose only the most pores workpiece to measure in CT (3D).

As for FEA, the purpose of predicting residual stress in the present welds, FE analysis is essential to capture
sufficient detail in the thermal field. It is, however, important to optimise the complexity of the FE
implementation to achieve acceptable accuracy efficiently, particularly for transient thermal problems such as
the present case which are far from steady-state conditions. Validation against experimental results is conducted
on the basis of residual elastic strain, rather than stress, since it is strain that is actually measured. Difficulties,
however, include the avoidance of hot cracking during welding, the development of good post-weld
microstructures and properties, and the control of residual stress and distortion.

Gas tungsten arc welding is widely used for welding aluminium, and it produces welds of good appearance
and quality [1]. The square butt joint configuration shown in figures 1 and 2 was prepared to fabricate
GTAW joints. The plates of 2024 aluminium alloy were cut into the required size: 150 x 100 X 3.2 mm
(width X length x thickness). A welding arc was initiated between the tungsten electrode and the aluminium
alloy specimen. An alternating current and high frequency (ACHF) method [26] was used because it generally
helps reduce the chance of oxide film formation on the surface of welded areas.

The GTAW was performed on a welding machine of model 275 Precision TIG from Lincoln Electric
Company. Further, ER5356 (1.2 mm diameter) wire was used during the welding process as a filler material. The
aluminium alloy grade 2024 had the following welding conditions: gas flow rate 8 | min~ ', arc gap 3 mm,
welding angle 90 degrees, and welding frequency 20 Hz. The weld was made in a straight direction and with full
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Figure 2. The joint prepared prior to welding.

Table 2. Properties of 2024 aluminium alloy [3].

Thermal Specific heat Elastic Poisson’s Yield Thermal expansion
Temp conductivity capacity modulus ration strength Density coefficient
(©) W.m 'K (KJ/kg.C) (GPa) (MPa) (kgm ) (107
20 164 881 72.4 0.33 473.0 2780 14.000
100 182 927 66.5 0.33 416.5 2780 23.018
200 194 1047 63.5 0.33 293.5 2780 24.509
300 202 1130 60.4 0.33 239.8 2780 25.119
400 210 1210 56.1 0.33 150.0 2780 25.594
500 220 1300 50.0 0.33 100.0 2780 26.637

penetration. The weld pass is a single-pass GTAW. The temperatures of the aluminium alloy are shown in
table 2. The butt-joint welded specimen and the joint prepared prior to welding are shown in figures 1 and 2.

3. Governing equations

Based on the above assumptions, the conservation equations can be written. The heat transfer equation in a
stationary orthogonal curvilinear coordinate system (x, y, z) [ 1 7] that depends on the time of the formation of
solids in 3D is expressed as follows:

ot
where p represents the mass density, c represents the specific heat capacity, k,, represents the tensor of the
coefficient of thermal conductivity, Q represents the heat input, T constitutes the temperature variation as a
function of distance in the axis x;, and time t, and x; represents the main axial distance [17]. The stress equation is
written as

i

0 r oT oT
Y Ox

o = Aojje + 2Gejj — BN + 2G)6;;a(T — Tp) )

where 0;; is the stress tensor, Tj is the reference temperature at zero stress, o is the expansion coefficient, g is the
strain tensor, and ¢;; is equal to 1 when i = jori = j.

A= vE G= E e
A+ -2 2004w

where v is the Poisson’s ratio, and E is the modulus of elasticity.

According to the double-ellipsoid heat source model, the heat source was divided into front and rear
sections, each of which had a separate distribution of heat flux. A volumetric heat flux model proposed by
Goldak is implemented in the model [27]. The volumetric heat flux in the front and rear regions is defined as
follows in equations (4) and (5) [27-30]

For the front heat source,

=éa1+en+ ¢33 (3)

633 f VI
———¢

—3x2/aze—3y2/b}e—3zz/c2 (4)
abegmT

qx, y, z) =
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Figure 3. Example of a radiographic test (RT) film. (When passing through the film washing process, it appears as dark spots or dark-
round [porosities]).

Table 3. Chemical composition (wt %) of 2024 aluminium
alloy[14,33].

Cr Cu Fe Mg Mn

<0.10 3.80-4.90 <0.50 1.20-1.80 0.30-0.90

Si Ti Zn Other Al

<0.50 <0.15 <0.25 <0.15 Bal.

and for the rear heat source,
6/3f.nVI 2
q(x, y, Z) = frn e—3x2/aze—3y2/hfe—322/c2 (5)

abc, T

where v is the voltage during welding, I is the arc current, and 7 is the arc efficiency with by = a, b, = 4bf, and
f, r+ f, = 2; by is the distance of the front heat flux, b, is the distance of the rear heat flux [27]. The geometric
parameter a, by, b, and c are schematically shown in figure 3. The relationship between these heat-deposited
fractions and geometric parameters is as below [31]:

be
-~ 6
= ©
2b,
- 7
A @)

The front half of the source is the quadrant of one ellipsoidal source and the rear halfis the quadrant of another
ellipsoid, and this figure also shows the distribution of power density along the y-axis [27, 32, 33].

In the model, the sample material is 2024 aluminium alloy, and the square butt-joint welded specimens. The
properties and chemical composition are shown in tables 2 and 3, [3] respectively. The analysis of the chemical
composition was performed by using energy dispersive x-ray fluorescence (EDXRF).

4.X-ray computed tomography (CT)

During the welding process, pores (also known as cavity pockets) frequently occur and are the characteristic
feature of aluminium alloy welding. This is usually done offline. Nevertheless, the x-ray technique cannot
separate the overlapping porosities in the thickness direction [8]. After welding, the pores are frequently
inspected by x-ray. Monitoring technology based on the use of radiographic tests [31], ultrasound [34], infrared
thermography [35], and image processing [36] have been proposed.

The inspection of the porosity and its size of all 8 welding specimens were measured. In this research, the RT
was an x-ray YXLON machine series YSMART583 [26]. An example of RT film from sample number 7 is shown
in figure 3, where all the black dots are pores. The results showed that the number of pores x average size of the
pore at the arc current of 130 A, welding speed of 210 mm min ', and wire feed rate of 700 mm min ' (sample
number 7) resulted in the most pores.

After that, the porosity was detected, and its size was measured by 3D x-ray CT to lower the cost of inspecting
defective welds in 3D, which are quite expensive. Therefore, researchers will select only the most porous
specimens to detect defects in three dimensions. Sample number 7 was chosen to measure the three-
dimensional pores to achieve more precision using 3D x-ray CT. X-ray CT with cone-beam geometry has been
used for non-destructive characterization and evaluation of materials [37]. X-ray transmission investigated the
specimen using the same type of x-ray tube as in the micro-focused x-ray transmission imaging system [8].
Computed tomography has become an essential and effective method in the analysis of the internal structure of
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Figure 4. Size and characteristic of the measured specimen by 3D x-ray CT.

v
[SoTTEN

Focus at welding line

Figure 5. Welding line.

Table 4. Scanning parameters.

Parameters

Details

System

ACQ/REC. software

Tube voltage

Tube current/Target power
No. of images

Voxel size

Total scan time

Filter

Reconstruction time
Analysis software

GE Phoenix V V|tome|x S 240KV
Datos|x 2.2
175kV
600 1tA/105 W

1500
100

33 min

1 min Sn

<2 min

VG Studio Max 3.0

materials, allowing pores, cracks, or defects to be visualised and evaluated in the materials [38, 39]. Therefore, 3D
x-ray CT was used. The shape, size, porosity, and quantity of pores formed during aluminium alloy welding were
determined by 3D x-ray computerised axial tomography. The longitudinal section and cross-section of weld
beads were polished and etched. In addition, the shapes of pores were observed. The size and characteristics of

the measured specimen are shown in figure 4.

The CT system could not separate a defect smaller than 70 m in the analyzed specimens [38]. The scanning

parameters are shown in table 4.

The CT images (figures 5, 6) show that the porosity is dense near the center of the welding line. Computed
tomography can clearly specify the location of the pores. In addition, it can measure pores with overlapping
characteristics along the weld as well as the size of pores in 2024 aluminium alloy. The summary of the porosity
analysis of the samples using the CT method is shown in table 5. Preliminary observation from both CT image
and residual stress results suggested that the area with high porosity was likely to create tensile residual stress on
the surface [8], which could decrease the surface integrity and strength of the material. Top and side view cross-

section 0f 2024 aluminium alloy as shown in figures 7, 8.
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Figure 6. Top 10-point biggest diameter.

Figure 7. Top view cross-section of 2024 aluminium alloy.

Figure 8. Side view cross-section of 2024 aluminium alloy.

Table 5. The number of pores (defects) detected with 3D computed

tomography (CT).
Number of Average pore
Diameter (mm) pores (N) size (mm)
<0.15 158
0.15-0.30 55
0.30-0.45 110
0.45-0.60 84
0.60-0.75 42 0.4549
0.75-0.90 47
0.90-1.05 38
>1.05 26
Total 560

From the measurement of the pore quantity of 2024 aluminium alloy by RT method, it was found that the
pore volume can be measured in 2D form, which cannot directly determine the pore volume. In here, it assumes
the appearance of pore characteristic of all sphere, but in fact, the pores perhaps not spherical, it may be a
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o

Figure 9. Cross-section of the welding specimen internal porosity and mesh sizing.

distorted shape from the sphere resulting in various values including the residual stress value that occurs maybe
slightly distort. At the same time, the porosity of 2024 aluminum alloy was measured by the CT method, it can be
measured in 3D which can indicate the volume of all pores along the weld (the characteristics of overlapping
pores). This is consistent with the appearance of actual pores, resulting in the residual stress values that occur
match reality.

5. FEA model (simulation)

A finite element model for predicting the evolution of stress and distortion for a bead on the plate of GTAW in
the 2024 aluminium alloy plate has been described [7]. The FEA model consisted of sequential uncoupled
thermal and mechanical analysis. According to Mousavi and Miresmaeili [40], Ueda and Yamakawa in 1971
used 2D finite element analysis to calculate the welding residual stresses for the first time, and McDill et al in
1990 were the first to perform 3D analyses to predict residual stresses in the large welds [5, 40]. The effect of
geometry configuration on residual stress was analyzed and compared with findings from the x-ray diffraction
method. Many other FEA models have also been suggested to estimate residual stresses. Deng and Murakawa
[41] developed a 3D FEA model that simulates residual stresses during a pipe’s multipass weld. Owen et al [42]
provided comparisons with residual stress developed during welding of aluminium alloy AA2024 among
neutron diffraction, x-ray diffraction, synchrotron x-ray diffraction, and finite element model results.

In this research, the FEA method was used to model gas tungsten arc welding with porosity. The finite
element model was constructed using ANSYS simulation software. Further-more, the ANSYS program predicts
residual stress from butt-joint welding by gas tungsten arc welding of 2024 aluminium alloy. The aerospace
industry uses 2024 aluminium alloy in many aircraft parts and spacecraft components. The specimen dimension
was 150 x 100 mm with a thickness of 3.2 mm. This finite element analysis model used a SOLID 90 element for
welding analysis [43] and was constructed from a double-ellipsoid heat source on the same surface. Then, heat
flux was moved from the surface of one element onto the next element until the welding process was complete
using the birth and death technique [44]. Porous simulation in welding can only assume that the reduction in a
cross-sectional area associated with porosity is what affects residual stress. Finite element methods are essential
in order to capture the coupling between thermal histories, elastic properties at high temperatures, and residual
stress of the consequent development [14]. In this article, the model is adapted to the more practical situation of
asquare butt weld. Detailed validation is a key aspect of the construction of any reliable process model. The
cross-section of the welding specimen’s internal porosity and mesh sizing is shown in figure 9.

The comparison of the finite element model is presented below.

1. XRD measurement of 304 stainless steel, 304 stainless steel (single heat source) and 304 stainless steel
(double-ellipsoid heat source) models:
We compared the differences in the residual stress values between all three methods. The longitudinal
residual stress results of references [22, 44] and GTAW of 304 stainless steel (size of 150 x 100 mm and
thickness of 0.3 mm) with a single heat source and residual stress from the XRD measurements of the actual
welding are shown in table 7. A comparison of longitudinal residual stress results between the XRD
measurement, single heat source, and double-ellipsoid heat source of 304 stainless steel is shown in table 5.

2. Model of 2024 aluminium alloy with porosity and without porosity (double-ellipsoid heat source):
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100.00 (mm)

5.0

Figure 10. Welding simulation with birth—death technique of 304 stainless steel (double-ellipsoid heat source).

Figure 11. Welding simulation with birth—death technique of 2024 aluminium alloy without porosity (double-ellipsoid heat source).

Figure 12. Welding simulation with the birth—death technique of 2024 aluminium alloy with porosity (double-ellipsoid heat source).

The model used 3,391,078 nodes and 773,500 elements. Moreover, the 2024 aluminium alloy model has a
mesh size of 0.4 x 0.4 mm, and the porosity mesh size is 0.05 mm. Results of the FEA model of 304 stainless steel
(double-ellipsoid heat source), FEA model of 2024 aluminium alloy without porosity and porosity (double-
ellipsoid heat source) are shown in figures 10-12.

After simulating welding and cool down until the temperature of the specimen was equal to room
temperature with transient thermal analysis, the program analysis was changed from transient thermal analysis
to static structural analysis to investigate residual stresses. A comparison of longitudinal residual stress results
between the XRD measurement, welding simulation without porosity, and welding simulation with porosity of
the double-ellipsoid heat source of 304 stainless steel is shown in table 6.
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Figure 13. Stresstech x-ray diffraction (XRD) machine.

Table 6. Comparison of longitudinal residual stress results in 304 stainless steel from XRD, single heat source, and double-ellipsoid heat
source.

Distance from the weld center (mm) 5 10 20 30 40

Residual stress from XRD [22, 44] (MPa) 186.9 —299.6 —204.0 —180.1 —157.2
+20.2 +26.1 +37.0 +46.1 +55.4
Residual stress from FEA, 304 stainless steel (single heat source) [22, 44] (MPa) 201.59  —287.24  —263.05 —238.37 —212.67
Residual stress from FEA, 304 stainless steel (double-ellipsoid heat 165.10 —290.91 —21450 —186.90 —172.59
source) (MPa)

6. Residual stress measurement

Residual stresses in a body are those that are not required to maintain equilibrium between the body and its
environment [11]. Residual stresses have been measured in the GTAW butt-joint welded 2024 aluminium alloy
plate using synchrotron XRD.

In this research, welding conditions were generated by the use of a full factorial experimental design
technique. The variables used were arc current, welding speed, and wire feeding rate [44]. The residual stress
measurement of sample number 7, which produces the most porosity, was performed with a Stresstech x-ray
diffraction machine (X-STRESS 3000) [26, 44], which uses a copper-containing x-ray tube. The machine is
equipped with a Cr x-ray tube source radiation of wavelength A = 2.084 87 A. Baisukhan et al [22] used XRD to
measure non-destructively and predict residual stresses in the large welds for GTAW. The 1/-angles (0, +18.4°,
£26.6°% 4:33.2°, 4:39.2°, £45°) were used. The XRD method, known as the sin21) method [45], was used to
measure the RS. The X-STRESS 3000 is shown in figure 13.

The welding positions were measured with x-ray diffraction and finite element model in the center of the
weld zone (the liquid region where the process itself takes place and is adjoined by the fusion boundary), at the
following distances from the welding line: 0, 5, 10, 20, 30, and 40 mm, as shown in figure 14. The residual stress
was measured in the longitudinal direction (along the center line-H direction) and in the transverse direction.

7. Results

In table 6, the distance from the center of the weld at 5 mm is near the welding line, which is the area of the heat-
affected zone (HAZ). There is a very high temperature, but the temperature is not high enough to melt into the
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Center Line

Figure 14. The location used to measure (by finite element analysis (FEA) and XRD) the residual stress of welding.

The residual stress results

(XRD, single heat source and double ellipsoid heat source)

300
1869
200

100

45

-200

Residual stress (MPa)

-300

-400

Distance from center (mm)

—e—XRD  —a— 304 stainless steel (single heat source) - 304 stainless steel (double ellipsoid heat source)

Figure 15. Residual stress in 304 stainless steel determined by XRD, single heat source, and double-ellipsoid heat source.

welds and rapidly cool down during welding. The measured value of FEA of 304 stainless steel (double-ellipsoid
heat source) is 165.10 MPa, which the tolerance range measured by XRD is 186.9 + 20.0 mm (166.9-206.9 MPa).
Therefore, the residual stress value is considered consistent, which a difference is 13.20%.

The distance from the center of the weld at 10 mm is near the HAZ. The measured value of FEA of 304
stainless steel (double-ellipsoid heat source) is —290.91 MPa, in which the tolerance range measured by XRD is
—299.6 £ 26.1 mm (273.5-325.7 MPa). Therefore, the residual stress value is considered consistent, which a
difference is 2.99%.

The distance from the center of the weld at 20, 30, and 40 mm is the area tested. The measured values of FEA
of 304 stainless steel (double-ellipsoid heat source) are —214.5, —186.9, and —172.59 MPa, which the tolerance
range measured by XRD is —204.0 £ 37.0 mm (167-241 MPa), —180.1 + 46.1 mm (134-226.2 MPa), and
—157.2 + 55.4 mm (101.8-212.6 MPa), respectively. Therefore, the residual stress values are considered
consistent, which a difference is 5.15%, 3.77%, and 9.79%, respectively.

The data obtained from table 6 is analyzed for statistical results, a paired t-test analysis of a hypothetical
experiment. The statistical analysis indicated that the acquired p-values (0.148) are greater than 0.05 and 0 inside
a95% confidence interval. Therefore, it can be concluded that both sets of data are no significant differences. By
comparing residual stresses, we can be accepted the welding model and confirmed that the value is correct by the
FEA method.

From the graph in figure 15, according to the abovementioned criteria, it was determined that the heat of the
double-ellipsoid heat source specimen was accurate, and the effect of residual stress was similar to that of the
single heat source specimen determined from the actual welding. The measurement of residual stress by XRD
was compared to residual stress from the finite element model. Moreover, residual stress in the longitudinal
direction was tensile (positive) at a distance of 5 mm from the middle of the weld beads. Residual stress in the
longitudinal direction was mostly tensile in the area near the weld beads. This tensile residual stress usually
affects fatigue crack initiation in the material.
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Table 7. Comparison of longitudinal residual stress results from XRD and FEA of 2024

aluminium alloy.

Distance from the weld center (mm) 0 5 10 20

FEA without porosity (MPa) —22.730 17.230 —32.319 —24.171

XRD (MPa) —34.37 70.35 —14.62 —10.00
+52.10 +10.00 +15.40 +47.30

FEA with porosity (MPa) —25.044 61.370 —10.44 —12.504

In table 7, The 0 mm is the middle of the welding line with very high temperatures during welding, which is
an important area. The measured value from FEA is —25.044 MPa. The tolerance range measured by XRD is
—34.37 4+ 52.1 mm (17.73-86.47 mm), which has different values equal to 9.3269 MPa.

The distance from the center of the weld at 5 mm is near the welding line, which is the area of the heat-
affected zone (HAZ). There is a very high temperature, but the temperature is not high enough to melt into the
welds and rapidly cool down during welding. The measured value of FEA is 61.37 MPa. The tolerance range
measured by XRD is 70.35 £ 10.0 mm (60.35-80.35 mm), which has different values equal to 8.98 MPa.

The distance from the center of the welds at 10 mm is the area tested. The measured value of FEA is
—10.44 MPa. The tolerance range measured by XRD is —14.62 + 15.4 mm (0.78-30.02 mm), which has
different values equal to 4.18 MPa.

The distance from the center of the welds at 20 mm is the area tested. The measured value of FEA is
—12.504 MPa. The tolerance range measured by XRD is —10.00 £+ 47.3 mm (—37.3-57.3 mm), which has
different values equal to 2.504 MPa.

Finite element analysis must account for the presence or absence of porosity within the weld zone of 2024
aluminium alloy. The FEA model simulates only sample number 7 owing to cost constraints. Thus, the most
porous sample was selected.

The data obtained from table 7 is analyzed for statistical results, a paired t-test analysis of a hypothetical
experiment. The statistical analysis indicated that the acquired p-values (0.911) are greater than 0.05 and 0 inside
a95% confidence interval. Therefore, it can be concluded that both sets of data are no significant differences. By
comparing residual stresses, we can be accepted the welding model and confirmed that the value is correct by the
FEA method. The schematic of 3D full images was imported to ANSYS software for image analysis and
visualization as shown in figure 17.

8. Discussion

8.1. Porosity analysis

Generally, most industries use advanced tools to help detect faults or other defects that occur in the welding
process and to reduce inspection time and to obtain quality workpieces or materials for applications such as
Radiographic Testing (RT). RT is a radiographic test. Radiographic testing is the method of detecting defects
inside the material using radioactive material and the film to record data, most of these methods are used in pipe
and welding, etc. The RT [31] method provides preliminary results and shows a virtual 2D of pores. While, the
detection of internal porosity is often performed by means of an x-ray method after welding, which is often used
off-line. Actually, because of the high cost, only some critical weldments (used in aviation, aerospace, nuclear,
etc) require100% inspection by x-ray [8], while most common weldments require merely a spot check. X-ray
sources with smaller spot sizes and CT-cone-beam systems with better resolution are the quality of three-
dimensional CT will increase. At the same time, our results come from measurements by a three-dimensional
x-ray computed tomography (CT or XCT) method. The CT method can measure the size, volume, and volume
of all the pores that are better. The pictures of porosities are displayed into three-dimensions, which can convert
files and import into the finite element analysis programs more conveniently and easily. Overlapping pores, CT
techniques can scan and store data. So, when used CT method in the model, the simulations are more accurate
than other techniques.

8.2. Residual stress analysis with the finite element model

The most significant parameters for the prediction of residual stress in the mechanical analysis were the
temperature dependence [7] of the yield properties of the plate material. The approach has been validated
successfully against direct measurements of the residual stress field made via x-ray diffraction. This is important
because there are too many parameters for a systematic parametric experimental study (arc current, welding
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The residnal stress results

(without porosity, XRD, porosity)

Residual stress (MPa)

Distance from center (mm)

o= FEA of 2024 aluminum aloy (without porosity) ~ ==e= XRD o FEA of 2024 aluminum alloy (porosity)

Figure 16. Comparison of residual stress from the without porosity, XRD, and porosity results of 2024 aluminium alloy (3.2 mm
thickness).

speed and wire feed rate, the distance ahead of the arc, etc) to be feasible. The non-uniform cooling rate within
the materials induced residual stress after 2 specimens were welded together [22]. From these angles, the atomic
spacing of the diffracting lattice planes is received by using Bragg’s law [44, 46]. Researches, residual stresses were
analyzed various methods by curvature measurement [47], hole drilling [48], synchrotron x-ray [49], and
magnetic & electrical techniques [11], etc. Positions for measurement by XRD and FEA model were at the
following distances from the middle of the welding line such as 0, 5, 10, 20, 30, 40 mm (Transverse direction).
The residual stress result by XRD shown in figures 18 and 19, were found that the welding bead zone had
compressive residual stresses. The result of residual stress obtained from a non-destructive measurement by the
XRD method was compared with the results from the FEA model on a given condition.

A finite element analysis using shell elements has been conducted to model the generation of residual stresses
caused by TIG welding of 3.2 mm aluminium alloy 2024 plate. Appropriate selection of heat sink conditions was
important to obtain accurate thermal histories [3]. After the FEA was verified, the design of the experiment was
firstly used for determining experimental conditions. It was more cost-effective for using data from a verified
FEA model than obtained directly from measurements [22]. Therefore, in research the values of residual stresses
were obtained from varying main effects conditions in the FEA model, the output results were then analyzed
statistically by MINITAB software. The residual stresses from welding simulation by finite element analysis
methods were compared with measurements by x-ray diffraction shown in figures 15 and 16.

From graph figure 16, the residual stress obtained from XRD, single heat source, and double-ellipsoid heat
source methods at thickness 3 mm. The research of Baisukhan et al [44] shown the residual stress results in 304
stainless steel by XRD and FEA (single heat source), in which the residual stress values are consistent and similar.
To confirm the correctness of the heating model during the actual welding process and to be realistic as possible
for the FEA model, the FEA will compare with two heat sources (single source and double-ellipsoid heat source).
After that, we simulate the FEA (double-ellipsoid heat source) model of 304 stainless steel, the residual stress data
of FEA (single heat source) of [44] are compared. The double-ellipsoid heat source is closer to the actual welding
measured by XRD than the single heat source. The double ellipsoid heat source is a volumetric heat source with a
‘Gaussian Distribution Based Double-Ellipsoid Moving Heat Source’, which provides more accurate results
than a single point or single heat source.

Application of the finite element method in the GTAW process with porosity, there is not much research.
Bouafia et al [50], used 3D finite element stress in the stress concentration factor of steel welding points (joint)
and the porous effect that occurs in the weld nugget process. The porous welding structure is under uniaxial
tensile stress using numerical analysis. Meanwhile, Weiler et al [51] used the finite element method to predict the
high-pressure casting behavior of AM60B magnesium alloy under constant load. Effect of pore sizes and
positions by using LS-DYNA software for analysis.

In most cases, the simulation of finite element analysis is found to be neglected in the insertion of pores or
other abnormalities. In the case that there are not many porosities, it will be assumed that there are no pores in
the model. Given the relatively large number and size of most pores, these small pores probably have no
significant role to play in deformation. This research incorporates pores into the simulation which is a new
technique. It makes the results more consistent. From graph figure 17, the residual stresses showed from FEA
0f 2024 aluminium alloy model without porosity (double ellipsoid heat source), XRD results of 2024
aluminium alloy with porosity, and FEA of 2024 aluminium alloy model with porosity (double ellipsoid heat
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Figure 17. Schematic of 3D full images was imported to ANSYS software for image analysis and visualization.
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Figure 18. The residual stress result by XRD (304 stainless steel).
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Figure 19. The residual stress result by XRD diffraction (2024 aluminium alloy).

source). From the FEA simulation, it is found that the porous simulation is more than consistent with the
actual workpiece. The occurrence of porosity, including the porous distribution that occurs in the welding
line, affects the residual stress values of welding workpiece. The FEA simulation can predict without inferior
to other methods, but we have additional applications to make the model accurate and consistent. Therefore,
itwas deduced that the FEA model for computing temperature field and residual stress during welding are
valid, and subsequently, this validation leads to the conclusion that we can use the FE model with porosity for

predicting the weld.
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9. Conclusions

1. The CT analysis showed porosity at the weld area produced at various welding speeds. It was observed that
porosity was most prevalent for condition 7 (sample number 7).

2. A more rigorous experiment on the effect of porosity on residual stress can be performed in the future at
different positions along the weld zone and at specific locations.

3. This method was compared to the direct measurements of the residual stress field obtained with XRD.

4. The values of residual stress from XRD, single heat source, and double-ellipsoid heat source for the
thickness of 3 mm are consistent and similar. It was determined that the double-ellipsoid heat source
provided more accurate residual stress results compared to the actual XRD measurement of a single heat
source. The double-ellipsoid heat source is a volumetric heat source. It has a ‘Gaussian Distribution-Based
Double-Ellipsoid Moving Heat Source’, which provides more accurate results than a spot heat source,
which is also known as the single heat source.

5. The simulations of FEA models containing pores showed that porous models were more similar (residual
stress values) to the actual welding results than models without pores.
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