
Received October 21, 2021, accepted November 27, 2021, date of publication November 30, 2021,
date of current version December 17, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3131799

A Hybrid Reinforcement Learning-Based
Model for the Vehicle Routing Problem
in Transportation Logistics
THANANUT PHIBOONBANAKIT 1,2, TEERAYUT HORANONT 2,
VAN-NAM HUYNH 1, (Member, IEEE), AND THEPCHAI SUPNITHI3
1School of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
2School of Information, Computer, and Communication Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani
12000, Thailand
3National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency, Pathum Thani 12000, Thailand

Corresponding authors: Teerayut Horanont (teerayut@siit.tu.ac.th) and Van-Nam Huynh (huynh@jaist.ac.jp)

This work was supported in part by an Excellent Thai Student Scholarship from the Sirindhorn International Institute of Technology,
Thammasat University, under Grant ETS-G-S1Y17/061; in part by the SIIT-JAIST Dual-Degree Scholarship Program; in part by the U.S.
Office of Naval Research Global under Grant N62909-19-1-2031; and in part by the Center of Excellence in Urban Mobility Research and
Innovation, Thammasat University, Pathum Thani, Thailand.

ABSTRACT Currently, the number of deliveries handled by transportation logistics is rapidly increasing
because of the significant growth of the e-commerce industry, resulting in the need for improved functional
vehicle routing measures for logistic companies. The effective management of vehicle routing helps compa-
nies reduce operational costs and increases its competitiveness. The vehicle routing problem (VRP) seeks to
identify optimal routes for a fleet of vehicles to deliver goods to customers while simultaneously considering
changing requirements and uncertainties in the transportation environment. Due to its combinatorial nature
and complexity, conventional optimization approaches may not be practical to solve VRP. In this paper,
a new optimization model based on reinforcement learning (RL) and a complementary tree-based regression
method is proposed. In our proposed model, when the RL agent performs vehicle routing optimization, its
state and action are fed into the tree-based regression model to assess whether the current route is feasible
according to the given environment, and the response received is used by the RL agent to adjust actions for
optimizing the vehicle routing task. The procedure repeats iteratively until the maximum iteration is reached,
then the optimal vehicle route is returned and can be utilized to assist in decision making. Multiple logistics
agency case studies are conducted to demonstrate the application and practicality of the proposed model. The
experimental results indicate that the proposed technique significantly improves profit gains up to 37.63%
for logistics agencies compared with the conventional approaches.

INDEX TERMS Freight, intelligent transportation, logistics, policy, reinforcement learning, vehicle routing
problem.

I. INTRODUCTION
Vehicle routing problem (VRP) models are developed to
achieve vehicle routing that yields minimum traversal costs
while simultaneously considering vehicle capacity, energy
consumption, and time windows. VRP is widely applied
to maximize the efficiency of delivery tasks for real-world
logistics agencies, and the results are promising even though
they are highly complex in practice. Such tasks are subjected
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to environmental uncertainties, such as delivery incidents
(e.g., postponement or cancellations), road and traffic condi-
tions, changing customer requirements, and fleet resources.
Using conventional VRP optimization techniques may have
drawbacks.

Conventional approaches (e.g., mixed-integer linear pro-
gramming (MILP) and general reinforcement learning) can-
not handle the dynamic nature of transportation systems
that change throughout the day. These approaches generally
assume an ideal transport environment and may not be robust
when applied to real-world problems. Hence, penalties may
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be imposed because they neglect the possibility of delivery
failure, traffic delays, and other constraints. When all envi-
ronmental factors are included to formulate a VRP using
MILP, the added penalties often result in task infeasibility,
owing to its highly constrained nature.

Although numerous efforts have been made to resolve
these issues with modern models (e.g., dynamic and multi-
modal network models [1], [2]), studies have only consid-
ered road-network and traffic conditions, which is beneficial
to general VRP but is often ineffective for transportation
logistics problems. Hence, the need to address environmental
uncertainties remains. In the presented paper, we aim to
develop a novel methodology for solving VRP in transporta-
tion logistics. The proposed model hybridizes reinforcement
learning (RL) and tree-based regression methods to handle
the environmental uncertainties discussed while optimizing
vehicle-routing tasks.

RL refers to the training of machine-learning (ML) mod-
els to make sequential decisions. Generally, RL problems
involve learning what actions are to be made and how to
transform states into actions. The technique is to maximize
a numerical reward signal for solving particular problems.
According to [3], RL consists of model-free and model-based
methods. Amodel-free RL enables an RL agent to explore the
environment via trial and error. However, doing so does not
guarantee that a solution can be employed. The agent may
adapt to the new environment to an extent, but it potentially
will become stuck in an infinite search. This occurs when
the model searches for solutions without obtaining feedback
from the external environment. On the other hand, in the
model-based RL principle, theMLmodel reflects the external
environment, for which collected data are used as inputs to
train the agent at each iteration. Therefore, a model-based
RL can be trained and dynamically adapted to environmental
changes without redefining the model; it is adjustable and is
driven by the data.

This study integrates the advantages of both model-free
and model-based RL principles into a ‘‘hybrid model’’
technique. Instead of using only model-free RL like other
studies, model-based RL is incorporated to enhance the
model’s adaptability when dealing with uncertainties. The
model-based RL has the exploitative ability to create and
store known events of the transport environment. In this study,
the criteria for evaluating the transport environment consist
of feasibility, efficiency, and fairness. These variables are
assessed by a reward processing unit and fed into the RL
as rewards. Then, the RL agent employs the information as
experience in performing vehicle route optimization tasks.
This experience helps the agent adjust its actions to compen-
sate for changes.

The use of RL and MILP in VRP research has been
well-documented. However, the discussed uncertainties of
the transport environment have not been well-addressed. The
main contribution of this paper is the proposal of a new
methodology for minimizing vehicle traversal costs while
incorporating model-free and model-based RL principles to

tackle environmental complexities and uncertainties using
data collected from the transportation environment. To the
best of our knowledge, our study is the first to hybridize
model-free and model-based RLs into an optimized model
for solving VRP transportation logistics.

The proposed method illustrates the transport environment
using the collected data. Then, the reward unit is equipped to
evaluate the environment with feasibility, efficiency, and fair-
ness as criteria. The reward is positive under neutral condi-
tions and is negative under abnormal conditions. The reward,
state, and action are thenmodeled using the tree-based regres-
sion method to be applied as experiences for RL. When the
RL agent initiates vehicle route optimization, the state and
action are fed into the tree-based regression model to assess
whether the routes are feasible for the given environment.
If not, the vehicle routing tasks are adjusted accordingly.
After each iteration, the route state action is updated as
experiences so that the RL agent can learn to avoid unsup-
portable actions in later stages. The procedures is repeated
iteratively until the maximum iteration is reached; then, the
optimal vehicle route is updated and can be utilized to assist
in decision making.

The remainder of this paper is organized as follows.
Section II provides a literature review related to vehicle
route optimization. Section III highlights the problem state-
ment, its significance, and the motivation of this research.
Section IV describes the proposed model and the methods
used to conduct data analysis and processing. Then, our vehi-
cle route optimization experiment is explained. Section V
presents the case studies used to evaluate the proposed
model. Section VI illustrates the factors involved in the vehi-
cle route optimization process and the comparative experi-
ment. Section VII provides a discussion of the experimental
results. Finally, conclusions, research limitations, and possi-
ble research directions are given in Section VIII.

II. RELATED WORK
We categorize the existing works into conventional VRP and
ML-based VRP. The advantages and disadvantages of these
approaches are discussed in the latter part of each subsection.

A. CONVENTIONAL VRP
Generally, the objective of VRP is to minimize the travel
distance and time required to deliver goods from a warehouse
to a customer, subject to the vehicle capacity and service
time window. VRP is classified as an NP-hard problem by
its nature. The complexity of VRP is known to surpass the
traditional traveling salesman problem (TSP). [4].

VRP is well-studied for its application and complex-
ity. Considerable efforts have been made to develop VRP
model formulations and obtain optimal vehicle routing. For
example, a capacitated VRP manages vehicle capacity while
handling specific customer demands [5]. This approach
includes split-delivery VRP (SDVRP), which allows the
demand to be split and a customer to be visited by a vehi-
cle more than once [6]. The multi-depot VRP considers the
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pick-up-and-delivery problem, wherein vehicles are required
to visit multiple depots to fulfill customer demands. Several
other models have been proposed, as shown in the survey
by [7]. The survey pointed out the need to address complexity
in VRPs. For this reason, the consideration of fuel cost was
deemed crucial for logistics policy-making. Hence, several
studies have developed VRP models to minimize fuel con-
sumption, as shown in [8], [9] and the survey paper written
by [4].

More recent studies have highlighted environmental sus-
tainability so that VRPs may enhance long-term environ-
mental benefits. This ‘‘green VRP’’ considers environmental
impact factors (e.g., fuel consumption and pollution emis-
sions) as the primary means to the end. [9] studied a VRP that
considered fuel consumption and carbon emissions, incorpo-
rating fuel cost, carbon footprint, and vehicle usage costs into
the conventional VRP problem. The study of green VRP also
includes the works of [10]–[13].

Apart from green VRP, customer demand is a criti-
cally important factor. Therefore, numerous studies, such
as [14]–[16], have proposed related improvements. Algo-
rithms have been developed for monitoring changes in client
demand and making decisions to rearrange routes [14], [16].
Other studies used ML to analyze past decisions via a
decision-support system to make recommendations for future
events [15].

Most related studies aimed to improve vehicle routing
efficiency and practicality by considering real-world trans-
portation conditions. However, when considering VRPs in
practice, numerous restrictionsmust be enforcedwhile simul-
taneously addressing surprise factors. Therefore, when apply-
ing conventional optimization techniques, some constraints
may be relaxed to obtain feasible solutions. For instance,
in [17], a particular set of constraints related to demand and
route perspectives were relaxed by assuming that the shortest
routes were not always the most economical, owing to traffic
congestion. In this case, the traversal cost may increase when
enforcing the shortest-only policy. When this constraint is
strictly enforced, feasible solutions may not exist.

Travel time is crucial because a delay in goods delivery can
cause numerous consequences, such as late fees and reduc-
tions in customer satisfaction. Heavier-than-normal traffic
easily increases the fuel consumption of a vehicle, impact-
ing the traversal costs and delaying deliveries. Some studies
tried to resolve these issues. Musolino et al. [1] proposed a
VRP model that calculates reliable travel time considering
the regional clustering of the data of each road link. They
then solved the VRP for optimal freight vehicle routing
based on travel time. This study is similar to that of [2],
wherein the results highlighted the significance of travel time
when optimizing vehicle routing. Shi et al. also considered
travel time in their model formulation, aiming to ensure
that the delivery will be completed within the specified time
window [18].

Based on the literature review, it is evident that many
optimization approaches have been employed to solve VRPs.

These approaches guarantee optimality and, to some extent,
are capable of solving traversal cost minimization. How-
ever, when considering real-world logistics, modifications
and assumptions must be made to the objective function
and constraints must be imposed to obtain feasible solutions
with precise approaches. For a highly complex problem with
numerous constraints and restrictions, some elements cannot
be represented by mathematical functions. Therefore, the
formulation of a mathematical model becomes impracticable.

Furthermore, most optimization approaches assume an
ideal transportation environment and omit uncertainties,
which are likely to occur in practice, making those
approaches less practical. The incorporation of ML and RL
into VRP optimization models may enable more adaptive
and flexible models when employed in the dynamic nature
of transport environments. A discussion of this technique is
provided in section II-B.

B. VRP MODELS DEVELOPED AROUND ML AND RL
To date, considerable research attention has been given to
develop advanced approaches to solve more complicated
VRPs while accounting for uncertainties in the transport
environment. The consideration of these uncertainties enables
VRPs to become more practical while improving their
implementation ability in real-world settings. As discussed,
MILP-based VRPs face difficulties adapting to changing
environments because the model must be entirely recon-
structed each time a variation occurs. Therefore, the com-
putational costs becomes untenable. In light of this, the use
of ML and RL to solve VRPs under uncertain environments
can accommodate the adaptability of the model to changes.
Hence, complete model reconstruction is not needed. The
ML and RL approaches are applied to formulate the trans-
portation graph network model to aid customer prioritization
and minimize costs. It also allows the network to adjust as
necessary using ML to index network instances.

Sutskever et al. were the first to use ML to solve
the TSP. They proposed a sequence-to-sequence approach
that employed a recurrent neural network (RNN) to pre-
dict the next possible nodes from the previously visited
ones [19]. However, they did not account for location ref-
erences between nodes. Thus, if the node was changed at
a given time step, the model had to be completely recon-
structed. Later, Vinyals et al. proposed a pointer network
as an extension to Sutskever’s model to supplement the
location referencing feature. However, the model had to be
reconstructed each time the customer demand was updated,
resulting in significant computational costs [20]. Kool et al.
developed an attention mechanism that enhanced the model
proposed by Vinyals et al. and applied RL to train the net-
work. They eliminated the need to reconstruct the model
when variables were updated [21]. An attention layer was
added above the node layer to handle the updating process
instead of the node. Thus, there was no need to reconstruct
the model at all. This model was initially developed only
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for solving TSP. However, some modifications for VRP were
later proposed.

These previous works did not consider networks consisting
of sequences of nodes that are referenced by indices. Neither
did they store any prior decisions for node selection. All
possible inputs had to be calculated every time the model was
executed, causing lengthy computational times. Therefore,
Dai et al. adopted a structure that combined the vector method
with Q-learning [22]. Instead of inputting data as sequences,
they modeled the nodes as a graph and used Q-learning to
store feasible solutions from past visits. This allowed the
RL agent to use experiences to decide which customer to
visit next at each iteration. Thus, the computational time was
significantly reduced. Nazari et al. and Bello et al. developed
models using RL to support VRP tasks [23], [24].

Unfortunately, the disadvantage of the models presented
in this section is that the trial-and-error process cannot
guarantee feasibility in real-world settings because the
solution-searching process is conducted without any external
environment information. In the following, we will briefly
discuss the approaches recently proposed for addressing this
issue.

C. VRP MODELS THAT COMBINES ML AND RL
The approach of combining ML and RL for VRP solving
is called model-based RL. Moerland et al. [25] conducted
an in-depth literature survey on this topic and accounted
for numerous studies dedicating in the development of
model-based RL. The authors showed that model-based RL
could be classified into two types: model-based RL with a
learning model and model-based RL with a known model.
The difference between these two types is that the learning
model offers a dynamic learning ability that updates the
model concordant to changes from the environment. There-
fore, it is more suitable for dealing with uncertain environ-
ments compared to the known model. The limitation of the
known model is that when the agent keeps using informa-
tion from a previously trained model without detecting the
changes in the environment, the model performance may
decline.

In addition to the comparison among these two model
types, the authors also demonstrated the benefits of using
model-based RL, which can enhance data efficiency, targeted
exploration, and improved stability. Furthermore, combining
model-based and model-free updates can increase the model
learning rate with the model-based part [25].

Another interesting work based on model-based RL was
conducted by Drori et al. [26]. They extend the so-called
AlphaD3M [27] using a pipeline grammar and a pre-trained
model to find the optimal machine learning pipelines for a
OpenML dataset and tasks (e.g., classification and regres-
sion). Their experimental results were impressive. The pro-
posed system can be classified as model-based RL with a
known model, which discards uncertainty from the envi-
ronment. Therefore, it might not be suitable for solving
real-world problems in domains with high uncertain factors,

such as network planning, mobility analysis for transportation
and telecommunication.

From the survey paper [25], we discovered opportunities
to apply model-based RL to VRP solving. This topic remains
an active research area and required further attention, espe-
cially for solving VRP in real-world scenarios with uncertain
environments.

A study by Mao et al. [28] demonstrated that a tree-based
regression method could assist RL achieve balance between
exploration and exploitation. Furthermore, the model opti-
mized vehicle routing based on collected data by employing
a new reward function.

Numerous other methodologies were proposed to integrate
ML and RL for solving VRP, as reported in literature surveys
conducted by [29], [30]. They pointed out that the com-
putational time can be significantly reduced when applying
ML and RL to solve VRPs. The model structure can also
be altered when dealing with new problems and require-
ments. Especially in real-world problems, the ML and RL
enable VRP models to efficiently adapt to changes driven by
data containing experiences learned from preceding decision
patterns.

When RL is employed to solve VRPs, the RL agent
(i.e., a component that guides RL to learn how its action
is performed) must be considered. Based on the RL prin-
ciple, this component is referred to as a reward function.
Generally, an RL reward function for VRP uses a positive
and negative route cost for the reward and penalizes actions
accordingly. This type of reward functions was developed
in [29], [31], [32]. However, more aspects are required for
a thorough evaluation when considering real-world problems
not limited only to routing costs. Related examples include
traffic conditions and resource utilization. Hence, there is
a need to develop a new reward function for RL to solve
real-world problems. Cruciol et al. [33] proposed one for
learning to manage air traffic flow. Their work accounted for
capacity, aircraft distribution, and financial factors, and their
findings highlighted the practicality of the proposed reward
function in a real-case study.

Based on these reviews, it appears that combining ML and
RL can effectively solve and optimize VRP similarly to con-
ventional approaches. However, the VRPmodels which com-
bine ML and RL are more flexible for modification than the
conventional VRP models. With a model-free RL, the trial-
and-error process cannot guarantee feasibility in real-world
settings because the solution-searching process is conducted
without any external environment information. However,
model-free RLs were applied by most related works. This is
why we assert that a model-based RL, which accounts for the
external environment, should be incorporated.

Using the model-based RL principle, the external environ-
ment is created to train the agent using the collected data
from each episode. Therefore, a model-based RL is trained to
dynamically adapt to any new environmental changes with-
out redefining the model, owing to data-driven capabilities.
Similar findings were well-noted in [3], [25], [29], [30], [34].
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D. SUMMARY OF REVIEW
Based on the literature reviews shown in sections II-A – II-C,
the VRP models developed based on conventional VRP and
combination of ML and RL approaches can solve VRP to
some extent. However, the limitations of these approaches
are as follows. First, the transportation environment is gen-
erally assumed to be always feasible for employing the rec-
ommended solution. However, the recommended solutions
may not be applicable to the real situation, imposing adverse
effects on the operational cost owing to unsuccessful and
delayed deliveries. Second, most models developed by ML
and RL are only suitable for dealing with customer-demand
uncertainties. These models may not be as applicable to other
factors, including traffic congestion, changing requirements,
and resource availability.

Therefore, in this study, we utilize the methodology pro-
posed by [1], [23], [33] to develop a vehicle route optimiza-
tion model that is dynamically adaptable to transportation
environmental uncertainties without the need to restructure
the model each time. Additionally, the novel model-based
RL is equipped to create a transportation environment for
RL training. We apply a tree-based regression model adapted
from [28] to resolve the infinite-loop searching issue, which
is a major drawback of the model-free RL. Notably both
model-free and model-based RLs have shortfalls, and previ-
ous works were developed based on one of these approaches
only. Our proposed methodology bridges this research gap
by integrating model-free and model-based RLs, allowing the
new model to solve dynamic transportation logistics VRPs
more effectively.

III. PROBLEM DEFINITION
This study addresses SDVRP within an uncertain transport
environment. The considered uncertainties consist of delivery
incidents (e.g., postponement or cancellations of deliveries)
and issues caused by road-network traffic conditions, chang-
ing customer requirements, and the logistics agency fleet.
A time-dependent variable is also included to ensure that
goods are delivered within a specific time window.

The SDVRP is generally defined as a graph, G = (V,E),
with a vertex set, V = {0, 1, . . . , n}, where 0 denotes the
depot, all other vertices denote customers that each vehicle is
required to visit, and E denotes a set of edges. Each vehicle
must start and end a given route at the depot. The indices,
parameters, and variables used for problem formulation are
described in Table 1.

The objective of this SDVRP is tominimize the total traver-
sal cost incurred from making deliveries to each customer.
In the SDVRP setting, customer demands may exceed the
capacity of a vehicle; therefore, there is a need to split these
demands into sub-demands so that multiple vehicles may
be used to deliver goods to customers until all demands are
satisfied while keeping the traversal costs minimal. The opti-
mization model aims to search for optimal customer-demand
handling and vehicle assignments with minimum costs.

Formally, the SDVRP objective function can be expressed as
follows:

min
n∑
i=0

n∑
j=0

m∑
v=1

cijxvij (1)

subject to:
n∑
i=0

m∑
v=1

xvij ≥ 1; j = 0, . . . , n (2)

n∑
i=0

xvip −
n∑
j=0

xvpj=0; v=1, . . . ,m; p∈V

(3)∑
i∈V

∑
j∈V

xvij≤|V | − 1; v=1, . . . ,m; V ⊆V+

(4)
n∑
i=0

xvip =
n∑
j=1

xvpj; v=1, . . . ,m; p ∈ V (5)

yiv = hvi1dm
1
i+, . . . ,+h

v
ikdm

k
i ;

i = 1, . . . , n; v = 1, . . . ,m (6)
m∑
v=1

yiv = dmi; i = 1, . . . , n (7)

n∑
i=1

yiv ≤ Qv; v = 1, . . . ,m (8)

dtv =
n∑
i=0

sei + tij,∀j ∈ V ; v = 1, . . . ,m

(9)

dtv ≤ T ; v = 1, . . . ,m (10)

cti + tij ≤ l̂ij, cti + tij ≤ dlvij; i = 0, . . . , |V|;
j = 1, . . . , |V+|; v = 1, . . . ,m (11)

where the constraints are divided into three categories:
routing, customer demand, and time constraints. These are
explained next.

Constraints (2) to (4) are the routing constraints. Con-
straint (2) ensures that each customer location, i, will be
visited at least once by vehicle v until the customer demand is
satisfied. Constraint (3) compares routing similarities. If the
comparison result equals zero, then the routes are considered
identical. This constraint aims to prevent recommending the
same routes with inverted directions for vehicle v, whereas
Constraint (4) eliminates sub-tours of other recommended
routes. The current routing sequence should not resemble pre-
viously recommended routes apart from the depot location.

Constraints (5) to (8) are related to customer demand.
Constraint (5) indicates that the demand can be delivered to
customer i only if vehicle v passes through route i. If the
delivery by vehicle v is less than or equal to the demand of
customer i, the constraint ensures that vehicles farther away
from the customer will not be recommended. Constraint (6)
allows demand for customer i to be split, but each order is
not detachable. Constraint (7) guarantees that all demands for
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TABLE 1. Set of parameters and variables.

each customer, i, are satisfied by the delivery from vehicle v.
The total items from all vehicles, v, delivered to customer i
should equal the customer’s demand, i. Constraint (8) indi-
cates that the delivery amount of each vehicle, v, cannot
exceed the vehicle capacity (Qv). This constraint ensures that
vehicles having lower capacity than the delivery size are not
chosen. The delivery is to be split and shared among vehicles.
In this study, the capacities of all vehicles are identical.

Constraints (9) to (11) are the time constraints. Con-
straint (9) refers to dtv as the accumulated travel time when
vehicle v arrives at customer j. Constraint (10) ensures that
incidents do not occur. It also includes the delay in goods
handling, and drivers do not exceed the limit of working hours
per trip by limiting consecutive hours of vehicle v to 8 h.
Constraint (11) is the time-window limit for each customer, j,
requiring the vehicle to arrive before a given deadline (dlvij).
Therefore, the accumulative travel time should be less than
or equal to the time-window limit. Otherwise, the trip is not
recommended.

It can be seen that the formulation of the general SDVRP
problem already requires numerous constraints. However,
the model can become more complex because more factors
must be considered simultaneously under real-world settings.
Additionally, those factors may not be wholly represented
by mathematical equations. Therefore, instead of directly
incorporating these elements as a general MILP, we include

them in the RL problem formulation for ease of interpretation.
The RL formulation is demonstrated by the following steps.

The SDVRP was first formulated as a MILP using
Equations (1) to (11). It was then transformed into an
RL problem using the RL formulation derived in [35].
The RL problem formulation consists of a tuple, <
S, I ,A,T ,G,R,C >, and their definitions are as follows:
• States (S): S is a finite set of states (s) of the
environment. The elements in S are defined as s =
[latitude, longitude, demand , vehicleavail., driveravail.,
vehiclemaintenance]. For simplicity, states are the current
environment with which the RL interacts and provides
a set of partial solutions to the problem (e.g., a partially
constructed route for the VRP problem).

• Initial state (I ): This is the current vehicle location with
current fleet availability status specified by the company.
At this stage, the element consists of six dimensions:
latitude, longitude, demand , vehicleavail., driveravail.,
and vehiclemaintenance.

• Actions (A): A is one of possible actions performed by
the RL (e.g., choose, swap, and skip). In this context,
A is the RL agent’s actions by choosing customer loca-
tion to be visited, rearranging visiting order, and mak-
ing a delivery from the current location in the current
state, s. The delivery should satisfy customer
requirements.
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TABLE 2. Variable used to calculate the profit and traversal cost.

• Transition model (T ): T is the probability of state
transitioning from S × A × S → [0, 1]. This statement
is defined in the ‘‘The Proposed Optimization Model
by RL’’ section in Equation (29). Therefore, in each
state, s ∈ S, the best possible action to choose is
calculated from the optimal policy, π∗(s) ∈ A.

• Goal test (G): G determines whether deliveries sat-
isfy customer requirements and whether the traversal
cost of each trip, defined in Equation (1), is mini-
mized. It is also used to justify whether actions fol-
low the requirements from Equations (2) to (11).
Later, these constraints become the utility evaluation
functions for the RL problem considering real-world
elements.

• Reward (R): For each state transition, the reward func-
tion is defined as S×A×S → G(Z ), where the definition
of G(Z ) is defined in Equation (14) of the ‘‘Reward
Processing for the RL’’ section.

• Path cost (C): C is a traversal cost incurred from
S × A× S defined in Equation (12).

Based on the ‘‘Path Cost’’ defined in the RL problem for-
mulation, the traversal cost and profit per day are calculated
using Equations (12) and (13), respectively.

traversaldowcost =

N∑
vr=1

((dvr × mt)+ insvr

+ (dvr × de)+ scvr + (dvr × f )

+

((
tdvr × 20
1, 000

)
× fprice

)
+ (trvr × l)+ (trvr × al)

+ (ovtvr × wt)) (12)

The value of each variable in Equations (12) and (13)
are listed in Table 2. They were derived from an actual
operational report to calculate operational cost and profit.
Equation (12) computes the total traversal cost of the routing

each day, dow. This cost is the summation of the traversal
cost obtained from all vehicles used for delivery during the
day. The traversal cost is then used to calculate the profit in
Equation (13):

profitdow = incomesdow − traversaldowcost . (13)

The main currency used in this paper is Thai Baht (THB).
The remaining parameters are generic and widely adopted by
various logistics agencies when computing their costs. Thus,
no adjustment is required. However, the currency must be
modified accordingly when applied to optimize other coun-
tries’ vehicle routes.

The SDVRP problem is solved assuming an uncertain
transport environment. The SDVRP problem with time con-
straints is formulated using Equations (1)—(11). Owing
to the difficulties representing environmental uncertain-
ties with mathematical formulations, the general SDVRP
tree-based regression method is applied to illustrate the
uncertainties in the RL for solving SDVRP. The RL is
equipped to solve SDVRP to minimize the traversal cost
under the objective function and constraints defined in
Equations (1)—(11). Furthermore, the RL utilizes the envi-
ronmental states information obtained from the tree-based
regression model to discover and adjust its strategies accord-
ing to the current transport environment. Hence, the optimiza-
tion result recommended by RL is dynamically adaptable to
variations from the environment. When the minimum traver-
sal cost is obtained, the recommended route and the total
profit are returned. The experimental result is then analyzed
in terms of profit improvement.

The problem definition and all essential parameters are
presented in this section, and the mechanism to solve the
SDVRP is explained in the next section.

IV. METHODOLOGY
This section outlines the procedures of developing the
proposed RL-based SDVRP. The methodology consists of
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FIGURE 1. Demonstration of the proposed methodology using
reinforcement learning and tree-based regression models
to solve the vehicle routing problem.

five steps: 1) problem transformation; 2) data collection;
3) reward function formulation and environment evaluation;
4) optimization using RL; and 5) case studies. The method-
ology framework is illustrated in Figure 1.

A. DATA COLLECTION AND FEATURE ENGINEERING
The data used in this study were collected from two sources:
4G Long-term Evolution Global Positioning System trackers
installed on vehicles of the logistics agency and 6-GB of their
operation reports. The data collection was conducted from
January 2017 to July 2019 to create the transport environment
and to train the RL as the vehicle route optimization tasks are
performed.

The data specifications are shown in Tables 3–4. Table 3
presents an example from the spatial-temporal data used to
analyze driver behaviors daily routines of the vehicle route
assignment. Table 4 presents the monthly operation statistics.

TABLE 3. Demonstration of the spatial-temporal data.

TABLE 4. Demonstration of the raw transport operation report.

In addition, the relationships of these data variables are
illustrated in Figure 3.

After data collection, the logistics management features
(e.g., delivery success rate, utility, and productivity of
resources) were constructed using feature engineering meth-
ods. Further details can be found in the logistics manage-
ment strategies book written by [36], [37]. The data were
then divided into training and testing datasets and deposited
in storage. The training set consists of data collected
from January 2017–July 2019, and the testing set is from
May–July 2018. Note that the testing data is not included in
the training data; it was collected during a site survey at our
partner logistics agency, and the company helped validate the
accuracy of the data from both drivers and staff.

After data separation, Power BI was used to determine
the data relationships to measure each feature’s fundamental
statistics and to create links to other data attributes using
time-stamps. Power BI is software used to discover relation-
ships from multi-source data, which helps understand their
coherency. It can also be used to perform data visualization
tasks.

In addition to data specification, Figure 2 illustrates the
statistics of goods deliveries from 2017 through 2019. From
Figure 2, it appears that the delivery success rate was less
than 50% when comparing the planned and actual delivery,
indicating that the current logistics planning is not as
practical.

From Figure 3, the relationships of the variables are some-
what correlated, and most are independent of each other.
The analysis shows that the transportation environment has
numerous variants and is quite complicated. This obser-
vation aligns with the previous discussion regarding the
lack of efficiency of conventional VRP approaches in such
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FIGURE 2. Demonstration of the goods deliveries statistics from the year 2017 until 2019. The orange bars represent the total intended deliveries,
and the blue bars are the successful deliveries. Note that the blank areas denote Thailand holidays.

FIGURE 3. Demonstration of variables relationships from multi-source data.

complex environments. Thus, we proposed a reward function
approach to evaluate the condition of the environment before
RL optimization.

B. REWARD PROCESSING UNIT FOR RL
The transport environment created using the collected data
reinforces RL so that it adequately performs the assigned
tasks. The state of the environment is evaluated with the
reward calculated from the previous interactions made by
RL. If the optimal solution is returned and the environment
state is normal, then the reward is positive. Otherwise, the
reward is deducted in each episode of the RL environment
with a negative reward. These values are communicated to
the RL agent later with the actor and critic gradient. The full
definition of this gradient is given in Section IV-D.

The data in Tables 3–4 are used as inputs for comput-
ing the reward for evaluating the transport environment.
The reward functions determine the operational feasibility,

efficiency, fairness, and the delivery and road-link fac-
tors of the task assignments. We adapted the methodology
from [33] and the multiplicative utility function theorem
proposed in [35]. The reward function, G(Z ), is defined
in Equation (14):

G(Z ) = βU (Z )+ δT (Z )+ γ I (Z ), (14)

where Z is the transport environment under evaluation, U (Z )
is the amount of vehicle usage, T (Z ) represents the number of
delayed/non-delayed deliveries, and I (Z ) represents the fair-
ness caused by the actions taken. These functions are known
as utility evaluation functions. The reward function is the
summation of the utility values from multiple data attributes
input from the collected data. They represent different aspects
of the environment. Thus, higher utility values indicate that
the transport environment is in a normal state. Additionally,
the weight of importances β, δ, and γ are assigned to the
income in the utility evaluation function. In this study, β, δ,
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and γ are set to 0.33 each because all utilities are equally
essential.

The definition of normal and abnormal in this context is
clarified as follows. Assuming that G(Z ) is less than 27.71,
the environment is abnormal, and attention is required.
Otherwise, the environment is normal. The value is the
lower-bound value derived by performing a pre-computation
using the 3-sigma method [38] on the data shown in Figure 2.

The utility functions inside the reward function are
expressed using Equations (15)–(21). Note that Equa-
tions (14)—(21) are adapted from [33] because the air-traffic
flowmanagement and transportation planning shared similar-
ities in policy development strategies. Therefore, only minor
modifications were required for the proposed SDVRP.
• The operation evaluation function is designed to com-
pute the efficiency (p(x)) for managing goods deliveries
to the customer. It is evaluated in terms of a vehicle’s
capacity utilization. A larger p(x) denotesmore available
vehicle space, signifying that more goods can be loaded
onto the vehicle to utilize it fully. The excesses must
be allocated to other available vehicles. The function is
expressed in Equation (15):

p(x) = 2(c−W (x))(c−W (x)), (15)

where c is the vehicle’s maximum capacity (v), andW (x)
is the number of tasks assigned to the vehicle during
period x. 2 is a function that returns zero if the input is
negative, meaning that there is an excess usage of fleet
resources. The goods-handling capability of a vehicle
increases exponentially to the vehicle capacity. A larger
p(x) value indicates that the vehicle (v) can handle more
deliveries.
The total usage (U (Z )) is the summation of the fleets’
vehicle capacity usage. A total usage is more than zero
means that the RL agent does not violate any vehicle
constraints in Equations (5)–(8). If a constraint is vio-
lated, the penalty is imposed on the RL agent as enforced
by Equation (16):

U (Z ) =
∑
x∈Z

p(x). (16)

• The delay evaluation function assesses the delivery per-
formance (ddt (v)) of each vehicle. This function elim-
inates solutions that violate time constraints, such as
behind-schedule deliveries or prolongedwaiting times at
depot or customer locations. The computation is based
on the departure, arrival, and traveling times based on
road-network conditions, as indicated in Equation (17):

ddt (v) = 2(1+ (t− ∝ (tad , taed ))), (17)

where t , tad , and taed denote the current time, actual
departure time, and estimated departure time, respec-
tively. ∝ is a function for estimating the departure and
arrival times from the traffic estimation model, and v is
the vehicle. 2 is a function that returns zero if the input
is negative, indicating delayed deliveries.

The total delivery performance is the summation of
the delayed and non-delayed deliveries during period x.
A positive total delivery performance indicates that the
RL agent has not violated any time constraints shown
in Equations (9)—(11). If a constraint is violated, the
penalty is imposed on the RL agent as enforced by
Equation (18).

T (Z ) =
∑
x∈Z

∑
v∈x

ddt (v). (18)

• The operation feasibility function determines the fea-
sibility and fairness (I (Z )) of the solution suggested
by the RL. The feasibility in this context reflects the
possibility that the solution can be used without vio-
lating any constraint shown in Equations (2)—(4) and
without any unsuccessful delivery. The operation feasi-
bility function is expressed as Equation (19), consisting
of two terms. The first expresses the equality of tasks
assigned to each driver as obtained from Equation (20).
A large equality value signifies that the tasks assigned
to drivers are not equally distributed. This equation
reduces excessive task assignments to specified drivers.
The second term expressed in Equation (21) evaluates
the result’s feasibility. This equation eliminates solu-
tions that are not feasible within the current transport
environment.

I (Z ) =
∑
x∈Z

(dad (x) + Oat (x)), (19)

where dad (x) is the equality state of the task distribution,
and Oat (x) is the operation loss caused by the delivery
delay or cancellation in all vehicles within period x.

• The task distribution function evaluates the fairness
(dad (x)) of distributing tasks to drivers, as indicated in
Equation (20):

dad (x) =
∑
v∈x

(
dat (v)

size(delivery)
)× 100, (20)

where dat is the number of vehicles, v, used to meet cus-
tomer demand, and its magnitude represents the overall
deliveries flowing into the system.

• The feasibility evaluation function is used to deter-
mine the operational feasibility of the solution suggested
by RL. The (Oat (x)) function is assessed based on the
delay time and the number of incidents during period x,
as indicated in Equation (21):

Oat (x)=
∑
v∈x

2(O(v)− ˆdat (v))(2(O(v)− ˆdat (v))), (21)

whereO(v) is the expected delivery carried by vehicle v,
and ˆdat (v) denotes the total delays or cancellations of
deliveries in vehicle v. 2 is a function that returns zero
if the delivery of vehicle v is delayed or unsuccessful.
A large (oat (x)) value indicates that the suggested solu-
tion is feasible for employment. Note that the x in the
equations expresses the period for delivering goods to
customers.
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The reward for each environmental state is then input and
concatenated with the other essential data into the tree-based
regression model of the transport environment (e.g., [S, A,
G(Z )], . . . , [Sn, An, G(Z )n]). The methodology of the
tree-based regression is explained in the following section.

C. TREE-BASED REGRESSION METHOD FOR MODELING
THE TRANSPORT ENVIRONMENT
The transport environment state (S) and its reward obtained
from the RL agent action discussed in the previous section is
modeled to train the RL for additional vehicle route optimiza-
tion tasks, and the environment state and associated reward
are used as inputs to the tree-based regression to train and
test with grid-search parameter tuning to obtain the optimal
model.

Generally, a regression tree assigns a prediction value to
each leaf node, where the prediction value is the reward
obtained from a given set of transport environment states. The
regression tree model is defined in Equation (22):

kerneld (il, i) =
I (il, i)∑

a,b∈d I (a, i)
, (22)

where I (il, i) is an indicator function that determines whether
il and i belong to the same class. Furthermore, to avoid
over-fitting, the ensemble method (e.g., random forest and
bagging) is applied. The modification of Equation (22) is
made accordingly as in Equation (23):

kerneld (il, i) =
1
P

P∑
m=1

Im(il, i)∑
a,b∈dm I

m(a, i)
, (23)

where dm denotes a subset of the training data used to
construct m regression trees (mth). im(il, i) is an indicator
function that indicates whether il and i belong to the same
class of the mth tree. If the method constructs an ensemble
of P different regression trees, the average of the P pre-
dicted values is used as the final prediction. More details of
the tree-based regression model construction can be found
in [28]. The models used in this study include the extra tree,
random forest, bagging, and decision tree. The model having
the highest accuracy in predicting the environment state is
adopted to create the environment in the final step.

When using the tree-based regression model to predict
the environment state represented by reward, a flag is set
when the unit is used to predict the reward; otherwise, new
reward functions are used to evaluate the provided utilities
represented by the environment elements. Thus, the reward
algorithm to model the transport environment is modified as
indicated in Algorithm 1.

When the optimal tree-based regression model is accepted
and constructed, the reward analyzed from the current trans-
port environment is transferred to the RL agent using the
actor–critic gradient. The definition of this gradient is dis-
cussed in the next section. This process informs the RL agent
about its actions and changes made to the transport environ-
ment when performing vehicle route optimization. A positive

Algorithm 1 Modified Reward Function Used to
Model the Transport Environment With the Tree-Based
Regression Model
Input : input tour samplesolution,

samplesolutiontitled ← Stack(samplesolution)
feature set F1,F2, . . . Fn,
flag← true,
vehicleused ← count(samplesolutiontitled )

Output: reward
1: for n = 1, 2, . . . do
2: if flag is true then
3: reward← modeltree ( action, currentstate, nextstate )
4: return reward
5: else
6: dn← caldist ( samplesolution, samplesolutiontitled )
7: traveln← dn/modeltraff (F1,F2, . . . Fn )
8: behaviorstat ←

modelbehav (Vehicleused ,F1,F2, . . .Fn )
9: evalfeasibility←

∑n
i=0(β × evalutil (work) ) +

↪→ ( δ × evalutil (delay) ) +
↪→ ( γ × evalutil (operation, fairness) )

10: if behaviorstat is true then
11: reward = −(dn + waitingtime + evalfeasibility)
12: return reward
13: else
14: reward = dn + evalfeasibility
15: return reward
16: end if
17: end if
18: end for

reward means the current environment is normal, and the
RL agent’s actions are feasible. Therefore, the actor–critic
gradient is also positive. Otherwise, if the reward is nega-
tive (e.g., in the range of [−∞, 27.71]), it means that the
current environment is in a critical state, and adjustments are
required. Thus, the actor–critic gradient is also negative.

When the transport environment model is completed, and
its associating reward function is defined, an optimization
model using RL can then be constructed. The details of the
procedures are given in the next section.

D. PROPOSED OPTIMIZATION MODEL BY RL
This section outlines the procedures of constructing the pro-
posed vehicle route optimization model, which can adapt
to any environmental changes using RL. The set of inputs
containing essential data, such as customer coordinates and
demands, is denoted as X = {x i}, i = {1, . . . ,M}. The
elements in X are updated as the RL agent selects the cus-
tomer for making a delivery. A demand (d) is delivered to
the customer at time t and location in state s. This step is the
decoding stage, wherein the network node that encodes cus-
tomer data are decoded to construct a vehicle route sequence.
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To encode the customer data into the network node, each
input of X is represented as x i and is denoted by a sequence of
nodes expressed as x i .= (si, d i), where i = 0, 1, . . . , n. This
concept is adopted from [23] and represents how the network
node encodes customer data.

The results from the data encoding process are represented
as Network node 1 = [1, 100.934, 13.535, 15], Network
node 2 = [2, 100.4534, 13.635, 30], Network node 3 =
[3, 100.334, 13.565, 2], . . . , and Network node N= [N, lon-
gitude, latitude, demand]. The data are decoded to create the
sequence of nodes as Customer 1, Customer 3, Customer 2,
until Customer N. This step continues until all nodes are
decoded, meaning that all customer demands are satisfied.
The details of the decoding steps are discussed in a later
section.

When the customer data are encoded, a mechanism for
solving SDVRP is constructed. This section highlights how
the proposed model can solve SDVRP, as discussed in
Section III. The masking scheme introduced by [23] is
applied to label the nodes to force the model to support the
SDVRP as follows:

1) Customer nodes without demand are not visited.
2) Customer nodes with demand higher than the vehicle

capacity are masked.
3) All customer nodes are masked if the remaining vehicle

capacity is zero.
These conditions apply to the classical VRP constraints.
However, condition (2) should be relaxed to allow a vehicle
to visit a customer more than once in SDVRP. All customer
demands are satisfied under the masking scheme conditions
when the traveling plan is set. A solution is chosen if a
particular condition is satisfied. In [23], the authors set the
log probabilities of infeasible solutions to−∞. Furthermore,
the transport environment model presented in Section IV-C
is connected to this masking scheme. Therefore, the RL can
be reinforced to solve SDVRP and adapt according to the
transport environment. Thismechanism is a crucial difference
between our proposed model and the framework proposed by
Nazari et al.

The optimization task is initialized from the input, X0, with
the pointer denoted as y0 as a reference. At each decoding
step, t(t = 0, 1, . . . , n) yt+1 are the pointers for the remaining
inputs, Xt . According to the policy, π , the most adjacent node
is selected as the next decoder step.

Policy π is determined by the policy gradient method,
which comprises the actor–critic networks. The actor network
is used to predict the probability of subsequent actions to be
performed at a given decision step. The critic network is used
to calculate the value of the actions performed in the current
state. It is generated from sequences of Y to minimize the loss
of the objective function.

The optimal policy denoted as π∗ generates the optimal
value with a probability of one. Therefore, the value of π
and π∗ must be as close as possible to determine the optimal
solution. We use the probability chain rule to determine the
probability of generating sequence Y from the given next

sequence, yt+1, to decode node Xt per Equation (24):

Pr(Y |X0) =
T∏
t=0

Pr(yt+1,Xt ). (24)

The state is repeatedly updated with the state transition
function denoted as f , as indicated in Equations (25)–(26):

Xt+1 = f (yt+1,Xt ), (25)

Pr(Yt+1|Yt ,Xt ) = softmax(g(ht ,Xt )), (26)

where g is the function that calculates the distance between
the input vectors, and ht is the state of the RNN. The outcomes
are the probability that the preceding decoded step will transi-
tion to the next decoder node and environment state obtained
by the softmax function.

When the maximum iteration is reached, the output is the
routing sequence that assigns each vehicle in the fleet to
fulfill customer demands. Theminimum traversal cost associ-
ated with the distance, time, and environmental elements are
returned. This output is then recommended to the logistics
agency for creating their delivery plan.

The mechanism used to obtain the optimal solution is
demonstrated in this section. It applicable for general VRP,
which contains a graph consisting of nodes and edges. How-
ever, further modifications are required when applying the
ML and RL to construct those kinds of graphs. The following
section outlines the method of modeling RNN as a graphical
network.

1) PROPOSED NETWORK FOR DEALING WITH SEQUENCE
OF INPUTS
Generally, neural-network (NN) neurons do not have a func-
tion that reveals and connects adjacent neurons. Therefore,
using NN to model a vehicle route requires a mechanism to
connect each network’s node as a graph.

When applying NN to construct this network, the input
described previously is embedded instead of using the RNN
hidden states to handle the data. By doing so, the network
node represents the customer location and the demand infor-
mation. Instead of the RNNhidden state, the embedded inputs
are used to avoid difficulties inputting the demand directly to
the network node. Therefore, the RNN model is divided into
two components. The first is a set of embedding processes
that connect the input attributes and project them onto a
D-dimensional vector space. The second component is the
decoder layer that points to an input, which is the next visited
node at every decoding step.

The RNN is used to model the decoder network to deter-
mine the next visiting node from the sequence of remaining
encoded nodes. When the next vehicle visiting node is iden-
tified, the update is made to the delivery because the number
of deliveries changes over time as goods are delivered. When
the customer location and demand updates are required, the
model must be re-executed because the information cannot be
updated dynamically on the network node itself. Therefore,
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FIGURE 4. Demonstration of the model architecture for the vehicle routing problem.

we adopt the attention mechanism of [21], [23] to assist the
network node as it references and dynamically updates the
delivery information.

This attention mechanism is used to store the demand
information of each network node and connect independent
network nodes as a graph. Therefore, every time the vehicle
delivers to a customer location (e.g., [latitude, longitude]), the
remaining demand information is updated on the ‘‘attention
layer’’ instead of the network. Therefore, model rebuilding
is no longer required, and the demand information can be
updated dynamically. A framework of the described pro-
cesses is illustrated in Figure 4.

The attention mechanism references the input at the
decoder step, i. It is used to calculate the probability that
the adjacent node is the subsequent node of the current net-
work node. The encoded input is denoted as x̄ it = (s̄i, d̄ it ).
t and ht ∈ <D represent the state memory of the RNN
at decoding step, t . For example, x0 indicates the begin-
ning of the tour, and the attention mechanism is used to
find nodes to be visited by vehicles. The suitable subse-
quent node of the current decoded node is determined by
the context value. If required, the process also updates the
encoded values (e.g., update the coordinates, current demand,
or both).

The attention layer is denoted by attentt , as defined in
Equation (27):

attentt = attentt (x̄ it , ht ) = softmax(ut ), (27)

where uit = vTa tanh (Wa[x̄ it ; ht ]) is the compatibility between
two adjacent nodes, and M is the set of nodes in the
Y sequence. va and Wa are the training variables. When
the attention value is obtained, the node context (contextt )

and the possible nodes for the next visit are determined by
Equation (28). The high value of contextt indicates that the
nodes are adjacent.

contextt =
M∑
i=1

attent it x̄
i
t . (28)

Using the encoded input, the values are normalized using
the softmax function. Pr(yt+1) denotes the next sequence
in Y given the current sequence, Yt and decoded node Xt ,
as expressed in Equation (29):

Pr(yt+1|Yt ,Xt ) = softmax(ũit ), (29)

where ũit = vTc tanh (Wc[x̄ it ; contextt ]) is the compatibility of
two adjacent nodes. vc and Wc are the training variables.

A single long short-term memory (LSTM) layer for
a decoder size 128 was used to support decoded tasks.
From tuning parameters and evaluating solution accuracy,
128 is the most suitable vector size to store all data with-
out losing any information for the optimization solution.
However, the network’s parameters must be adjusted when
applying to other application domains with different types of
input data.

The processes described above show how each network
node is connected as a graphical network. The remaining
process is the customers’ demand updated after each delivery.
The demand (dmti ) is updated at step time t as the current
demand, dmti , minus new deliveries of demand newidelt , and is
linked back to the network node, i, reference at the attention
layer.

After the actor–critic networks are constructed, the net-
work can be trained using the two algorithms for training
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RL agent: actor–critic and asynchronous actor–critic (A3C)
algorithms. Detailed definitions of these two algorithms can
be found in [3]. In this study, these algorithms were trained
and tested with 120,000 steps and 100,000 steps, respectively.
The channel for reinforcing and adjusting RL behavior is
defined by the actor–critic gradient. The actor gradient is
defined by Equation (30), and the critic gradient is defined
by Equation (31).

dθ ←
1
N

N∑
n=1

(Rn − V (Xn0 ;φ))
h

θ

log Pr(Y n|Xn0 ), (30)

where dθ denotes the actor gradient, and Rn denotes the
reward from the environment state, n. The reward, Rn, is
obtained from the ‘‘Tree-based Regression Method for Mod-
eling the Transport Environment’’ section.

dφ←
1
N

N∑
n=1

h

φ

(Rn − V (Xn0 ;φ))
2, (31)

where dφ denotes the critic gradient, and R denotes the
reward from the environment state, n. If the environment
state created by RL is normal, the gradient is set to positive.
Otherwise, it is set to negative. Figure 5 illustrates how the
reward is applied to update and reinforce the RL agent to
perform appropriate actions.

Additionally, the optimal hyperparameters are set as
follows. The Adam optimizer has a learning rate of
10−4, and a dropout with a probability of 0.1 in the
LSTM decoder. The model is trained on a Google
Colab GPU.

In summary, the model in Figure 4 originates from the
customer coordinates with encoded demand presented in the
‘‘Input Encoded Layer.’’ The encoded node is then used to
compute the adjacency degree (attention value) in the ‘‘atten-
tion layer’’ as in Equation (27). Next, the attention values
are computed to determine whether each node is related and
adjacent (Equation (28)). Then, the probability of choosing
and decoding the current node in the routing sequence is
computed using Equation (29). Last, the demand at each
node is updated according to the new deliveries made by
vehicles. This process repeats until the maximum iteration is
reached.

Following the formulations of all necessary parameters,
these equations are converted to the programmable computer
algorithm shown in Algorithm 2. Afterward, the vehicle route
optimization task can be performed. Then, the significance
of experimental results can be evaluated using the given
evaluation metrics.

E. PERFORMANCE EVALUATION METRICS
This section outlines the evaluation metrics used for the
tree-based regression models and the RL. The tree-based
regression models were evaluated using the root mean-square
error (RMSE), mean-square error (MSE), and mean abso-
lute error (MAE). Whereas the RL was evaluated by the

Algorithm 2Reinforcement LearningWithModel-Based
Integration Algorithm
Input : random weight θ , θn, φ, φn

Output: Route sequence (Y n) for vehicle Vn
1: initialize the actor network with random weight θ and

critic network
↪→ with random weight φ

2: initialize N thread-specific actor and critic networks
with weights θn and φn associated with thread n.

3: for each thread n do
4: for iteration = 1, 2, . . . do
5: reset gradient: dθ ←0, dφ←0
6: sample N instance according to 8M
7: for n = 1, . . . , N do
8: initialize step counter t ← 0 and select vehicle

vn
9: repeat
10: select ynt+1 refer to Pr ( ynt+1 |Y

n
t , X

n
t )

11: Xnt ← Xnt+1
12: t ← t + 1
13: until terminated condition is matched
14: reward Rn← modelbehav(Y n, Xn0 )

% the model-based in section IV-C.
15: end for
16: dθ ← 1

N

∑N
n=1(R

n
− V (Xn0 ; φ ) )

↪→
`
θ log Pr(Y

n
|Xn0 )

17: dφ← 1
N

∑N
n=1

`
φ(R

n
− V (Xn0 ; φ ) )

2

18: update θ, φ
19: end for
20: return Y n

21: end for

cumulative reward and the agent action value in each training
step. These metrics were derived from the previous studies
by [39]–[41]. The larger value of these measures indicates an
outstanding RL model. The cumulative action value (CAV ) is
expressed as Equation (32):

CAV =
N∑
i=0

dφ, (32)

where i denotes the training step, N denotes the total training
steps, and dφ denotes the RL agent’s action value defined
in Equation (31).

In addition to theCAV , manually-made and state-of-the-art
model solutions were used as a baselines to determine the
improvements when performing the same optimization tasks
against the RL agent. Such improvements were referred to
as the ‘‘optimal gap’’ in the previous studies, as defined
in Equation (33):

OptimalGap(%) =

∑N
i=1 Baselinei/N − currentsolution∑N

i=1 Baselinei/N
×100 (33)
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FIGURE 5. Demonstration of the actor–critic algorithm architecture.

TABLE 5. The Z-value for the confidence interval.

where i denotes a baseline index, Baselinei denotes a result
from the state-of-the-art models, and currentsolution denotes
the result of the proposed model.

The RL model was evaluated using the agent action value
defined in Equation (32). The optimization results were
compared with state-of-the-art models using Equation (33).
Herein, the confidence interval (CI ) is also employed to
determine the boundary of the optimization result. TheCI and
Z-values (z) are defined in Equation (34), which are referred
from [42], [43].

CI = X̄ ± z
sd
√
n
, (34)

where X̄ denotes the mean of the optimization result,
z denotes the 95% of CI value chosen from Table 5,
sd denotes the standard deviation, and n is the number of test
samples.

Finally, the vehicle route optimization tasks are performed
using the proposed methodologies. The optimization results
are compared and validated in a two-stage manner. The first

stage is when the SDVRP instances are used as inputs to
demonstrate the generality of the proposed model in solving
general academic problems. Therefore, the VRP50 instance
taken from Nazari et al.’s paper was used for model vali-
dation. The significant difference from their experiment is
that the coordinate system (e.g., European Petroleum Survey
Group (EPSG) 4326 for coordinate projection) was modified
to reflect real-world scenarios better. The second stage is
when the actual operation data are used as inputs and eval-
uated through case studies. Their results were also validated
with case studies described in the following section.

V. CASE STUDIES
In this study, several case studies are applied to demonstrate
the effectiveness of the proposed methodology in different
settings, both under static and uncertain transport environ-
ments. This section outlines two types of case studies (with
and without uncertainties) used for model validation. The
comparison between the two types of case studies determines
how well the proposed model performs under different trans-
port situations faced by the vehicle fleet during its daily
operation.

In the case studies, each customer demand may contain
multiple containers, which one vehicle cannot fulfill. There-
fore, the demand must be split and handled by the same,
if available, or other vehicles until customers’ demands are
fulfilled (e.g., quantity and delivery time). Thus, the SDVRP
has to be employed in the case studies of the task assign-
ments of container trucks making deliveries across Thailand.
An example of the task assignment is presented in Figure 6.
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FIGURE 6. Demonstration of a routine route that is assigned to each vehicle in the fleet.

For model validation, two types of case studies were
employed. The first represents the normal state transport
environment. The second case study represents the critical
state transport environment containing disturbances that may
affect the delivery tasks. More details of these two case
studies are explained in the following subsections.

A. CASE STUDY WITHOUT UNCERTAINTY
The trained RL was implemented to optimize vehicle routes
under the case study where no sudden change occurs during
the daily operation (e.g., no order postponement, cancel-
lation, vehicle shortages, or human resources issues). The
detailed testing dataset used for the validation is as follows.
Generally, the logistics agency’s fleet that handles container
deliveries has routines for medium-to-long hauls with an
amount of 21 container deliveries per day, each with the
capacity of 2,700 cubic feet (cu.ft.). The delivery amount
includes the actual deliveries of the company, as shown in
Figure 2. There are 37 available vehicles, and the size of the
test dataset was larger than 1 GB.

The RL model was tested with longitude, latitude, and
customer demand data. The data was also formatted similarly
to the logistics agency when it performed the transportation
plan. The RL model was executed to optimize the vehicle
routing following the methodology presented in Section IV.

After the RL model reaches the maximum iteration of
100,000, a feasible vehicle route solution was returned. The
solution was assessed using the evaluation metrics presented
in Section IV-E. The result obtained from the RL model
was also compared to the actual company routing plan and
state-of-the-art models in terms of profit improvement and
computational time.

The optimization result from the proposed model was
first compared with the RL models developed by [21], [23]
to demonstrate the advantage of hybridizing the model-free
and model-based RL principles against the only model-free
RL model. Second, the proposed model is compared with the
optimization models using MILP approaches on the models
from [1], [15], [44] to demonstrate how significant the envi-
ronmental uncertainties are. Lastly, the proposed model was
compared with the manually made routing plan conducted
by the logistics company to demonstrate how the model can
improve the solution using transport-environment informa-
tion obtained multiple sources. In the following subsection,
the more complex case study under uncertainties is presented.

B. CASE STUDY WITH UNCERTAINTIES
In this case study, the environment is uncertain with regards
to incidents and disturbances. This type of circumstance may
arise when demand exceeds the fleet capacity. Therefore, the
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TABLE 6. Investigation results of the tree-based regression model for
predicting the transport environment states.

container deliveries were adjusted to 60 for testing data, and
the environment was represented as critical where numerous
incidents befell.

Similar to the first case study, the test data here were
employed to optimize the vehicle routing tasks following
the methodology presented in Section IV under the same
evaluation procedures. The experimental results from these
cases are explained in the next section.

VI. RESULTS
This section describes the experimental results from the con-
struction and execution of the RL vehicle route optimization.
It also includes the details of an experiment that searched for
the optimal tree-based regression for modeling the transport
environment. In the following subsections, the result from the
tree-based regressionmodel is first discussed, followed by the
results from SDVRP instances, and case studies without and
with uncertainties, respectively.

A. RESULTS OF TREE-BASED REGRESSION MODEL
The experimental results of the procedures in Section IV-C
are displayed in Table 6. The results highlight the effective-
ness ofML for predicting the environmental state represented
as the reward for the RL agent’s interactions.

Referring to Table 6, the lowest of these evaluation met-
rics values denotes that the transportation environment for
logistics was accurately defined and modeled. When these
methods’ experimental results are presented, the optimization
result from this experiment’s regression model is presented.

B. EXPERIMENT RESULTS UNDER SDVRP INSTANCES
The proposed optimization model was validated using the
SDVRP instances shown in [23], and the experimental results
are shown in Table 7. There, the proposed model is denoted
in bold. Additionally, ‘‘+’’ denotes an improvement from
the baseline, and ‘‘−’’ signifies no improvement. Baseline
denotes the target traversal cost incurred from the transporta-
tion plan with the given requirements.

C. EXPERIMENTAL RESULTS FROM THE CASE STUDY
WITHOUT UNCERTAINTY
The experimental results from the RL vehicle route optimiza-
tion in a static environment are presented in Table 8. The
‘‘Resultmean ± CI ’’ column represents the optimal traversal
cost from a given set of customers in the testing dataset rep-
resented in THB. The CI is computed to assess the reliability

of the model. A lower CI implies a stable model. The SD
column represents the standard deviation of the optimization
result, where a lower SD indicates a stable model. The third
and fourth columns showed the computational time required
for model training and testing. Finally, the fifth and sixth
columns exhibit the efficiency of the optimization model.
The ‘‘OptimalGap’’ column shows the differences between
the optimal solution and the baseline as a percentage. In the
analysis column, ‘‘+’’ denotes positive increase, and ‘‘−’’
denotes negative decrease. Lastly, the last row of Table 8
outlines the results of the proposed model.

Additionally, the CAV values of the RL are illustrated
in Figure 7. The higher CAV value indicates that the RL
performs vehicle route optimization tasksmore appropriately.

D. EXPERIMENTAL RESULTS FROM THE CASE STUDY
WITH TRANSPORT ENVIRONMENT UNCERTAINTIES
This case study illustrates situations wherein the RL han-
dles uncertain changes occurring during the vehicle route
optimization task. The experimental results are displayed in
Table 9. The same procedure was used to analyze the results
of Table 8 as that for Table 9. The result obtained from the
proposed model is indicated in bold. Additionally, the CAV
of RL for this case study is presented in Figure 8.

VII. DISCUSSION
This section discusses the experimental results under differ-
ent case-study settings and the tree-based regression model
for predicting the transport environment state displayed in the
previous section.

A. RESULTS OF THE TREE-BASED REGRESSION MODEL
The results displayed in Table 6 indicate that the bagging tree
has the highest performance when predicting the transport
environment state from the given RL agent action (6.160 of
RMSE), followed by the random forest (6.509 of RMSE) and
decision tree (7.830 of RMSE). These methods are ensemble
algorithms that combine predictions from multiple models.
Therefore, they operate more effectively if the predictions
from each model are uncorrelated. The least efficient predic-
tor is the extra tree having a 335.049 RMSE.

The significant difference between random forest and bag-
ging trees is that they consider different features when using
the split operator for diving nodes. The random forest only
considers a subset of features that provide the best per-
formance for splitting among the overall features. In con-
trast, the bagging tree considers all features for splitting
nodes regardless of their performance. Figure 3 shows that
the features shown in this study have both dependency and
non-dependency relationships. Discarding some featuresmay
reduce the model’s accuracy. Therefore, the result from the
bagging tree has higher accuracy than the random forest.

In the experiment, a five-fold grid search was used to
discover optimal model parameters to avoid overfitting.
Accordingly, each model was constructed based on the opti-
mal setting. The number of estimators was 50, the minimum
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TABLE 7. Result of vehicle route optimization with VRP50 instance and capacity of 40.

TABLE 8. Summary of results under case studies without uncertainty using RL with the tree-based regression method.

TABLE 9. Investigation results of a case study when uncertain changes did occur during the vehicle route optimization using reinforcement learning with
the tree-based regression method.

leaf sample was 20, and the minimum sample for the split
was 20 for the extra tree. For the random forest, the number of
estimators was 50, and the max depth was 100. Additionally,
the number of estimators was 50, the random state was two
for the bagging tree, and for the decision tree, the number of
estimators was 50. The max depth was 100.

The tree-basedmethodwas selected over otherMLmodels,
because they require hyperparameter tuning, causing a lack
of flexibility and long computational times. Moreover, the
regression was selected over the classification problems to
determine the environmental state value instead of using its
class. Therefore, the bagging tree was used as the predictor in
the hybrid model to model the transport environment.

In the next section, the experiment results of using
the RL for performing the vehicle route optimization are
presented.

B. EXPERIMENTAL RESULTS UNDER SDVRP INSTANCES
This section highlights the generality of the proposed
model in solving the SDVRP problem with 50 instances.

VRP50 was chosen for this study, owing to its similar-
ity to the actual transport environment. Table 7 shows
the trained model obtained from the proposed methodol-
ogy, the approaches from the state-of-the-art models, and
previous-work near-optimal results with an up-to 0.118%
optimality gap. It also appears that the computational time
was not significantly different among models.

These findings demonstrate the generality of the proposed
methodology for solving the general SDVRP with minor
modifications. The required modifications include the inputs
fed into the reward processing unit for RL, the tree-based
regression method, and the model’s hyperparameter tuning,
including learning rate, epochs, and batch size.

Only the demand and customer coordinates derived from
the dataset were used to create the transportation environment
in this experiment. The state of the transport environment
stored in the tree-based regression method was applied to
analyze whether the environment was normal. However, this
environment generation did not affect the efficiency of the
optimization.
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FIGURE 7. Training (a) and testing (b) stages regarding the situation which no uncertain changes from environment occur using reinforcement
learning with the tree-based regression model.

In the next section, the application of the trained model to
the variants of actual case studies is demonstrated.

C. EXPERIMENTAL RESULTS FROM THE CASE STUDY
WITHOUT UNCERTAINTY
Figure 7 indicates that the convergence of CAV of the RL
started from step 2,400 for the actor model and step 4,200
for the A3C algorithm. In each training and testing step, these
CAV were calculated using Equation (32). Based on Figure 7,
it appears that the agent trained by the A3C algorithm yielded
the highest CAV for the performed tasks, because the A3C
algorithm had more opportunities to explore the transport
environment than the conventional actor–critic algorithm.
Therefore, the algorithmwas more adaptable according to the
transport environment than the actor-critic algorithm.

CAV signifies the efficiency of the RL agent in optimizing
vehicle routing. This value is influenced by the reward or
penalty received by the RL agent. A higherCAV indicates that
the RL agent returns appropriate actions without violating
the environmental condition. Thus, the solution is close to
optimal.

When comparing the suggested profit obtained from the
optimization model shown in Table 8, the proposed model’s
result shows profit improvement by approximately 5.32%
compared with that of [21], [23]. This finding suggests that
using prior experience (e.g., the previous outcome from the
agent’s action interacts with the environment) instead of the
trial-and-error strategy to tune and reward the RL agent is
vital. The reward principle used in this paper is more effective
than the general agent rewards, including positive or negative
route values with a trial-and-error strategy by the model-free
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FIGURE 8. Training (a) and testing (b) stage regarding to the situation which uncertain changes from environment occur using reinforcement
learning with the tree-based regression model.

RL principle. However, themodel-free RL excludes the exter-
nal environment; hence, the model is not fully adaptive to
changes. Thus, the proposed model, which combines the
benefits of model-based RL and model-free RL, is applicable
to real-world settings.

Supposing the transportation environment differs from the
previous known environment, it might detract from the opti-
mization model. The environment from the previous day
might not fully represent the transportation environment in
the current day. This finding is demonstrated through the
result in Table 8. The result shows that the suggested solution
of the proposed model is reduced when compared to the aver-
age baselines. It denotes that the environment used in this case
study has not been fully modeled and stored in the tree-based
regression model. This shortcoming is caused by the

limitations of creating and storing the transport environment
state using tree-based regression.When events in the environ-
ment do not constantly occur in a similar pattern, the stored
experiences can only represent events that do not fully portray
the current environment. Therefore, it may cause difficulty for
the RL agent to adapt its strategy to this event change. Under
uncertain events, such as variations of demand, vehicle utility,
and productivity, using prior environment states as experience
for training the RL agent is efficient to some extent. However,
there is room for improvement when dealing with such a
complex transport environments.

These limitations can be compensated by considering
real-time information so that the obtained solutions are adapt-
able to changes during the current time frame. It is thus
necessary to enable the RL agent to take the real-time
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information from the environment while applying the expe-
riences obtained from prior environment states to solve
the VRP. This additional improvement can be pursued in
future works. Therefore, the discussion of results obtained
under this case study with uncertainties from the transport
environment is discussed in the following section.

D. EXPERIMENTAL RESULTS FROM THE CASE STUDY
WITH TRANSPORT ENVIRONMENT UNCERTAINTIES
Similar to the first case study, the results obtained from
Section V-B indicate a profit improvement of approximately
52.66% compared with [23] and [21], approximately 26.67%
compared with [15], approximately 38.90% compared
with [44], and 17.141% compared with [1].

The reason is that these baseline models were formu-
lated to minimize the traversal costs while assuming that
it is feasible to visit all customers. When the uncertainties
from the transport environment are included, these models
cannot compensate for these changes. Thus, the profit is
decreased, owing to the costs of delay and waiting, which
account for unsuccessful deliveries. Consequently, the result
of the vehicle assignment performed by the company has
more positive gaps that deviate from the model proposed
by [1], [15], [21], [23], [44].

This experiment highlights our proposedmodel’s effective-
ness because in the model, RL quickly adapts to the transport
environment uncertainties with distinctive patterns of abnor-
malities similar to the prior environment. These abnormalities
consist of shipment incidents (e.g., postponement and can-
cellation of shipments), over-usage of vehicles, and capacity.
The optimal policies for handling these events merge and
rearrange shipments using RL, which executes optimizations
from learned experience.

This experience is more feasible when handling uncer-
tain events than normal environment states, which are more
diverse. With uncertainties, more in-depth data are required
to create environment policies that satisfy all features. There-
fore, using the previous environment states defined by the
reward processing unit as experiences for RL enables better
adaptability and effectiveness for the model.

Furthermore, our proposedmodel considers the staff’s gen-
eral questions when performing vehicle routing tasks under
uncertainties, such as ‘‘Is it feasible for the customer to take
the delivery?’’ ‘‘Should we proceed or postpone the order?’’
and ‘‘What is the success rate of delivery to customers at a
specific time of the day?’’ This way of thinking is input to
the proposed model through the utility function of the reward
processing unit. Thus, it forces the model to obtain enhanced
vehicle routing solutions.

In summary, the SDVRP should consider utility and pro-
ductivity from the deliveries and the distance in real-world
applications because the minimum distance route is not
always optimal. For example, route sequences at 8:00 a.m.
differ from those at noon, owing to heavier traffic, resulting
in the possibility of delayed delivery.

This study provides a relevant development direction that
advances agents’ experience to resemble human experi-
ence in vehicle route optimization. Moreover, the proposed
methodology exhibits superior performance over approaches
developed in previous studies that excluded information
from the environment. However, the limitation of the model
includes decreased efficiency when uncertain events do not
exhibit a similar pattern from previous events. As shown in
the experimental result, under such situations, the model’s
efficiency decreases by 19.83%, indicating room for improve-
ment as future work to consider uncertainties with different
patterns.

E. PRACTICAL APPLICATIONS AND LIMITATIONS
Currently, information from multi-sensors is essential
for decision-making supporting tools in many disciplines
(e.g., smart-city planning, transportation, and governance).
In this study, the data-driven approach was applied to support
logistics vehicle-route optimization. This study aimed to
compute an optimal routing sequence for delivering goods
that are robust to any disturbances from the transport environ-
ment using data processing to extract relevant information.

The extracted information was used to determine the
first-visited locations based on traffic conditions, successful
delivery rates, current fleet utility, and productivity. Then,
a decision was made according to the information retrieved
from the data. The proposed model combined data-driven and
RL approaches to train the RL agent to solve the VRP as
a decision-support tool. This model is not meant to replace
humans. However, some tasks are replaced by ML and RL
for better efficiency. This action allows humans to make
decisions better on high-level decision-making tasks, such as
negotiations between parties or evaluating the suitability of
solutions suggested by AI.

Additional extensions can be made for the proposed
methodology to make it more practical to other areas:

1) Controlling road traffic signals to optimize time delays
at intersections to solve traffic congestion.

2) Controlling urban public transportation to solve public
transportation shortages based on schedules.

3) Determining taxi routes and stands to optimize taxi
parking locations to increase profit by improving the
efficiency of trips.

4) Determining electric vehicle charging-station
locations.

It is therefore unnecessary to modify the model structure
in these contexts when applied to new applications because
the model is data-driven. However, the coordinate data for
creating an environment and inputs to the model must be in
the corresponding format.

The main limitation of the proposed methodology is that it
supports only structured data. Therefore, future data should
be well-structured with organized attributes in the same
manner as those presented in Section IV-A. The mandatory
features required for the optimization model include the coor-
dinates of longitude and latitude, targeted system utility, and
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productivity ratio. If unstructured data are involved or new
features are created, data preprocessing method and model
tuning are required before the data can be used as inputs.

VIII. CONCLUSION
This paper proposed a novel methodology for a new-vehicle
route optimization model using an RL interconnected with a
tree-based regression model to create the RL’s transport envi-
ronment. The proposed model was adaptable and capable of
handling multiple transport-environment settings. According
to our understanding, the RL agent used previous environ-
ment states as experiences to select appropriate actions for
determining vehicle routes in the current time by choosing
from optimal policies. The experiment showed that using
prior environment states as experience improved its ability
to adapt to changes in the transport environment.

Additionally, the proposed model was generic such that the
adjustment and expansion could be made with minimal mod-
ifications, owing to the data-driven ability of the model-based
RL principle and the attention mechanism developed by
Kool et al. and Nazari et al.
The actual data extracted from reports on vehicle schedul-

ing and disturbances in the route optimization process by
company staff of multiple case studies were applied to
demonstrate the practicality of the proposed SDVRP. Further-
more, a new hybrid model proposed in this paper was trained
with the A3C algorithm with experiences obtained from the
tree-based regression model to maximize agent action utility.
Based on the result, the model outperformed other state-
of-art methods and previous approaches in terms of their
effectiveness.

As a result, a daily vehicle route suggested for the logis-
tics company yielded a profit of 16,495 THB (approxi-
mately 520 USD) with an average improvement of 5.32% for
non-incident 32,990 THB (approximately 1,039 USD) with
an average improvement of 37.63% for the incident case.
The rationale behind this improvement comes from storing
the RL’s experiences learned previously in the tree-based
regression model to influence the RL agent’s current behav-
ior. The stored experiences trained the RL agent to perform
appropriate vehicle routing actions. Thus, the global optimal
was returned.

However, the proposed methodology had some limitations.
The first is that the stored experiences could only handle
some aspects of the events when they did not match a similar
pattern. Therefore, there may be difficulties for the RL agent
to adapt its strategy to this event change, resulting in less
effectiveness. The second limitation is that, when considering
uncertainties of events, such as demand, vehicle utility, and
productivity, using prior environment states as experience for
training the RL agent is only practical to a certain extent.
There is room for improvement when dealing with complex
transport environments.

As a future research direction, behavioral and root-cause
analysis can be implemented to analyze the dynamic nature of
the various logistical environments. Then, prior experiences

can be applied to improve vehicle route optimization solu-
tions. Hence, the solution quality and ability to handle uncer-
tainties in real-world settings can be significantly improved.
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