IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 5, 2020, accepted April 24, 2020, date of publication May 4, 2020, date of current version May 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991988

Image Denoising With Deep Convolutional Neural
and Multi-Directional Long Short-Term Memory
Networks Under Poisson Noise Environments

WUTTIPONG KUMWILAISAK“!, TEERAWAT PIRIYATHARAWET',

PONGSAK LASANG2, (Member, IEEE), AND
NATTANUN THATPHITHAKKUL3

! Department of Electronics and Telecommunication Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand

2Panasonic Research and Development Center Singapore (PRDCSG), Singapore 469332
3National Science and Technology Development Agency, Pathum Thani 12120, Thailand

Corresponding author: Wuttipong Kumwilaisak (wuttipong.kum @kmutt.ac.th)

This work was supported by the Engineering Faculty Research Fund of King Mongkut’s University of Technology Thonburi, Bangkok,

Thailand.

ABSTRACT Removal Poisson noise poses a very challenging technical issue because it is difficult to capture
noise characteristics. This induces from the fact that Poisson noises from different sources affect each image
pixel proportional to the pixel level. This paper addresses a new image denoising method for removing
Poisson noise based on the Deep Convolutional Neural and Multi-directional Long-Short Term Memory
Networks. The architecture of the proposed network contains some Convolutional Neural Network (CNN)
layers and multi-directional Long-Short Term Memory (LSTM) layers. CNN layers are responsible to extract
image features and to estimate some noise bases existed in images. The multi-directional LSTM layers are
used to effectively capture and learn the statistics of residual noise components, which possess long-range
correlations and appear sparse in the spatial domain. Moreover, designing deep learning models for image
denoising involves several hyperparameters such as a number of layers. To select proper hyperparameters,
it is beneficial to investigate what is the best image denoising performance we can achieve under different
model complexities. Moreover knowing and realizing how far the employing image denoising algorithm can
do to the optimal result makes us possible to design the efficient image denoising algorithm. We utilize the
Blahut-Arimoto algorithm to derive numerically distortion-mutual information function of image denoising
algorithm. The derived function serves as the distortion lower bound given the mutual information between
the original image and the denoised image. Based on the knowledge of distortion-mutual information
function, we can decide how deep the CNN layers should be deployed in our image denoising algorithm
before applying the multi-directional LSTM layers. From our experiments, the proposed image denoising
algorithm can outperform other algorithms in both subjective and objective qualities.

INDEX TERMS Poisson noise, deep learning, convolutional neural network, multi-directional LSTM
network, distortion-mutual information function.

I. INTRODUCTION

Image denoising is one of the most classical problems in
the field of computer vision and image processing whose
objective is to remove noises while preserving the orig-
inal image structures. Accurately modeling and capturing
noise characteristics in image denoising algorithms lead to
high quality restored images [1]-[3]. In general, there are
two main classes of noise:1.) Signal-independent noise; and
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2.) Signal-dependent noise. The Additive White Gaussian
Noise (AWGN) is a widely used signal-independent noise
model. The AWGN is generally is used to model noises
induced by thermal vibrations of atoms, shot noise, and black
body radiation from warm objects. Unfortunately, the AWGN
can not effectively represent noise characteristics under dom-
ination of photon noise [4], [5], which is signal-dependent.
The photon noise is caused by the random arrival of the
photon onto an image sensor. Poisson distribution is deployed
to model this photon noise [6].
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Removal of the AWGN can be done efficiently by several
existed techniques such as the sparse 3D transform-domain
collaborative filtering (BM3D) [7]. However, when we apply
the BM3D technique to denoise Poisson noise especially in
natural images, it can not provide good results as in the
AWGN environments. To denoise Poisson noise, various
methods have been proposed. Azzari and Foi [8] proposed the
modified BM3D technique called Variance Stabilization for
Noisy+Estimate Combination in Iterative Poisson Denois-
ing (I+VST4+BM3D). The I 4+ VST + BM3D method is
relied on an iterative algorithm that progressively improves
the effectiveness of the Variance Stabilizing Transformations
(VST). The I 4+ VST 4 BM 3D gives better denoising results
than those of BM3D. However, it can not perform well on
Poisson noise with low peak values. Sparsity-Based Poisson
Denoising With Dictionary Learning (SPDA) [9] was pro-
posed to denoise Poisson noise with a low peak value. The
SPDA [9] can perform well in a very low peak value but
cannot outperform the I 4+ VST + BM3D in Poisson noise
environments with higher peak values. Feng et al. [10] pro-
posed a method called Fast and Accurate Poisson Denoising
With Trainable Nonlinear Diffusion (TRDPD). The TRDPD
is an improved version of the Trainable Nonlinear Reaction
Diffusion (TNRD) [11], which can perform well on denoising
Gaussian noise. Unlike the TNRD, the TRDPD replaces the
reaction term of the diffusion equation of the TNRD by a
new function derived from the Poisson noise distribution. The
TRDPD provides better denoising results in Poisson noise
environments for all ranges of peak noise values but it leaves
some artifacts on the denoised image.

With the recent advances of deep neural net-
works [12]-[16], the classical image denoising techniques
have been outperformed by the deep learning-based tech-
niques [17]-[21]. Zhang et al. [17] proposed the Residual
Learning of Deep Convolutional Neural Network for Image
Denoising (DCNN) technique that utilizes the deep Convo-
Iutional Neural Networks (CNNSs) to eliminate the AWGN.
The DCNN can significantly surpass previous denois-
ing techiques in both qualitative and quantitative results.
Remez et al. [20] proposed the Deep Convolutional Denois-
ing of Low-Light Images (DenoiseNet) method that deploys
the deep CNNss to eliminate Poisson noise. The DenoiseNet
can perform better than the existing denoising algorithms in
both objective and subjective qualities under weak Poisson
noise environments. Unfortunately, under strong Poisson
noise environments, some noticeable artifacts still remain
sparsely all over the restored images.

This paper addresses a new image denoising method
for removing Poisson noise based on the Deep Convolu-
tional Neural and Multi-directional Long-Short Term Mem-
ory Networks. The architecture of the proposed network
contains some Convolutional Neural Network (CNN) lay-
ers and multi-directional Long-Short Term Memory (LSTM)
layers. CNN layers are responsible to extract image features
and to estimate some noise bases existed in images. The
multi-directional LSTM layers are used to effectively capture
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and learn the statistics of residual noise components, which
possess long-range correlations and appear sparse in the spa-
tial domain. Moreover, designing deep learning models for
image denoising involves several hyperparameters such as
a number of layers. To select proper hyperparameters, it is
beneficial to investigate what is the best image denoising
performance we can achieve under different model complex-
ities. Moreover knowing and realizing how far the employing
image denoising algorithm can do to the optimal result makes
us possible to design the efficient image denoising algorithm.
We utilize the Blahut-Arimoto algorithm to derive numeri-
cally distortion-mutual information function of image denois-
ing algorithm. The derived function serves as the distortion
lower bound given the mutual information between the orig-
inal image and the denoised image. Based on the knowledge
of distortion-mutual information function, we can decide how
deep the CNN layers should be deployed in our image denois-
ing algorithm before applying the multi-directional LSTM
layers. The contributions of this paper can be summarized as

1) We propose the method to compute numerically
distortion-mutual information of the image denoising
problem. This function can serve as a guideline on
determining the hyperparatemeters of deep learning
networks for image denoising;

2) We propose the multi-directional LSTM networks to
extract and learn sparse noise characteristics to reduce
complexities from applying the LSTM network directly
to two-dimensional signals;

3) We combine the DCNN and the multi-directional
LSTM to denoise images corrupted Poisson noise and
obtain better results in both subjective and objective
image qualities compared to the existed methods.

This paper can be organized as follows. Section II for-
mulates the framework of distortion-mutual information of
image denoising algorithm. The algorithm to compute the
distortion-mutual information function is also presented in
this section. Section III discusses the utilization of DCNN
on denoising Poisson noise. Its limitations are also discussed.
Section IV describes the multi-directional LSTM networks
in capturing and learning sparse noise characteristics. The
combination between the DCNN and the multi-directional
LSTM to form our proposed image denoising architecture is
in Section V. Experimental results are in Section VI. Finally,
concluding remarks are in Section VII.

Il. DISTORTION-MUTUAL INFORMATION FUNCTION

OF IMAGE DENOISING ALGORITHM

In this section, we try to derive numerically the lower bound
of distortion from the considering image denoising algorithm.
In other words, we want to know what is the best denoised
image quality given the DCNN structure. Let us define P and
Py as the original image and the noisy image corrupted by the
Poisson noise, respectively. Each pixel in Py is an identically
independent random variable with Poisson distribution. The
value of noisy pixel is location-dependent. The conditional
probability of the pixel value at position (xp,y,) can be
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expressed as

yx . e_y
PPN (u, xp, yp) = x[P(xp, yp) = y} = x!
8}(,07 y = 07

ey

where Py (u, x5, yp) is the random pixel value at position
(xp, yp) and P(xp, yp) is the pixel value at position (xp, yp)
of Py and P, respectively. dx o is a Kronecker delta function
defined as

, y>0,

0, x#0,
8x.0 = 2
x,0 17 x=0. ( )

Let the denoised image of Py be f’, which can be obtained
from

P =f(Py, W), 3)

where f(-) is an image denoising function and w is a set of
denoising parameters.

The objective of the image denoising problem is to find
the optimal image denoising function with parameter w that
minimizes distortion between the original image and the
denoised image under the constraints on the effectiveness
of function f(-). This can be translated to the complexity of
function f(-) and a number of parameters in w. Therefore,
the image denoising problem can be formulated as

min D(P, P), 4)
w
subject to
I(P; Py, P) < I;(P; Py, P), Q)

where D(-) is the distortion function, / (P Py, P)is the mutual
information of P and Py, P), and If(P Py, P) is the best
achievable mutual information of P and (Py, P) obtained
from the denoising function f(-).

We may not be able to obtain the closed form solution of
D(P, P). In practical, the Blahut-Arimoto algorithm [24] can
be utilized to compute numerically distortion-mutual infor-
mation function of image denoising algorithm. First we need
to compute joint probabilities among pixel values of P and
(Py. P). Let n(P(xp. yp) = X, Py (. p) = 3. P(p. ) = )
be the total number of pixel, where its value in the origi-
nal image is equal to x, the corresponding corrupted pixel
value from the Poisson noise is equal to y, and the corre-
sponding denoised pixel value is equal to y for all positions
(xp, ¥p). Define N, as the total number of pixels. In general,
to obtain sufficient number of n(P(x,, yp) = x, Pn(xp, yp) =
v, f’(xp, ¥p) =) and N, we need to consider several images.
The joint probability among pixels of P and (Py, P) is

PPy, yp) = X, Pn(xp, ¥p) =, P, ) = )

_ nP=x,Py=y,P=9 ©
- N, .
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With the same consideration, the probabilities

P(P(y, yp) = 5) and PR3y, yp) = %, Py(xp, 3p) = ) can
be computed from

n(P(, yp) = 9)

P(P(xy, yp) = 9} = 7
{ (xp yp) y Np @)
and
P{P(xpv yp) =X, PN(Xp, yp) =y}
n(P(xps yp) =X, PN(xpv yp) =)
= N . ®)
P

where n(f’(xp, yp) = ¥) is the total number of denoised

pixels having pixel values equal to y and n(P(x,,y,) =
x, Py(xp, yp) = y) is the total number of pixels where their
original pixel values are equal to x and its corresponding
corrupted pixel values are equal to y. With these computed
parameters, the distortion-mutual information function can
be numerically calculated as follows.

Blahut-Arimoto Algorithm for Computing Distortion-
Mutual Information of Image Denoising

o Step 1: Let y be the pixel value of the original image
P at position (xp, yp) with probability P{P(x,,y,) =
vy} = p(y). Moreover let x be the pixel value of the noisy
image at position (x,, y,). The conditional probability of
pixel value x given the original pixel value y is equal
to P{P(xp,yp) = x|P(xp,yp) = y} = plxly). Let
y be the restored image pixel of denoised image P at
position (x,, y,). The conditional probability of pixel
value ¥ given a pair (x, y) is defined as P{f’(xp, Yp) =
5’|(P(xpa Yp) =Y, PN(xpv Yp) = x)} = pGly, x).

o Step 2: Compute the expected distortion function d (¥, y)
over the joint probability of y and y of iteration 41 from
iteration ¢ repeatedly until convergence via

P13 =YY ple,pGlx.y) ()
x oy
A pi§ePdG
X,y) = —————. 10
Pi+101x, y) Zypt()’)e_ﬁd(y’y) (10)
The Blahut-Arimoto algorithm numerically outputs

1 (f’; Py, P) corresponding to the distortion between P and P.
The mutual information from the Blahut-Arimoto algorithm
corresponds to the lowest distortion we can achieve. Note that
the underlying mutual information is directly computed from
the statistics obtained from the Blahut-Arimoto algorithm.

From the original image and the denoised image obtained
from the DCNN, we can compute mutual information
directly as

I(P; Py, P) =

33> by §)log( ’Z() (y’y;)) (11)

yePy xeP yGP

The difference between distortion of the original image and
denoised image given the same mutual information can be
used to measure the efficiency of image denoising algorithm.
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Given the same mutual information, if the image denois-
ing algorithm gives very close distortion to that from the
Blahut-Arimoto algorithm, that image denoising algorithm
has very high efficiency in noise removal.

IIl. NOISE FEATURE ESTIMATION WITH CONVOLUTIONAL
NEURAL NETWORKS AND ITS LIMITATIONS

It is widely known that Deep Convolutional Neural Net-
works (DCNN) can learn to extract non-linear features far
better than the human hand-crafted features. In image denois-
ing problem, the DCNN is utilized to learn and extract noises
from corrupted images. Then, it subtracts noises from the
corrupted images to obtain the denoised images. The structure
of DCNN for image denoising can be shown in Fig.8. Notice
that each layer of the DCNN extracts noise features from
the input by convolving the trained weights with the features
extracted from the previous layer [25]. The output feature at
layer i can be written as

M;—y
FriGipyp) = D Wizt 0 Zmnic1Gip 3, (12)

m=1

where Fy ;(xp, yp) be the feature value k at position (xp, yp)
of the i layer of the DCNN. || - ||r is the Frobenius norm
and o is the Hadamard operation. M;_; is a number of feature
maps at the /" layer. W,, ;| is the trainable weight matrix
of feature map m at the (i — 1)”’ layer. Zy, ;—1(xp, yp) is an
N x N-patch of feature map m in the (i — 1)"* layer with the
center at position (xp, yp). The output features at layer i are
then weighted summed to obtain the noise component.

Fig.8 shows the extracted Poisson noise components from
Plane image. Notice that the noise components obtained from
Layer 1 and Layer 2 of the DCNN are very noisy. In contrast,
the noise components from the deeper layers become more
sparse (Layer 18 and Layer 19). This implies that the deeper
the layer, the weaker the noise power. Note that even though
in this paper, we utilize Poisson noise for our description,
the concept of image denoising with DCNN can be applied
to different kinds of noise such as Gaussian noise.

A number of layers and a number of neurons per layer in
the DCNN involve directly with the neural network complex-
ity. The larger the number of parameters, the longer the train-
ing period. Knowing and recognizing the limits of the using
image denoising algorithm help us to optimize and select the
proper DCNN structure(e.g., a number of layer and a number
of parameters) for image denoising. Even though, the proper
DCNN can remove noise quite efficiently, from the layers that
noise components become sparse, increasing the number of
CNN layers does not significantly improve performance of
noise estimation. In other words, the image denoising perfor-
mance does not improve much given higher complexities we
give to the DCNN. This is because CNN cannot group noisy
pixels to be alocal patch for the convolution operation to learn
the noise features. Therefore, the noise statistic cannot be
effectively calculated. To capture the statistics of sparse noise,
we need other measures to capture noise characteristics.
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IV. SPARSE NOISE FEATURE EXTRACTION WITH
MULTI-DIRECTIONAL LONG SHORT-TERM

MEMORY NETWORKS (LSTM)

The LSTM network is widely known to be utilized to cap-
ture long-range dependencies of one dimensional data [23],
[26], [27]. It is also possible to employ the LSTM net-
work to capture some correlations in multi-dimensional sig-
nals with higher computational complexity [28]. This can
be done by transforming multi-dimensional data to be long
one-dimensional data. In this section, we deploy the LSTM
network to extract sparse noise features. To obtain the opti-
mal result, we need to transform the two-dimensional input
feature map to one dimensional signal. This can be achieved
by scanning feature maps using some scanning formats such
as a raster scanning. However, training LSTM network to
deal with very long one-dimensional input data may face
several technical issues such as vanishing gradient and high
computational complexity [22].

To solve these challenges, we propose the multi-directional
LSTM network. The multi-directional LSTM network
applies the LSTM network to inputs in four directions:
1.) from the left to the right (direction 1); 2.) from the right
to the left (direction 2); 3.) from the top to the bottom (direc-
tion 3); and 4.) from the bottom to the top (direction 4). The
proposed algorithm may not provide the optimal result on
capturing noise features since we assume that we can obtain
the sufficient sparse noise characteristics from applying the
LSTM network only in four directions. Fig.2 illustrates the
proposed multi-directional LSTM network as a combination
of the operations of feature maps in four directions. The
input feature maps will be first convoluted by 1 x 1 x C
convolutional neural network before passing them to each
direction of the directional LSTM module. The number of
filters is equal to 32. To simplify the process, the left to the
right, the bottom to the top, and the right to the left will
be represented by 90°, 180°, and 270° rotations from the
top to the bottom directional LSTM network, respectively.
After rotations, we can apply the LSTM only from the top to
the bottom. This will reduce our implementation difficulties
greatly. Then, the output from all four directions will be
concatenated and are fed to the 1 x 1 x 64 convolutional neural
network to get the output feature maps of the multi-directional
LSTM network.

The procedure of the directional LSTM module from the
top to the bottom can be described as follows. The feature
maps with the size of I x J x K are processed directly
without transforming into one dimensional data. This possi-
bly omits some correlated data that can be gathered from a
long one-dimensional data of the LSTM, but it can largely
mitigate the complexity of our proposed framework. In gen-
eral, the complexity of the conventional LSTM is in the
order O(n?). However, the proposed multi-directional LSTM
has the complexity in the order of O(n). The LSTM cells are
connected sequentially as a straight line from the previous cell
to the next LSTM cell in the processing direction. In the top to
the bottom direction, the LSTM cells will be connected from
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FIGURE 1. The visualized feature maps obtained from intermediate layers of DCNN [20] of Plane
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FIGURE 2. The architecture of the proposed multi-directional LSTM network and its LSTM cell.

the previous row to the next row. At the same time, the LSTM
cells in each row are independent among others.

Fig.2b depicts the connection of the LSTM cells in the
top to the bottom direction. To calculate the output of the
LSTM cell at position (i, j), we feed the feature map value
at position (i, j) and the outputs of the LSTM networks from
the previous row. The linear transformation is applied to the
feature map value at position (i, j) before passing through
the activation function. The weights of linear transformation
are learned during the training period. At the same time,
the outputs of the LSTM cell from the previous row are
convoluted with the training weights before passing them to

87002

the activation function. The summation of these two values
are used as the input of the gates in the current LSTM cell.
Fig.3 shows the example of the process from the input feature
maps to the output feature maps in each row in the case of one
feature map. The input of the gates at position (Z, j) at channel
k can be calculated as

2ijdy = ReLUWh, o fi ) + ReLUWl o ha—1 ). (13)

where ReLU(. . .) is a rectifier linear unit function. f{; ;) is the
one-dimensional input features with a size of K at position
(@, J). h(i=1,j) is the output feature patch with the size of 3 x K
from the previous row output features centered at (i — 1, j).
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Wf;) is the weight matrix of the linear transformation applied
to input f{; j) at channel k.

h(i—1,j) at channel k. Noted that the weights W(fk) and W(’}() of
different gates in the LSTM cell are also independent from
one another.

The proposed directional LSTM module contains cell state,
forget gate, input gate, content gate, and output gate. The
procedure of the multi-directional LSTM network is illus-
trated in Fig.2c. The cell state is the key of the LSTM cell.
It connects the previous cell and has some minor process
in the current cell to become an output cell state. The first
operation in the cell state is at the forget gate. The forget gate
controls how much of each component should be able to pass
through by multiplying the value of the forget gate with the
incoming cell state. A value of zero means nothing will be
able to pass through and a value of one means everything
is able to pass. The forget gate at position (i, j, k) can be
calculated as

W{,‘() is the weight to convolute with

Glijiy = 0Gaijio): (14)
where G{i’ i is the forget gate at position (i, j) at channel k
and o(...) is a sigmoid function. Next, we need to process

input features and decide how much of them will be stored
in the cell state. There two parts of this. First, the input gate
is used to decide how much of the input will be added into
the cell state. Second, the content gate processes the input
features before they pass through the input gate. The input
gate and content gate at position (i, j, k) can be calculated by

Glijwy = 0GGijk): (15)

where Géi ik is the input gate at position (i, j) at channel &,
and

= tanh(zj k), (16)

where G (i.j.k) 18 the content gate at position (i, /) at channel k
and tanh(. . .) is a hyperbolic tangent function, respectively.

The old cell state obtained from the previous LSTM cell in
the previous row will be used to compute the new cell state by
combining all above computed values. The old cell state will
be multiplied by the forget gate to filter some information it
decides to omit earlier and then sum with the multiplication of
content gate and input gate. This is the new candidate values
scaled by how much we decide to update each state value. The
current cell state at the position (i, j, k) after updating with the
old cell state can be reckoned as

(G(” K X C(z 1.j, 0) + (G(l] K X G(l] k)) a7

where C(jk) is the current cell state at position (i, ) of
channel k and C;_1 j ) is the old cell state at position (i, j)
of channel k.

Finally, the output of the LSTM cell is based on the cell
state and the value of the output gate. The output gate controls
how much of the cell state will become an output of the
LSTM cell. The cell state will be fed to the hyperbolic tangent
function in order to control the output value to be between —1

C
Gk

Cijk =
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and 1 and multiply it by the output gate. The output gate and
the output features at the position (i, j) at channel k can be
calculated by

G?j,j,k) = 0(2(i,j,k)) (18)
hiijx) = G?i‘j,k) x tanh(Cy; j r)). (19)

The output A j ¢y of the LSTM belongs to only one direction.
Based on Fig.2(a), we need the outputs from four directions
before concatenating them. C convolutional filters with the
size of 1 x 1 x 64 is applied to the concatenated output
to obtain the estimated sparse noise features with the size
of Hx W x C.

V. IMAGE DENOISING WITH DCNN AND
MULTIDIRECTIONAL LSTM NETWORKS

In this section, we combine both DCNN and Multi-directional
LSTM networks to denoise Poisson noise. The DCNN works
well in removing noise with reasonable complexities. How-
ever, as we can see from the previous section, after several
layers of CNN, noise feature becomes sparse. Therefore,
utilizing the CNN layers can not capture noise features
well and the final denoised image qualities are not sig-
nificantly improved. Here, the multi-directional LSTM net-
works can help to learn sparse noise features. Fig.4 shows
the architecture of the combination between the DCNN and
multi-directional LSTM networks. There are totally 18 layers
in our proposed network. Each layer of the DCNN extracts
noise features from the input by convolving the trained
weights with the features extracted from the previous layer.
We employ totally 15 layers of CNN. Then, three layers
of multi-directional LSTM networks are cascaded to the
DCNN. Output noise features obtained from every layers are
weighted summed and are convolved with the trained weights
to obtained the noise component. Thus, the restored image
can be obtained from the summation of the noise component
and the noisy image.

VI. EXPERIMENTAL RESULTS

A. IMAGE DENOISING PERFORMANCE

1) TRAINING METHODOLOGY

An image data set from the Microsoft COCO (2017)
Dataset [29] is used to evaluate the proposed image denoising
technique. We randomly select several image batches from
the image data set. Poisson noises are applied to the selected
image batches. The noisy images are used as the training
inputs. There are two training stages. The first training stage
is performed over each batch with the size of 256 image
patches. Each patch is with the size of 32 x 32 pixels. In our
experiment, we iterate over our data set for 35000 epochs.
The learning rate « is set to 0.001. The training weights
from the first stage will be used as the initial weights in
the second training stage. In the second stage, each batch
contains 32 image patches with the size of 128 x 128 pixels.
In this stage, we iterate over the data set for 5000 epochs.
The objective of the second training stage is to let our image
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FIGURE 4. The architecture of the combination between DCNN and multi-directional LSTM networks.

denoising technique to learn the spatial information from Set14 image data set [30] and the LIVE1 image data set [31].

natural images. All image denoising techniques are trained with the image

data set. However, a number of training epochs may be dif-
2) SUBJECTIVE AND OBJECTIVE QUALITIES ferent to obtain the best denoised images. We employ both

We evaluate our image denoising technique with those Peak Signal-to-Noise Ratio (PSNR) [32] and the Structural
obtained from I + VST + BM3D [8], DCNN [17], Similarity Index (SSIM) [33] to be our objective metrics.
and DenoiseNet [20]. Test images are utilized from the Table 1 and Table 2 compare the image objective qualities
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FIGURE 5. Subjective image qualities of the Sailing image obtained from different image denoising algorithms with a peak value of Poisson

noise equaling 0.1.

TABLE 1. Objective image quality comparison obtained from different
image denoising algorithms on the LIVE1 data set [31].

Peak Noisy I+VST+BM3D| DCNN DenoiseNet | Our method
PSNR/SSIM| PSNR/SSIM |PSNR/SSIM |PSNR/SSIM | PSNR/SSIM
0.1 6.26/0.02 7.02/0.06 18.90/0.60 | 19.15/0.60 | 19.61/0.61
1 6.58/0.06 16.47/0.59 | 22.68/0.73 | 22.59/0.72 | 22.87/0.73
10 14.44/0.27 | 22.03/0.70 | 27.77/0.88 | 27.49/0.87 | 27.77/0.88
40 | 20.04/0.52 | 23.39/0.72 | 30.92/0.93 | 30.72/0.93 | 31.01/0.93
80 | 22.94/0.65 | 22.41/0.72 | 32.65/0.95 | 32.31/0.95 | 32.71/0.95

among different image denoising techniques. Our proposed
image denoising technique outperforms other networks in
terms of the objective quality metrics. Our proposed method
provides up to 0.5 dB PSNR improvement by average. How-
ever, in SSIM, there is not much improvement gain from other
works. This may imply that the SSIM may not be sensitive
enough to measure the quality improvement in this compari-
son case. Fig.5, Fig.6, and Fig.7 show the subjective quality
comparison under a peak value of Poisson noise equaling 0.1.
Our method shows significantly improvement in subjective
quality especially less color artifacts. Notice that our method
has high impacts on image regions with low details as shown
in Fig.7.

We also compare feature maps between our method and the
DenoiseNet. Fig.8 shows features maps from both networks
in the intermediate layers of Plane image in the LIVEI data
set [31]. Notice that feature maps of the first layer from both
networks are very similar, which are very noisy. However,
in deeper layers, feature maps of the DenoiseNet contain less
structural information and some blurring artifacts. In contrast,
our method provides feature maps with more edge informa-
tion and less artifacts.
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The reason that our algorithm can not outperform other
image denoising algorithms objectively in high texture
images because of the non-stationary pixel values of high
textures. Since the Poisson noise applied to each pixel
position is relied on its corresponding pixel value, in the
multi-directional LSTM, noise characteristics in the operat-
ing patch are quite dynamic. Therefore, from past informa-
tion, the multi-directional can not provide good predictions
of the noise characteristics. However, as mentioned above,
our method still gives superior subjective image qualities.
To prove this claim, we explore our proposed image denoising
on images with low details. To obtain a set of low detail
images, we deploy the metric the two-dimensional High
Frequency Component (HFC). The two-dimensional HFC of
each image can be calculated via

N—-1N-1
HFC =" " ixjx X, (20)

i=1 j=1
where X(i,j) is the N—point two-dimensional discrete
Fourier transform of image data at frequency (i, j). Notice
that the HFC is the weighted summation of all frequency
components. The higher the frequency, the higher the weight.
In general, low detail images tend to have low HFC values.
To be more specific, we declare that the specific image has
low details if its HFC is less than 108. Fig.9a, Fig.9b, and
Fig.9c illustrate HFC histograms of the image data set in [30],
the LIVE1 image data set [31], and the VOC2012 image data
set [34], respectively. The HFC histograms imply that most
images in the LIVE] image data set contain high texture
levels. In the the image data set in [30], there are some images
having high texture levels, whereas some have less texture
levels. We found that there are many low detail images in
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TABLE 2. Objective image quality comparison obtained from different image denoising algorithms on the Set14 data set [30].

[ Tmages [ Boats [ Airplane | Baboon | Barbara | Flower | Goldhill | Lenna | Monarch [ Pens [ Pepper [ Average |
Peak = 0.1
Noisy 5.6573 2.9786 6.7611 6.4746 6.4612 7.0502 5.4771 6.8083 7.2766 6.0534 6.0999
1+VST+BM3D 6.3674 3.533 7.5024 7.2434 7.1988 7.869 6.1842 7.5918 8.076 6.7599 6.8326
DCNN 19.6330 18.6004 17.3403 18.8485 19.5030 | 20.8979 19.3027 18.3962 19.9242 | 18.6673 19.1114
DenoiseNet 20.1019 19.3526 17.2945 18.9868 19.7949 | 21.1607 19.2652 18.3651 19.8891 19.2394 19.345
Our method 20.5645 19.6629 17.5235 | 19.2097 | 20.2125 | 21.6332 | 20.4001 19.0322 20.178 19.6202 | 19.8037
Peak = 1
Noisy 6.5302 5.3705 6.9098 6.6788 6.9435 6.9498 6.2867 6.6955 7.1374 6.77 6.6272
1+VST+BM3D 16.7013 13.2919 15.8623 16.9993 17.1302 17.9205 16.3421 17.0936 17.799 16.6967 16.5837
DCNN 24.3669 22.9794 19.3033 | 22.0262 | 24.5221 24.4551 24.3333 23.7017 24.3002 | 23.5954 | 23.3583
DenoiseNet 24.2353 22.9393 19.3535 21.89 24.1778 | 24.4682 | 24.2808 23.5243 23.9927 | 23.4222 | 23.2284
Our method 24.7395 23.5414 19.4414 | 22.2263 25.223 24.7897 | 24.7172 23.8159 24.4507 | 23.6172 | 23.6562
Peak = 10
Noisy 13.9563 13.2639 14.789 14.3827 14.7998 14.8409 14.0839 14.5378 15.1359 | 14.5685 14.4359
1+VST+BM3D | 24.5675 23.8074 18.9924 | 22.3367 | 25.1047 | 24.5561 25.0231 22.4482 24.1913 | 24.6599 | 23.5687
DCNN 29.7620 | 28.3959 22,9458 | 27.2027 | 30.7386 | 28.6201 29.2749 29.9557 29.6415 | 28.3232 | 28.4860
DenoiseNet 29.442 28.1498 22.899 26.5699 | 30.3903 28.45 29.0287 29.6093 29.2105 | 28.1903 28.194
Our method 29.8010 | 28.4292 23.0183 | 27.1465 | 30.7281 | 28.6764 | 29.3784 29.9399 29.5631 | 28.4951 | 28.5176
Peak =40
Noisy 19.3457 18.1427 20.3387 19.9026 20.156 20.4955 19.525 20.1418 20.7366 | 19.8877 19.8672
I+VST+BM3D | 24.2089 21.2771 19.1827 | 22.5585 | 25.4731 25.1188 | 23.8966 22.7513 24.8656 | 24.7024 | 23.4035
DCNN 32.7785 31.2303 25.3837 30.4266 | 33.6597 31.0060 31.2676 33.2338 32.4848 30.3480 31.1819
DenoiseNet 32.5776 31.1391 25.4009 | 29.9996 | 33.4791 30.8778 31.2492 32.9788 32.1783 30.6199 31.0501
Our method 32911 31.6445 25.5598 | 30.4926 | 33.8569 | 31.1139 31.578 33.3234 32.5603 | 30.8958 | 31.3936
Peak = 80
Noisy 22.2839 20.7491 23.2535 22.8094 | 23.0162 23.3831 22.3571 23.0337 23.611 22.7432 22.724
1+VST+BM3D 24.2188 20.1952 19.196 22.5624 | 25.1852 25.1517 23.6725 22.7984 24.9294 | 24.6304 23.254
DCNN 34.2891 32.5694 26.7802 | 31.9500 | 35.0697 | 32.3395 | 32.3285 34.8465 34.0059 | 31.4699 | 32.5649
DenoiseNet 33.8999 32.6085 26.8068 | 31.4988 | 34.5258 | 32.1625 | 32.1083 34.3492 33.4559 | 31.6258 | 32.3041
Our method 34.369 33.1557 26.9808 | 32.0183 | 35.1603 | 32.3951 | 32.5002 34.9722 34.0352 | 31.9862 | 32.7573

TABLE 3. The PSNR Comparison among Noisy images, 14+VST+BM3D,
DenoiseNet and our method on a set of low details images.

Peak Noisy I+VST+BM3D| DCNN DenoiseNet | Our method

PSNR/SSIM| PSNR/SSIM |PSNR/SSIM |[PSNR/SSIM [ PSNR/SSIM
0.1 6.78/0.04 7.62/0.09 21.41/0.75 | 21.90/0.76 | 23.00/0.78
1 6.95/0.05 18.03/0.74 | 26.44/0.85 | 26.38/0.84 | 27.09/0.86
10 14.83/0.22 | 26.69/0.85 32.13/0.93 | 31.62/0.92 | 32.21/0.93
40 | 20.37/0.44 | 25.75/0.86 | 34.73/0.95 | 34.40/0.95 | 34.97/0.95
80 | 23.27/0.57 | 25.49/0.86 | 36.13/0.96 | 35.60/0.96 | 36.25/0.96

the VOC2012 image data set. We can extract totally 528 low
detail images for our evaluation.

Table 3 compares the objective qualities among different
image denoising methods under Poisson noise environments.
We use both PSNR and SSIM as the objective metrics. From
the experimental results, our method can outperform other
techniques under strong noise environments. To be specific,
our method achieves 1.1 dB and 0.7 dB PSNR improvements
under Poisson noises with peaks 0.1 and 1, respectively. The
PSNR improvements of our method are not so significant
when we have to deal with weak noise environments (lower
peal noise value). This is because under weak noise envi-
ronments, image textures are less affected by noise and our
method can not give significant gains in such environments.
However, in strong noise environments, the CNN module
tends to smooth out the texture images causing texture loss.
With the multi-directional LSTM modules in our method,
image texture can be preserved and restored to obtain better
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denoised image qualities. In low detail images, the SSIM
improvements of our method is also superior to other meth-
ods tally with those obtained from the PSNR improvements.
The major improvements on our image denoising algorithm
on low detail images are due to less dynamic on the noise
characteristics in the operating patch. In low detail images,
pixel values are not so dynamic. Hence, the Poisson noise
characteristics are at different pixel positions are quite static.
There are high correlations on the noise statistics on the
operating patch. Therefore, the multi-directional LSTM can
learn and predict noise characteristics better than those with
highly varying textures.

B. NUMERICAL DISTORTION MUTUAL INFORMATION

OF IMAGE DENOISING ALGORITHMS

To evaluate the numerical distortion-mutual information
function of the image denoising algorithm, we utilize the
VOC2012 image data set [34] since it contains a large number
of images for training the DCNN. We randomly select several
image batches from the image data set. The Poisson noise is
applied to the selected image batches, where the peak value
of the Poisson noise is equal to one. The noisy images are
used as the training inputs. The training stage is performed
over each batch with the size of 256 image patches. Each
patch is with the size of 32 x 32 pixels. The learning rate
« is initially set to 0.001 and Adam optimizer is utilized.
Fig.10 shows the average mutual information between the
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(d) DenoiseNet (e) Our method

FIGURE 6. Subjective image qualities of the Pepper image obtained from different image denoising algorithms with a peak value of Poisson
noise equaling 0.1.

(a) Original (b) Noisy ) (c) DCNN

(d) DenoiseNet (e) Our method

FIGURE 7. Subjective image qualities of the Plane image obtained from different image denoising algorithms with a peak value of Poisson
noise equaling 0.1.

original and the denoised images from several trained DCNN mutual information between the original images and denoised
models with different training epochs. The average mutual images obtained from the considering DCNN model. As we

information of each DCNN model is compute from averaging can see, the DCNN models obtained from small training
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(b) Layer 2 (c) Layer 18 (d) Layer 19

(d) Layer 1 (e) Layer 2 (f) Layer 18 (g) Layer 19

(a) Layer 1

FIGURE 8. The visualized feature maps obtained from intermediate layers of Denoisenet (upper row) and our method (lower row) of Plane
image in the LIVE1 image data set.

(a) The image data set in [35] (b) The LIVE1 image data set (c) The VOC2012 image data set.

FIGURE 9. The HFC histograms from various image data sets.
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FIGURE 10. Average mutual information from the DCNN models in FIGURE 11. Distortion-mutual information curves obtained from the
different training iterations, when the peak value of Poison noise equal to Blahut-Arimoto algorithm and the DCNN image denoising models under
one. Poisson noise with peak equal to one.
epochs possess less average mutual information than those We employ the Blahut-Arimoto algorithm to compute the

with higher training epochs. Notice that the average mutual distortion mutual information function of image denoising
information of different DCNN models is not much different algorithm numerically. The results from the Blahut-Arimoto
after 15000 iterations. algorithm serve as the best distortion we can achieve given
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FIGURE 12. Average PSNR comparison between the DCNN and the
Blahut-Arimoto algorithm.

the mutual information. We compare the image denosing per-
formance of different DCNN models with those obtain from
the Blahut-Arimoto algorithm. We vary the number of CNN
layers in the DCNN with one, two, three, four, five, ten, and
15 layers. All DCNN models are trained with 35000 epochs.
The results are shown in Fig.11. As we can see, the image
denoising algorithm based on the DCNN gives very close
performance to the best performance we can obtain given
the mutual information between the original image and the
denoised image. Fig. 12 shows the comparison results in the
PSNR domain between the denoised image obtained from
the DCNN and those from the Blahut-Arimoto algorithm.

VIi. CONCLUSION

We propose a new architecture of deep convolutional and
multi-directional LSTM networks to eliminate Poisson noise.
Poisson noise is challenging to remove since the noise level
is relied on its corresponding pixel intensity. The proposed
network is designed to have two stages. The deep convolu-
tional networks for extracting the noise bases with different
variances are contained in the first stages. The deeper the
layer is, the lower the noise variance is and the more sparse
the noise is. Then, the multi-directional LSTM networks are
in the second stage of the proposed network. The sparse noise
components are grouped by the second stage of the network
so that the remaining noise information still can be effec-
tively removed. The proposed network is trained with several
natural images before is applied on the test sets of images.
The experimental results show that our proposed network
provides better qualities of denoised images and fewer arti-
facts in both subjective and objective quality measures than
those of the existing algorithms. We also derive the numerical
distortion-mutual information function of image denoising
algorithm. It provides the bound on the image denoising
performance given the mutual information between the orig-
inal image and the denoised image. The denoising results
under the Poisson noise environment from the DCNN give
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near optimal qualities under different hyperparameter settings
such as a number of CNN layers. This agrees with the fact that
most noises are removed during the first stage. Only sparse
noises still remain. However, sparse noises still affects the
overall subjective qualities of denoised images. The insights
given this framework can lead to the proper selection of a
number of CNN layers and the design of image denoising
algorithm.

REFERENCES

[1] A. K. Boyat and B. K. Joshi, “A review paper: Noise models in digital
image processing,” Signal Image Process. Int. J., vol. 6, no. 2, pp. 63-75,
Apr. 2015.

[2] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, ‘Practical
Poissonian-Gaussian noise modeling and fitting for single-image raw-
data,” IEEE Trans. Image Process., vol. 17, no. 10, pp. 1737-1754,
Oct. 2008.

[3] M. Lebrun, M. Colom, A. Buades, and J. M. Morel, “Secrets of image
denoising cuisine,” Acta Numerica, vol. 21, pp. 475-576, May 2012.

[4] C. Liu, R. Szeliski, S. Bing Kang, C. L. Zitnick, and W. T. Freeman,
“Automatic estimation and removal of noise from a single image,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2, pp. 299-314, Feb. 2008.

[5] S. Lee, M. Lee, and M. Kang, “Poisson—Gaussian noise analysis and
estimation for low-dose X-ray images in the NSCT domain,” Sensors,
vol. 18, no. 4, p. 1019, Mar. 2018, doi: 10.3390/s18041019.

[6] S.W.Hasinoft, “Photon, Poisson noise,”” in Computer Vision. Boston, MA,
USA: Springer, 2014, pp. 608-610.

[7]1 K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denois-
ing by sparse 3-D transform-domain collaborative filtering,” IEEE
Trans. Image Process., vol. 16, no. 8, pp.2080-2095, Aug. 2007,
doi: 10.1109/TIP.2007.901238.

[8] L. Azzari and A. Foi, “Variance stabilization for Noisy+Estimate combi-
nation in iterative Poisson denoising,” IEEE Signal Process. Lett., vol. 23,
no. 8, pp. 1086-1090, Aug. 2016, doi: 10.1109/LSP.2016.2580600.

[9] R.Giryes and M. Elad, ““Sparsity-based Poisson denoising with dictionary
learning,” IEEE Trans. Image Process., vol. 23, no. 12, pp. 5057-5069,
Dec. 2014, doi: 10.1109/T1P.2014.2362057.

[10] W. Feng, P. Qiao, and Y. Chen, “Fast and accurate Poisson denoising
with trainable nonlinear diffusion,” IEEE Trans. Cybern., vol. 48, no. 6,
pp. 1708-1719, Jun. 2018, doi: 10.1109/TCYB.2017.2713421.

[11] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flex-
ible framework for fast and effective image restoration,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1256-1272, Jun. 2017,
doi: 10.1109/TPAMI.2016.2596743.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436444, May 2015.

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” 2014, arXiv:1408.5093. [Online]. Available:
http://arxiv.org/abs/1408.5093

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

[15] X.Mao, C. Shen, and Y.-B. Yang, “Image restoration using very deep con-
volutional encoder-decoder networks with symmetric skip connections,”
in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 2802-2810.

[16] R.Jaroensri, C. Biscarrat, M. Aittala, and F. Durand, ““Generating training
data for denoising real RGB images via camera pipeline simulation,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 1-15.

[17] K.Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian
denoiser: Residual learning of deep CNN for image denoising,” IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3142-3155, Jul. 2017.

[18] J. Chen, J. Chen, H. Chao, and M. Yang, “Image blind denoising with
generative adversarial network based noise modeling,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3155-3164.

[19] P.Liu, H. Zhang, W. Lian, and W. Zuo, “Multi-level wavelet convolutional
neural networks,” IEEE Access, vol. 7, pp. 74973-74985, 2019.

[20] T.Remez, O. Litany, R. Giryes, and A. M. Bronstein, ‘‘Deep convolutional
denoising of low-light images,” CoRR, vol. abs/1701.01687, pp. 1-11,
Feb. 2017.

87009


http://dx.doi.org/10.3390/s18041019
http://dx.doi.org/10.1109/TIP.2007.901238
http://dx.doi.org/10.1109/LSP.2016.2580600
http://dx.doi.org/10.1109/TIP.2014.2362057
http://dx.doi.org/10.1109/TCYB.2017.2713421
http://dx.doi.org/10.1109/TPAMI.2016.2596743

IEEE Access

W. Kumwilaisak et al.: Image Denoising With Deep Convolutional Neural and Multi-Directional LSTM Networks

[21] J. Zeng, J. Pang, W. Sun, and G. Cheung, “Deep graph Laplacian regu-
larization for robust denoising of real images,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2019, pp. 1-10.

[22] L. Theis and M. Bethge, ““Generative image modeling using spatial Istms,”
in Proc. 28th Int. Conf. Neural, Inf. Process. Syst., vol. 2, Cambridge, MA,
USA, 2015, pp. 1927-1935.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

[24] R. E. Blahut, “Computation of channel capacity and rate-distortion func-
tions,” IEEE Trans. Inf. Theory, vol. IT-18, no. 4, pp. 460473, Jul. 1972.

[25] M. D. Zeiler and R. Fergus, ““Visualizing and understanding convolutional
networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 813-833.

[26] A. Graves, A.-R. Mohamed, and G. Hinton, ‘““Speech recognition with deep
recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., May 2013, pp. 6645-6649.

[27] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” in Proc.
Ann. Conf. Int. Speech Commun. Assoc., 2014, pp. 1-5.

[28] W. Byeon, “Image analysis with long short-term memory recurrent neural
networks,” Ph.D. dissertation, Dept. Comput. Sci., Univ. of Kaiserslautern,
Kaiserslautern, Germany, 2016.

[29] T.-Y.Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar,
and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 740-755.

[30] R.Timofte, V. De, and L. V. Gool, “Anchored neighborhood regression for
fast example-based super-resolution,” in Proc. IEEE Int. Conf. Comput.
Vis., Dec. 2013, pp. 1920-1927.

[31]1 H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation of
recent full reference image quality assessment algorithms,” IEEE Trans.
Image Process., vol. 15, no. 11, pp. 3440-3451, Nov. 2006.

[32] A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in Proc.
IEEE Int. Conf. Pattern Recognit., Aug. 2010, pp. 23-26

[33] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “‘Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

[34] M. Everingham and J. Winn, “The PASCAL visual object classes chal-
lenge 2012 (VOC2012) development kit,” in Proc. Pattern Anal., Stat.
Model. Comput. Learn., Oct. 2011, pp. 1-32.

WUTTIPONG KUMWILAISAK received the B.E.
degree from Chulalongkorn University, in 1995,
the M.S. and Ph.D. degrees from the University of
Southern California, in 2003, all in electrical engi-
neering, with the support from Thai Government
Scholarship.

From May—August of 2001 and 2002, he was
a Research Intern with the Ericsson Eurolab,
Aachen, Germany, and with the Microsoft
Research Asia, Beijing, China, respectively. From
April 2003 to August 2004, he was a Senior Engineer and a Project Leader
of the mobile platform solution team and multimedia laboratory at Samsung
Electronics, Suwon, South Korea. He was a Postdoctoral Fellow with
the Thomson Research Laboratory, Princeton, USA, from March 2006 to
November 2006. He has been an Associate Professor with the Electronics and
Telecommunication Department, King Mongkut’s University of Technology
Thonburi, Bangkok, Thailand. His research interests are in the optimiza-
tion and algorithmic design for wireless communications and multimedia
communication systems. His current focused researches include multimedia
communication, multimedia compression and processing, and 3-D image
processing.

87010

TEERAWAT PIRIYATHARAWET received the
B.E. degree in electronics and telecommunica-
tion engineering from the King Mongkut’s Univer-
sity of Technology Thonburi (KMUTT), Bangkok,
Thailand, in 2016, where he is currently pursuing
the M.E. degree in electrical engineering.
His research interests include image processing,
computer vision, deep learning, object detection,
‘ ‘ and learning based depth estimation.
Mr. Piriyatharawet was a co-recipient of the
18th International Symposium on Communications and Information Tech-
nologies (ISCIT 2018) Best Paper Award, in 2018.

PONGSAK LASANG (Member, IEEE) received
the B.E. degree (Hons.) in electronics and
telecommunication engineering, the M.E. degree
in electrical engineering, and the Ph.D. degree in
electrical and computer engineering from the King
Mongkut’s University of Technology Thonburi
(KMUTT), Bangkok, Thailand, in 2005, 2006, and
2016, respectively.

From 2005 to 2006, he was a Research Assis-
tant with the Thailand’s National Electronics and
Computer Technology Center (NECTEC). Since December 2006, he has
been with the Panasonic Research and Development Center Singapore (PRD-
CSG), Singapore, and he is currently a Senior Research and Development
Manager. Since then, he has been working on camera processing and 3D
related algorithms design. He is the author of more than 60 inventions
and holds ten patents. His research interests include multiview image/video
processing, depth map estimation and 3D reconstruction, SLAM, 3D point
cloud compression, digital camera image processing pipeline, computational
photography, and light-weight deep learning for edge devices.

Dr. Lasang is a member of the ACM. He was a co-recipient of the IEEE
Consumer Electronics Society Best Paper Award in ICCE 2010 and the 18th
International Symposium on Communications and Information Technologies
(ISCIT 2018) Best Paper Award, in 2018.

NATTANUN THATPHITHAKKUL received the
B.E. and M.E. degrees from Suranaree University,
Thailand, in 2000 and 2002, respectively, and the
Ph.D. degree in computer engineering from the
King Mongkut’s Institute of Technology Ladkra-
bang, in 2008. He is currently the Chief of the
Accessibility and Assistive Technology Research
Team, National Science and Technology Devel-
opment Agency, Thailand. His research interests
include speech and speaker recognition, speech
synthesis, natural language processing, human machine interaction, and
assistive technology.

VOLUME 8, 2020



