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ABSTRACT Malaria is a life-threatening disease causing by an infection of the protozoan parasite
Plasmodium. Plasmodium falciparum is the deadliest and most common human infected parasites hosted
by anopheles mosquito vector. To cure a malaria infected patient and prevent further spreading, malaria
diagnosis using microscopy to visualize Giemsa-stained parasites is commonly done. The microscopy
diagnosis is somewhat time consuming and requires well-trained malaria experts to interpret what they
see under the microscope. To address this limitation, an automated malaria infected diagnosis is needed.
This work proposed a computer-aided automated diagnosis system that can perform remote field diagnosis
with high accuracy while requiring less computational demands. The proposed framework consists of two
main parts that are red blood cell counting and parasite life-cycle stage classification. The counting process
is performed by computer vision techniques, namely Hough transform. Different machine learning tech-
niques, i.e., Multilayer Perceptron, Linear Discriminant Analysis, Support Vector Machine, and Weighted
Similarity Extreme Learning Machine, are employed in the classification task. We also demonstrated that
combining hand-crafted and deep-learned features can enhance the overall performance of the framework.
The experimental results showed that the proposed methods could correctly count and classify at 97.94%
and 98.12% accuracy, respectively. The overall proposal system can achieve at 96.18% accuracy. This is
achieved by WELM in conjunction with deep-learned (AlexNet_FC7) and the hand-crafted (color) features.

INDEX TERMS Combining features, Giemsa-stained thin film, malaria.

I. INTRODUCTION
Global management of malaria is very difficult since early
detection of malaria infection relies mostly on diagnosis
using manual microscopy of Giemsa-stained infected cells.
The disease is hard to detect, especially in rural areas and
developing countries due to lacking of equipment and human
resources. It is a cause of millions of deaths every year [1].
The disease is caused by parasites of the genus Plasmod-
ium [2]. There are four species of Plasmodium: P.falciparum,
P. vivax, P. ovale, and P. malariae. The direness of the disease
is that its symptoms are similar to an ordinary cold, e.g.,
fever, headache, and vomiting. In this research, we aimed to
focus on P.falciparum that is the most commonly found and
dangerous disease in Thailand. P.falciparum causes anemia,
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coma, and progresses to death if correct treatment is not con-
sidered or the diagnosis comes in very late [3]. The disease
can be transmitted by female Anopheles mosquito. Infection
occurs after a person was bitten by one of them. The malaria
parasites—merozoites—expeditiously invade the host red
blood cells (RBCs) then proceed to more developed forms.
There are three stages of merozoites development that are
Ring Form, Trophozoite, and Schizont (Figure 1). In the last
stage, infected RBCs are filled with many Schizonts and burst
open. Afterward, some merozoites will find some new RBCs
and start a new life cycle. Some merozoites may develop into
gametocytes after they had enough nutrients from the host.
Then gametocytes can infect another host by the transmission
of a vector to continue surviving as a species. There is no
effective vaccine for treating malaria due to the high diversity
and adaptability of Plasmodium antigens that make a spe-
cific vaccine developmental process not very practical [4];
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FIGURE 1. Examples of stained objects.

therefore, it is imperative to detect malaria in an infected
person early and recognize the degree of its spread throughout
the body as well as to quantify the number of parasites and
their stages in order to formulate an effective treatment [5].

Currently, the gold standard for malaria diagnosis is man-
ual microscopy examination [6]. The diagnostic material and
equipment are just some simple and multipurpose tools in a
laboratory [7], therefore, the diagnosis cost is low. Although
there is an availability of new methods, they require special
tools that are impractical to use in some places and more
expensive than the conventional technique [8]–[10]. There
are two different methods for detecting and enumerating
parasites: chemically staining the parasites in a thin or a thick
blood smear on a slide of blood droplets and observing the
visible, stained Plasmodium parasites. A thick blood smear
method allows us to identify the morphology of the parasites
easily due to the large volume examination and the con-
centration of dehemoglobinized RBCs. Thus, the parasites
become visibly distinctive. However, it is unable to count the
RBCs that are invaded by parasites. Some trophozoites and
gametocytes loss during the staining process because RBCs
are destroyed. This method is suitable for discovery a low
parasitaemia blood slide. On the other hand, a thin blood
smear method preserves the shape of RBCs and is used to
visualize a parasite within a cell. Thus it is easy to count RBCs
that are infected. [11], [12]. It takes around 15 minutes for
an expert to manually evaluate and count 100 cells in a thin
blood smear specimen [13], and the accuracy of the diagnosis
directly depends on the experience of the expert [12]. In other
words, this methodmay be unreliable when it is performed by
a non-expert—the evaluation results are particularly prone to

human error [14], e.g., a 100% accuracy achieved by an expert
may dramatically drop down to 10% [15].

There are threemain tasks in getting a diagnosis of malaria:
first, an examination of the presence/absence of malaria
parasites in a blood sample; second, an examination of the
species of the detected parasites; and third, identification of
the stages of the malaria parasites. Presently, the traditional
technique is to use light microscopy to find the density and
stages of malaria parasites in the blood of a patient by a
microscopist, which is very time-consuming and requires
great expertise. However, this task can be done by using
computer vision and machine learning techniques, in silico
processes for analyzing images such as segmentation, recog-
nition or identification of parasites in images, without any
need for an expert microscopist. There are some researches
showed that computer vision techniques can be applied to
segment, separate overlapping, and count RBCs in blood
specimen images [16], [17]. After RBCs were identified,
machine learning techniques were used to distinguish the
type of RBCs, for example, healthy RBCs or infected RBCs.
Moreover, they can identify the stage of infected RBCs as
well.

II. RELATED WORKS
We proposed a novel computer-aided diagnosis system for
malaria infection classification. This proposed system oper-
ates by processing images of Giemsa-stained thin blood film
specimens and automatically reports a status of malaria infec-
tion. The advantage of this system over human experts is that
it offers more consistent diagnosis under the same set of cri-
teria, hence giving more reliable results than human experts
who may judge a film specimen according to their subjective
opinion. The system is based on computer vision andmachine
learning techniques for segmentation and classification tasks.
We summarized the techniques that have been applied for this
domain shown in Table 1.

There are many techniques for RBC segmentation from
background for blood film images. Gatc et al. [21] applied
thresholding technique with two thresholds, first, to seg-
ment RBCs from their background and, second, to segment
parasites if RBCs were infected. Savkare et al. [19] and
Ma et al. [20] applied k-means and k-medians cluster-
ing to cluster foreground and background from grayscale
images by setting number of groups equal to two which are
foreground and background. That technique performed well
especially with blurred images. However, there are a lot of
computational iterative calls for clustering pixels in an image.
Ruberto et al. [16] applied morphological approach with
two morphological operators: one that was hemispherical
disk-shaped to enhance the roundness and compactness of
RBCs and the other one that was flat disk-shaped to sep-
arate overlapping cells. These two hemispherical and flat
disk-shaped structuring elements work together with some
knowledge of the structure of RBCs to be able to seg-
ment individual and also overlapping RBCs in images.
Sharif et al. [22] attempted to apply a watershed transform
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TABLE 1. Summary computer-aided techniques for malaria diagnosis.

on a distance map together with a concavity analysis in
order to determine the split lines for overlapping cells. That
method could only be applied to clumped cells of only
two RBCs. For clumped cells that contain more than two
cells, they used a template matching technique to find indi-
vidual RBCs. This technique can separate small cells but
demanded high computational cost. Maitra et al. [17] and
Mahmood and Mansor [18] used a circular Hough transform
in an automatic application for segmentation and to automat-
ically count the number of RBCs in an image. That technique
can identify and separate overlapping RBCs within only one
process. Nevertheless, that technique requires users to specify
the radius of the circle of RBC to be detected, but this radius
can be calculated from the size of the foreground object that is
expected to be a RBC in an image. All in all, to find the right
radius is much easier than to find a good brightness intensity
threshold, for thresholding and watershed transform, so we
chose to use Hough transform for the mentioned task in this
study.

After RBCs were detected, feature extraction technique
was used to encode RBC images into features. This tech-
nique plays a major role in image classification. These
features were expected to contain the relevant information
which is the key to conduct an effective classification model.
López-Puigdollers et al. [23] reported that constructing an
expert system utilizing local image descriptor techniques
that could recognize six white blood cell types. They built
a bag of visual words with a keypoint detector and regular
sampling techniques. They found that using the Oriented
Features from an Accelerated Segmentation Test as an inter-
est point detector to localize keypoints on cell contours and
regular sampling strategies yielded a better classification per-
formance. However, there are simple and practical methods
that are often used, for example, Markiewicz et al. [25] and
Ross et al. [26] used a basic user-defined common image
features (hand-crafted features) such as a histogram of
color, shape or texture, but Habibzadeh et al. [27] and
Quinn et al. [28] used only raw images as features for deep
Convolutional Neural Networks (CNN). It should be noted
Yeon et al. [24] suggested to employ the green component
as a representative color space for blood film image because
it gave a higher contrast and a greater range of color inten-
sities than red and blue components which is easier to dis-
tinguish objects in an image and the performance of feature
extraction depends on quality of images as well. Recently,
Pasupa et al. [31] showed that using hand-crated features

together with deep-learned features, a features extracted
from CNN, as multiple representations of data gave a better
performance than using individual features.

Machine learning technique used to distinguish classes
by learning from sample data which is supervised learn-
ing. There are many machine learning techniques that were
used for classifying malaria parasite and its stage [29].
Ross et al. [26] and Díaz et al. [30] demonstrated some useful
applications of standard machine learning methods in malaria
image diagnosis, i.e., k-nearest neighbor classifier (kNN),
Naïve bayes, Support Vector Machine (SVM) and Multilayer
perceptron (MLP) together with histogram of hand-crafted
features such as texture, shape and color to classify
malarial RBCs. Díaz et al. [30] also revealed that kNN and
MLP along with normalized RGB color space gave better
performance than the others. In 2012, the beginning of deep
learning era, Krizhevsky et al. [32] designed a CNN archi-
tecture, known as AlexNet which is the well-known CNN
architecture, to compete in the ImageNet Large Scale Visual
Recognition Challenge and won several international com-
petitions. CNN is a deeper version of multilayer perceptron
which consists of several convolution and fully connected
layers. It is commonly applied to analyze image data because
it can automatically extract features and classify image within
itself. Nowadays, CNN has been applied to classify images
from bio-medical domains, for example, Quinn et al. [28]
used CNN to recognized Microscopy-Based Point of Care
Diagnosis such as diagnosis of malaria in thick blood smears,
tuberculosis in sputum samples, and intestinal parasite eggs
in stool samples comparing with tree classifier and evaluated
with area under the receiver operating characteristic curve
and average precision. Their results showed that CNN was
a robust method. It yielded higher performance in all cases
due to well trained image model constructed by a large
training set. Habibzadeh et al. [27] tried to apply CNN to
classify RBCs. The CNN took an entire image as input.
Its classification results were compared to those of sev-
eral standard methods including SVM. It was found that
CNN yielded a higher rate of recognition than SVM-based
classifiers did. As it can be seen, those studies used raw
images and hand-crafted features such as shape, size, color
and texture as pertinent data for classifying healthy/infected
blood cell classes or to differentiate parasite developmental
stages. Those basic data were satisfactory for classifying
those classes and stages. However, deep-learned fea-
tures extracted from deep-learned models were recently
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used instead of those basic features [28]. In addition,
hand-crafted and deep-learned features can be complemen-
tary to each other [31]. Thus, combining these features
might improve the overall performance for diagnosis of
human malarial infection. In addition, there are reports
that show that current machine learning techniques are
able to deal with highly imbalanced datasets [33]–[35]
and the lack of labeling problem [36] in biomedical
domain.

In this paper, we propose a machine learning technique to
deal with several malaria RBC classes, i.e., Healthy/Infected
RBCs and the malarial parasites at different growth stages
by learning from images of samples of blood cell types
and malarial infection stages. We used Weighted Similar-
ity Extreme Learning Machine (WELM). It is an improved
version of one of the powerful classification methods
named Extreme Learning Machine (ELM) [37] which based
on single-hidden layer feedforward neural networks. The
weights of the model can be calculated without iterative
process due to weights of the model obtained from per-
forming linear regression on data mapped through non-linear
projection. There are some evidences that showed the
potential of using WELM classification method on one of
the most challenging datasets, Maximum Unbiased Valida-
tion Dataset, which is dramatic imbalance between classes
and highly diverse in structure. The experiment result
showed that WELM give better performance than other stan-
dard methods, i.e., SVM, Random Forest, and Similarity
Searching [38]–[40]. In this study, we demonstrated a list of
contribution as follow:
• We proposed a framework to count and classify
Healthy/Infected RBCs from Giemsa-stained thin film
images.

• The proposed framework was tested on a proposed
malarial giemsa-stained thin blood film image dataset
which is a highly imbalance dataset and, moreover,
it contains more than 23,000 malarial RBC images.

• Deep-learned features was used as model features which
was extracted from a pre-trained of AlexNet.

• Evaluate the performance of using multiple types of
feature sets, i.e., hand-crafted features, deep-learned
features, and also concatenated features. We show
that hand-crafted feature can be complementary to
deep-learned feature.

• Comparing the performance of using WELM and three
comparable standard classification methods, i.e., MLP,
SVM, and Linear Discriminant Analysis (LDA).

• The proposed system works like an expert doing the
whole malaria diagnosis process. The whole process
included 1) feeding image samples into the system,
which is the same as an expert observing blood slides
under a microscope; 2) detecting and counting RBCs in
a blood slide; and 3) recognizing classes of RBC, for
example, class of Healthy RBC, Ring Form, Trophozoite
or Schizont. For the system, the accuracy of the whole
process is then evaluated.

III. METHODS
In this section, we explain the methods used in this experi-
ment. Morphological image processing and Hough transform
were used as image pre-processing techniques. Morphologi-
cal image processing technique was used to clean noises and
reconstruct object structures. Hough transform technique was
used to segment RBC objects. Transfer learning technique
andWeighted Similarity Extreme LearningMachine are used
to perform deep feature extraction and classify the RBCs.

A. MORPHOLOGICAL OPERATION
A morphological operation is an image processing tech-
nique based on the shapes of objects in an image. It is a
pre-processing step before the pre-processed image is pro-
cessed further and used for noise removal and restoration
of original shapes of objects from distorted ones. A mor-
phological operation applies a structuring element s to an
object. The structuring element is a template of small shape,
e.g., a square, disk or rectangle which is applied to a bina-
rized input image (of which each pixel has a value of
either 0 or 1). There are two main morphological operators:
erosion 	 and dilation ⊕ [41]. For erosion, the boundary
pixels of every foreground object that are adjacent to the
background is converted to the background. We can define
erosion that produces a new binary image g from an input
binary image f as:

g = f 	 s. (1)

For example, g(x, y) = 1 at a structuring element’s origin
coordinate when the structuring element fits exactly to the
input object in an image, and it is 0 otherwise. Conversely, for
dilation, the boundary pixels of every foreground object that
are adjacent to the background is converted to the foreground
when the structuring element touch or intersect the object.
Dilation is expressed as:

g = f ⊕ s. (2)

Figures 2b and 2c show how erosion and dilation operators
can eliminate some noise and fill the hole in an object,
respectively. In addition, examples of opening and closing
operations adapted from the two common operators, erosion
and dilation [42], [43]. The equation that represents the clos-
ing operator performs dilation followed by erosion indicated
in Figure 2d. It can be expressed as

g = (f⊕)	 s. (3)

On the other hand, the opening operator performs erosion
then dilation indicted in Figure 2e. It can be expressed as

g = (f	)⊕ s. (4)

B. HOUGH TRANSFORM
Hough transform is a conventional feature extraction tech-
nique for the detection of straight lines in images [44]. It has
been extended to detect some low-parametric forms such
as circles and ellipses [45], [46]. The technique finds some
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FIGURE 2. Morphological filters.

required parameters of the desired object in an image by a
voting procedure on an accumulator array A, well-known as
Hough space. A simple equation of a straight line is,

y = mx + c. (5)

We can rearrange the equation in order to find c to be

c = −xm+ y, (6)

where m is a gradient or a slope of the straight line and c
is the y-intercept. This equation was applied to an image by
varying parameterm in the accumulator array A, in them-axis
and c-axis in Hough space, and a local maxima was obtained
for each coordinate (x, y). However, when the straight line
becomes a vertical line–90 degrees angle to the x-axis–the
slope becomes unbound. Therefore, Hesse normal form was
brought into deal with this problem:

ρ = x cos θ + y sin θ, (7)

where ρ is the distance from the origin to closest point on
the straight line and θ is the angle between the x-axis and the
line. Hence, the accumulator consists of pairs of coordinates
on the ρ and θ axes. With the same procedure, the technique
could be applied to find circle in images through the following
equation:

(x − a)2 + (y− b)2 = r2, (8)

where (a, b) is the center of the circle and r is the radius for
every coordinate (x, y) that appears in the image. On the other
hand, in some applications, the parameter r is known, thus
the equation with a fixed parameter r can be expressed as the
following system of equations:

a = x − r cos θ, (9)

b = y− r sin θ. (10)

The most voted candidate in the accumulator array A indi-
cates a center of the circle that represents RBC. The voting
procedure for circle detection is represented in Algorithm 1.

In this artificial intelligence era, many applications in com-
puter vision domain employ machine learning techniques,
a kind of statistical techniques, for solving some problems
such as recognition and classification of objects. The purpose
of the technique is to learn patterns from sample data as expe-
rience with no specific explicit instructions in the program to
do so. This technique utilizes mathematical optimization to

Algorithm 1 Circular Hough Transform
1: function HOUGH_TRANSFORM(x, y, r)
2: for t ← 1 to 360 do F vary all possible angles θ
3: a← x-r ∗ cos(t ∗ π

180 )
4: b← y-r ∗ sin(t ∗ π

180 )
5: A[a, b, r]← A[a, b, r]+ 1 F voting
6: end for
7: end function

FIGURE 3. An example of the architecture of a convolutional neural
network.

do supervised learning tasks such as classification or predic-
tion and unsupervised learning tasks such as clustering from
the test data [47]–[49]. In this work, we used a deep neural
network and computer vision techniques to extract features
to represent images. Then the extracted features will be fed
to the model to classify types of RBCs as well as infection
stages of malarial parasites.

C. TRANSFER LEARNING
The origin of deep convolutional neural network architecture–
the neocognitron–was proposed by [50]. The idea was pro-
posed a long time ago, but it was not popular due to the lack
of advanced high-performance computing facility. Currently,
Graphics Processing Units (GPUs) have rapidly evolved to
become high-performance computing tools. Therefore, deep
learning techniques have become popular due to their promis-
ing performance. The most common type of this technique is
CNN. The architecture of CNN, as shown in Figure 3, is a
combination of the following layers:
• Convolution layer extracts features from an input image
as a feature map by computing the dot product between
the input image and a receptive field that slides across
the width and height of the entire image.

• Pooling layer performs a down-sampling operation that
is a non-linear function. A pooling window slides on
the image with non-overlapping steps to reduce the size
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FIGURE 4. Weighted Similarity Extreme Learning Machine architecture.

of the feature map and yield higher-level features. For
example, a conventional pooling layer, a max pooling
function, chooses the maximum value in each small
region as a representative value.

• The fully connected layer consists of neurons that fully
connect to all activations in the previous layer–similar to
those in the conventional MLP. The fully connected lay-
ers need to classify the high-level features obtained from
the convolution layers and pooling layers into classes.

However, it still requires a high computational cost to build
a CNN model from scratch. To ease the problem, transfer
learning is utilized. Transfer learning is the idea to apply the
knowledge that is learned from the previous task to tackle
a new related task when there is a limited number of train-
ing samples. Using this concept results in a more reliable
model and faster training speed than training a model from
scratch [51]. A common way is to use a pre-trained model—
was trained on a larger dataset—on a similar task. There are
many popular pre-trained models for recognition tasks, e.g.,
AlexNet [32], VGG [52], and YOLO [53].

Instead of training our own CNN model, we use a
pre-trained model to extract features from malarial RBCs
images in this work. To do that, we conserve the convolutional
layers for feature extraction task and replace the last layer—
MLP—with Weighted Similarity Extreme Learning Machine
instead.

D. WEIGHTED SIMILARITY EXTREME LEARNING
MACHINE
Weighted Similarity Extreme Learning Machine (WELM)
is based on Extreme Learning Machine (ELM) that was
first proposed by [37]. ELM was modified from a general-
ized single-hidden layer feedforward neural network (SLFN)
in which solves the bottleneck problem—neural-by-neural
weight calculation—of SLFN by randomly selection weights
from the training samples and process them through a gen-
eralized inverse function. Thus, hidden layer of ELM can
be trained without an iterative process. WELM architecture

consists of m input neurons which are the number of input
dimensions. The input neurons are fully connected with
l hidden neurons which are weights of the model wi. The set
of weights connecting the hidden layer to the output layer is
denoted as β. Therefore, the model can be defined as:

yj =
l∑
i=1

βih(xj), (11)

where H = [h(x1), . . . , h(xn)] is the hidden layer output
for an input X where X ∈ Rn×m corresponding to target
labels y, and n is the number of input samples. The H matrix
for WELM can be expressed by a similarity activation
function s(·), such as a Euclidean similarity function, with
a linear combination of input samples X and weights W as
follows:

H =

h(x1)...
h(xn)

 =
s(x1,w1) . . . s(x1,wl)

...
. . .

...

s(xn,w1) . . . s(xn,wl)


n× l

, (12)

where W is randomly selected from X instead of generated
by a continuous probability distribution. This is to ensure that
the weights are in same the distribution and dimension span.
Therefore, W is a subset of X and l 6 n. The prediction score
can be expressed by following equation:

ŷ = Hβ, (13)

WELM needs to minimize the approximation error expressed
as the square root error below,

min
β

1
2
‖ Hβ − y ‖22 . (14)

Thus, the optimal solution of β can be expressed by
Moore-Penrose pseudo-inverse function as follows,

β = (HTH)−1HTy. (15)

The architecture of WELM is shown in Figure 4 and the
procedure of WELM for malarial classification is shown as
pseudo-code in Algorithm 2.

IV. PROPOSED SYSTEM
The proposed system is shown in Figure 5. It consists of eight
stages; the first four were stages of image pre-processing
processes; the next two were stages of RBCs segmentation
processes; and the last two involved classification task. Each
stage is explained in more details below.

1) Image quality enrichment: input images were first
transformed into binary images (shown in Figure 6b)
which were then put through a morphological filter,
i.e., a disk-shaped opening filter, which performs ero-
sion then dilation, removed some noise, e.g., the arte-
facts shown in Figure 6c; then a flood-fill operation
filled holes in the RBCs as shown in Figure 6d; the
holes in the cells are a usual distinctive characteristic
of RBCs due to the lack of hemoglobin at the small
central area of the cells [54].
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Algorithm 2 Weighted Similarity Extreme Learning
Machine
1: functionWELM_TRAIN(X, y)
2: W← randomly select subset of X
3: n← #samples in X
4: nH ← #samples in Healthy Red Blood Cell class
5: nR← #samples in Ring Form class
6: nT ← #samples in Trophozoite class
7: nS ← #samples in Schizont class
8: for i← 1 to n do
9: γi =

√
max(nH ,nR,nT ,nS )
#samples in yi class

10: end for
11: Ĥ← γ · S(X,W)
12: β ← ( 1C + ĤTĤ)−1(ĤTγ · y)
13: returnW, β
14: end function
15: functionWELM_PREDICT(W, β, XTest)
16: H← S(XTest,W)
17: ŷ← Hβ

18: return ŷ
19: end function

FIGURE 5. The workflow of the proposed approach.

FIGURE 6. The workflow stages of the proposed approach–image quality
enrichment: (a) input image; (b) transforming the input image into a
binary image; (c) removing noise from the binary image; (d) filling the
holes inside the RBCs.

2) Foreground detection: a regional maxima technique
was used to identify objects in the image. This
technique took an object to be represented by an

FIGURE 7. A foreground and background detection by the regional
maxima: (a) original image, (b) foreground, and (c) background.

8-connected component, thus the white pixels in the
binary image that were adjacent to the edges or corners
of the object were taken to be a part of the object [55].
At the end of this step, the technique collected all fore-
ground objects, i.e., individual and overlapping RBCs
and some unwanted objects, e.g., noise and artefacts
that still had not been removed; hence some objects
were still ambiguous. Figure 7 shows the foreground
and background of the processed image. We then got
rid of all unwanted objects in the next stage.

3) RBCs size estimation: The proposed approach was
capable of differentiating the types of objects presented
in an image: artefacts as well as non-overlapping and
overlapping RBCs. In order for the method to be able
to differentiate them, it needed to know a common size
for an RBC. However, sizes of RBCs can be different;
hence we needed to estimate the size range of these
RBCs that were suitable for our purpose. This could
be done by using a frequency histogram, which plotted
RBC sizes, to differentiate the sizes of objects. Since
some RBCs would be present in an image taken for
our purpose, the RBC size that exhibited the maxi-
mum frequency in the histogram was selected as the
representative size, for example, as shown in Figure 8,
22,245.75 pixels is used as a RBC size for only a
considering blood field image. We attempted to find
an optimum range of RBC size by trial and error and
found that the range of ±35% of the representative
size was optimum. Objects not within this range were
taken to be abnormal objects. It should be noted that the
frequency is the number of occurrences of RBC objects
in an image and the blood cell size is the representative
number of pixels of RBC objects in the image.

4) Noise removal: the objects that were smaller than the
smallest size in the defined range were considered as
noise, and they were removed immediately. On the
other hand, the objects that were bigger than the biggest
size in the defined range were collected to analyze fur-
ther whether they were artefacts or overlapping RBCs
in the next stage.
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FIGURE 8. Histogram of RBC sizes from a field image.

FIGURE 9. Color intensity histogram of each channel in RGB components;
dotted lines represent the original color intensities while solid lines
represent the improved color intensities by CLAHE.

5) Separation of overlapping RBCs: Contrast-limited
adaptive histogram equalization (CLAHE) was
employed to enhance the contrast of each object [56].
This technique could sharpen the edges of RBCs so
that the boundary of an individual RBC could be distin-
guished clearly. As shown in Figure 9, the green com-
ponent gave the highest contrast and a greater variety
of color intensities. On the other hand, the red and blue
components gave a lower contrast and a smaller range
of color intensities; therefore, the green component
was chosen as a representative color channel [24]. The
difference in contrast can be seen in Figure 10a, 10b
and 10c. Next, segmentation of overlapping RBCs
involved two steps. First, we applied an opening filter
iteratively until the object was separated into two or
more new objects. Those separated objects then were

FIGURE 10. Separation process of overlapping RBCs: (a) abnormal region;
(b) transforming the region into a greyscale image; (c) improving the
contrast of the image by CLAHE; (d) binarizing the image; (e) iteratively
applying an opening filter; (f) detecting circular objects in the image.

determined whether their sizes were in the defined
range or not. If they were so, they were collected as
non-overlapping RBCs, else they were removed. If the
overlapping RBCs still could not be separated, the sec-
ond step was applied: a Hough transform was used to
identify circles in the region as shown in Figure 10f.
Since the Hough transform technique had a parameter
that needed to be specified, i.e., the radius of the RBC
(r) is simply calculated by the square root of the RBC
area (size) divided by π . In this work, we set r between
±35% of the optimal RBC size to collect all of possible
blood cells in images.

6) RBCs extraction: all RBC objects were cleaned, sepa-
rated and identified by the previous stage, and in this
stage, the regional maxima technique was used once
more to collect and count the individual RBCs.

78670 VOLUME 8, 2020



W. Kudisthalert et al.: Counting and Classification of Malarial Parasite From Giemsa-Stained Thin Film Images

FIGURE 11. Feature extraction throughout the AlexNet network: (a) Healthy RBC; (b) Ring Form; (c) Trophozoite; (d) Schizont.

7) Feature generation: Raw images of RBCs were col-
lected. The images then needed to be differentiated into
classes but they contained only color information that
could not be used directly and efficiently as features.
Hence, this stage applied methods that enabled inter-
pretation of raw images into useful features. In this
experiment, we had four candidates for useful features:
color, shape, texture and deep-learned feature. Because
each type of feature gave different kinds of information,
it was necessary to find which feature provide more
information for the classification of RBCs. For exam-
ple, the color feature might be a truly useful one since
the color of Healthy RBCs image and that of RBCs
in the Schizont class were visually different. For the
deep feature, we extracted this feature by a pre-trained
convolutional neural network called AlexNet [32] of
which architecture is often used as the base architecture
for other convolutional neural networks. AlexNet was
still a great choice. Among other competitive CNN
models, it yielded very good results [57]. The original
pre-trained AlexNet is eight layers deep and has been
trained on over millions of images from the ImageNet
database [58]. The examples of features obtained from
the AlexNet along the network are shown in Figure 11.
In this work, we used two deep features from the 7th

and 8th fully connected layer that contained 4,096 and
1,000 features, respectively, denoted as FC7 and FC8
(the architecture is shown in Figure 12) because the
7th layer provided a high number of features but
the 8th layer provided higher-level features. It should
be noted that a higher layer of Deep CNN pro-
vide more abstract information and semantics features.
In contrast, a lower layer provide information that are

FIGURE 12. The AlexNet architecture that provided two deep features
from fully-connected layers denoted as FC7 and FC8.

similar to image details [59]. This work also used three
1024-bin histograms of image features: color, shape
and texture. The shape feature was extracted with a
Sobel technique which is generally used for identifying
vertical and horizontal gradients in images. A Gabor
technique with filter directions of 0, 45 and 90 degrees
was used for collecting texture feature. For the feature
map in Figure 13, we reshaped a vector of feature
into a square image to illustrate the pattern of data in
each class generated by a different feature generator
technique. For example, the color histogram technique
provided a pattern of color frequency. The color of
the RBC in the Healthy RBC and Ring Form classes
yielded a certain pattern that represents the distinctively
red color while the more purplish color of the cell
infected with a malarial parasite at a more mature stage
in the Trophozoite and Schizont classes are represented
by a differently looking pattern of color frequency.

8) Classification: the last stage of the workflow is clas-
sification of RBCs into the right classes: Healthy
RBCs, Ring Form, Trophozoite and Schizont. In this

VOLUME 8, 2020 78671



W. Kudisthalert et al.: Counting and Classification of Malarial Parasite From Giemsa-Stained Thin Film Images

FIGURE 13. Feature map where the columns are malarial stages and the
rows are features ordered as follow: input image; AlexNet_FC7;
AlexNet_FC8; color histogram; shape histogram; texture histogram.

paper, we proposed two classification frameworks to
handle this task denoted by M1 and M2, as shown
in Figure 14. The M1 approach, a one stage classi-
fication, classifies RBCs in one stage similar to the
way malarial classification expert does. Thus, only one
classification model was needed to be trained as shown
in Figure 14a. On the other hand, the M2 approach is
a two-stage tree classifier [26] two separate classifi-
cation models were required to perform two sequen-
tial tasks: a model for classifying infected/uninfected
RBCs in first stage and another model for classify-
ing malarial life-stages in the second stage, as shown
in Figure 14b. Thus, the first stage of the M2 approach
dealt only with a binary task which was easier to deal
with than a multi-class problem. The second stage of
the M2 approach classified only three classes while the
M1 approach classified four classes.

V. EXPERIMENTAL FRAMEWORK
A. IMAGE ACQUISITION
Images of P.falciparum parasitized RBC were taken at the
Protein-Ligand Engineering and Molecular Biology labo-
ratory at the National Center for Genetic Engineering and
Biotechnology (BIOTEC), Pathum Thani, Thailand. Thin
blood smears for malaria had been prepared for drug suscepti-
bility testing of anti malarial agents. Well trained researchers

FIGURE 14. Classification approaches.

TABLE 2. Detail of training set and test set.

then counted, by using thin blood smear to accentuate the
parasites, the numbers of healthy RBCs and infected RBCs.
The images of samples used in this experiment were only of
erythrocytes, malarial parasites and some artefacts from the
removal of white blood cells from in vitro cultured samples.
Examples of these images are in Figure 15.

The images were acquired using Olympus BX51 micro-
scope and a DP71 digital camera system. The specimens
were examined under oil immersion with a 100× physical
magnification and a 10× optical zoom. The images were
captured at a resolution of 4080 × 3072 pixels in TIFF
image file format. We were able to collect 147 field-of-
view images. After RBC segmentation, we obtained a dataset
with the size of 23,248 RBC images. The dataset consisted
of 22,290 Healthy RBCs, 437 Ring Forms, 327 Trophozoites
and 194 Schizonts as shown in Table 2. It can be seen that
the dataset is highly imbalance one with a ratio of 1:24 for
infected and Healthy RBCs as shown in Figure 17. It is
noted that 0.7% of the total RBCs accounting for ambiguous
RBCs caused by poor slide preparation were removed from
the dataset. Poor slide preparation can cause artefact, dam-
age, and/or poor morphology to the cells [60]. Especially,
the T-distributed Stochastic Neighbor Embedding (t-SNE)
technique [61] was used to visualize high-dimensional data
into a low-dimensional space of two dimensions. The dataset
is then visualized the distribution in Figure 16. The dataset is
available upon request.
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FIGURE 15. Stained objects in the dataset: (a) Healthy RBC, (b)-(e)
artefacts, (f)-(j) Ring Form, (k)-(o) Trophozoite and (p)-(t) Schizont.

FIGURE 16. Data distribution of the dataset.

B. PROPOSED FRAMEWORK
In this study, we divided the evaluation of the proposed
method into three parts:

• The performances of the classification methods were
evaluated. We demonstrated that using multiple fea-
ture representations, especially using a combination of

FIGURE 17. Proportions of classes in dataset.

user-defined image features and deep-learned features,
would give a better performance than using either one
of the described feature sets. We discussed the results
of feature evaluation by WELM and obtained the top
three features that yielded the highest evaluation metric
scores. Furthermore, these top three features were used
and evaluated by four selected methods, which are MLP,
LDA, SVM, and WELM.

• The performances of the whole process (both count-
ing and classification stages) was evaluated. The best
method and its features obtained from the previous part
were used.

• Furthermore, the most robust method was compared
with various conventional methods on an additional
Maralia dataset [57]. The dataset consists of 27,558 sam-
ples of Parasitized and uninfected cells.

C. EXPERIMENTAL SETTINGS
In this experiment, we divided the dataset into training and
test sets. The size of the training set was 90% of the entire
dataset and the size of the test set was 10%. A simple random
sampling approach, which is commonly used, efficient, and
easy to implement [35], [62], [63], was used to partition the
data into ten sets with different random seeds. We reported
the average scores and standard deviation values of these ten
runs.

The data in the training set comprised 20,923 samples:
20,061 samples of Healthy RBCs and 862 samples of infected
RBCs with identical proportion of members in each class
on whole dataset. Noting that, the set was highly imbalance,
i.e., 96% of all data in the training set were data of the Healthy
RBCs class, which is the easiest class to classify. Therefore,
we needed to reduce the burden of computational cost and
fixed the imbalance problem by randomly undersampling
samples from the class of Healthy RBCs such that the num-
ber of samples in this class was cut down to 862 samples,
the same number as the number of samples in the infected
RBCs class. Hence, the total number of samples in the
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adjusted training set was only 1,724. It is noted that the sam-
ples in the three infected classes remained the same and were
used entirely to train the model due to the limited number of
samples for those infected classes in the training set. Thus,
the class ratio of the training set was 862:393:294:175 for
Healthy:Ring Form:Trophozoite:Schizont that still caused an
imbalance problem.

In this study, we utilized an efficient classification method,
WELM to classify malarial blood-stained images into four
classes, namely, Healthy RBC, Ring Form, Trophozoite and
Schizont. WELM is extremely fast, easy to implement, able
to work with highly imbalanced dataset, highly accurate, and
especially consumes low computational resources. Thus, this
method can be practically used in the field where computa-
tional resources are limited. In this paper, we used MATLAB
on MacBook Pro (Model: Late 2013), having a 2.4 GHz
CPU, 256 gigabytes of storage and 8 gigabytes of RAM for
implementing experiments.

We evaluated WELM’s performance against three stan-
dard classification methods: MLP, LDA, and SVM. Each of
these methods has different weaknesses and strengths. For
example, MLP is one of the most widely used classification
methods. Nowadays, MLP have been embedded in many
deep convolutional neural network architectures. LDA is the
simplest method that deals with linear data, so it can be
trained rapidly and there is no hyperparameter to be tuned.
SVM is currently the most widely used classifying method
for numerous applications. It utilizes support vectors that act
as a dividing hyperplane in feature space for classifying data
into classes. Lastly, WELM is a classifying method based on
a single layer feed forward neural network that can be trained
much faster than any commonANN. It also uses a kernel trick
like the SVM, i.e., using a similarity kernel to transform an
existing feature space into a new feature space. In addition,
it uses a pseudoinverse technique to determine the weights for
the model that provide the lowest error rate.

As for parameter settings, there are three methods of
which parameters need to be tuned. For MLP algorithm, two
parameters need to be tuned: the number of hidden layers
and the number of hidden nodes. For our setting, we set
the number of hidden layers to be one because the image
dataset was small but the number of features was high, too
many layers might lead to a model overfitting problem and
waste higher computational resources [64] that may not be
available in a field work. The number of hidden nodes was
set to [8, 16, 32, 64, 128, 256, 512]. For SVM, only one
parameter was tuned: regularizing C . For this experiment,
it was set to [10−6, 10−5, . . . , 105, 106]. For WELM, two
parameters were tuned: regularizing C which was set to
be [10−5, 10−4, . . . , 104, 105] and the percentage of hidden
nodes which was in the range of [10, 20, . . . , 90, 100%].
We then used a ten-fold cross validation procedure to find the
optimal parameters for each experiment. Thus, all parameters
would be changed depending on the data that we obtained
from random picking for each experiment. For the kernel
tricks used in these methods, a linear kernel was embedded

TABLE 3. Abbreviations of features.

TABLE 4. Abbreviations of concatenated features.

in LDA and SVM while a Euclidean kernel was embedded
in WELM. Since WELM works with similarity weight, for
a fair comparison, we selected Euclidean kernel, which is
a linear kernel that works with similarity weight. Both of
these kernels are based on an algebraic operation called dot
product [65].

VI. RESULTS AND DISCUSSIONS
A. EVALUATION THE PERFORMANCE OF CLASSIFICATION
METHODS
We illustrated the performance of comparable methods, fea-
tures and classification approaches, particularly, the most
robust method in this section. The experimental results are
the average of 10 runs and of two approaches, M1 and M2.
Tables 3 and 4 list the abbreviations of features used in both
experiments. These features are divided into three groups:
Deep features (DF), Image features (IF) and Concatenated
features (CF).

1) A COMPARISON OF FEATURES PERFORMANCE
Table 5 lists the performance metrics achieved by the average
across two classification approaches,M1 andM2,with 23 dif-
ferent features sets. The WELM algorithm was evaluated
with various kinds of metrics in order to show the degrees
of different capabilities of the model clearly. These metrics
are as follows.
• Accuracy: accuracy is a standardmetric which is the per-
centage of the number of correct predictions; however,
it is not good for evaluating imbalance datasets because
the numbers of samples in different classes in this kind
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TABLE 5. Performance metrics achieved by each set of features. There are three types of features: deep features, image features and concatenated
features. The metric for the best feature of each type is underlined, while the metric for the best feature among all types of features is marked in bold.

of dataset may be widely different, thus it is possible that
the accuracy value may be influenced strongly by only
one large class in the dataset.

• AUC: the area under the receiver operating characteristic
curve (AUROC) is the area under a curve of true positive
rate versus false positive rate that can be used well as a
metric for methods operating on imbalance datasets.

• MCC:Matthews correlation coefficient (MCC) is a met-
ric that was formulated for evaluating the quality of
binary classification; it was designed to be used as a bal-
anced measure that can be used on imbalance datasets.
The equation takes into account all true positive (TP),
true negative (TN), false positive (FP) and false nega-
tive (FN) results. MCC can be directly calculated from
a confusion matrix as follows:

MCC=
TP× TN−FP× FN

√
(TP+FP)(TP+FN )(TN+FP)(TN+FN )

.

(16)

• Sensitivity: some call this metric a TP rate or recall; it
is the rate of correctly identified TP predictions to all
positive outcomes.

• Specificity: some call this metric a TN rate or selectivity;
it is the rate of correctly identified negative predictions
to all negative outcomes.

• F1-score: this score is a harmonic mean of precision
and sensitivity; it can be used as an overall performance
metric.

• Rank-sum: it is the sum of the ranks that a tested fea-
ture could achieve in several runs; twenty three can-
didates were ranked in an ascending order in 10 runs
(observations), which the lower performance results was
ranked first to the higher performance results, thus the
ideal rank-sum is 230. This rank-sum order would be
validated by a statistical significance method called
‘Kruskal-Wallis one-way analysis of variance by ranks
test H ’ or ‘one-way ANOVA on ranks’. This validating
method was used for testing whether candidates were
from identical populations or not by comparing the
medians of the groups [66]. In this experiment, we used
F1-scores for overall score measurement; they were the
input into the Kruskal-Wallis method. The output of the
method was a statistically significant level of p < 0.001.
Thus, each feature in this experiment had a different
continuous distribution significantly.

As shown in Table 5, using each DF1 and DF2 individual
feature as a deep feature provided nearly the same outcomes
for every kind of metrics. This was not so with image features
where the IF3 texture feature provided a better outcome
compared to those provided by the individual color or shape
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FIGURE 18. Processed images of a malaria-infected RBC.

FIGURE 19. Comparative performances of individual and concatenated
features.

feature. On the other hand, the CF1, CF4 and DF1 features,
respectively, gave the best outcomes, CF1 combining a deep
feature with color features—DF1 and IF1—got the highest
scores for almost all of the metrics. Note that using the deep
feature together with the color feature as input tended to give
a better classification outcome than using the other features
or combinations of features because the deep feature pro-
vided information that was similar to that provided by shape
features, deep features can provide more information than
shape features can, for example, RBC contour and shapes
of malarial parasites and also shape of surface of objects
as shown in Figure 18b. Thus, using it together with the
color feature, the available information was more complete
and more useful. Figure 19 illustrates an example from the
experimental results showing that using a concatenated fea-
ture consisting of the two features mentioned above provided
a better classification outcome than any single individual
feature could. Specifically, by using the concatenated feature
consisting of DF1 and IF1, the entire set of images were
retrieved, but only some of the images were retrieved when
any individual feature alone was used. Another point to be
noted is that the shape feature, IF2, tended not to provide a
good result. The shape featurewas able to capture the shape of
RBCs but only some parts of malarial parasites were detected
which had the same circular shape with RBC but smaller,
which might be ascribed the underlying deficiency to the

TABLE 6. Abbreviations of combinations of M1 and M2 approaches of
four methods and the top three features.

shapes of all blood cells being not very different, and so the
outcome was vague as shown in Figure 18c.

2) A COMPARISON OF WELM WITH THE BEST THREE
FEATURE SETS AGAINST OTHER METHODS
The previous section reports the features that gave the best
classification outcomes. This section reports the results of
using the top three feature sets with some of the standard clas-
sification methods: MLP, LDA, SVM, and WELM. In order
to make the results listed in every table and figure hereafter
easier to follow, a list of abbreviated indexes identifying every
method is shown in Table 6.

Figure 20 shows an error plot of F1-scores achieved
by all methods listed in Table 6. Please note that the
scores and standard deviations achieved by methods under
M1 and M2 approaches are shown as blue and red lines,
respectively and that the three best features described in
section VI-A1–CF1, CF4 and DF1–that gave the best results
in Table 5 were used in the experiment in Section VI-A2.
It can be observed that the WELMM1-CF1 model achieved
the highest F1-score at 87.95±1.79. In contrast, the
MLPM1-CF4model achieved the lowest score at 66.67±11.13.
The most stable model was LDAM1-DF1 which achieved
an F1-score of 86.01 and a very low standard deviation
of ±1.08. It should also be noted that the models can be
clearly separated into two groups: a group of MLP models
with a mean F1-score in the range of 66–73 and another
group of models from other methods with a mean score in
the range of 85–88. A possible reason that MLP models
did not perform as well as models from other methods was
that MLP typically needs to learn from a large amount of
data for each malarial stage and this study investigated four
malarial stages but there was not a lot of data for each stage.
Another reason was that the size of the training features
was at least 1,000 variables for DF2 and the maximum size
was 7,168 variables for CF18. Therefore, the training data
was high dimensional in features but its sample size was
small. There was a cause of a small-sample-size problem that
may lead to a high chance of overfitting due to the large
size of features that did not properly match with the size
of the training data [67]. Evidently, the trend that the test
errors were higher than the training errors can be clearly
seen in Figure 21, signifying that the models were actually
overfitted and did not fully converged. All of these reasons
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FIGURE 20. Plotting of F1-scores together with the standard deviations of
ten experiments on MLP, LDA, SVM and WELM and two approaches; the
scores and standard deviations for M1 approach are blue lines while
those for M2 approach are red lines.

FIGURE 21. Bar charts of training and test errors of M1 and
M2 approaches with MLP method.

could explain why the models from MLP did not perform
well.

Figure 22 displays confusion matrices of the top and
bottom two performers, WELMM1-CF1, WELMM2-CF1,
MLPM1-CF3 and MLPM1-CF1, respectively. It can be seen
that all four models were nearly equally successful at classi-
fication samples of the Healthy RBC class, which were the
easiest to be classified, at 96–98% rate, and their retrieval
accuracies for samples of the Healthy RBC class were also
very close. However, the effectiveness of the models cannot
be judged by the overall accuracies shown in the matrices in
this table due to the imbalance of the dataset where the overall
accuracies were based mostly on the 97–98% accuracy of
the Healthy RBC class alone. More weight should be given
to the accuracies identification Infected class identification

TABLE 7. F1-scores of M1 and M2 approaches by four machine learning
techniques on the top three features.

results: Ring Form, Trophozoite and Schizont. When infected
classes are considered, it can be observed that every model
was able to retrieve samples of Trophozoite and Schizont
nearly equally well. The Ring Form class was the excep-
tion, of which the retrieval was clearly less effective. Most
frequently, the models would misclassify samples of the
Ring Form class as those of Healthy RBC class because
the images of RBC in the Healthy RBC class often had
‘‘color-staining’’ artefacts from the step of blood smearing
on a slide. Frequently, these artefacts could be mistaken as
malarial parasites in their ring form stage and thus confused
the models. This kind of confusion also happens to expert
interpretation results. Examples of these problematic images
are shown in Figure 23.

3) A COMPARISON OF CLASSIFICATION APPROACHES
The comparative performances, in terms of F1-score, of those
M1 and M2 approaches are shown in Table 7. The 12 meth-
ods of each approach were tested 10 times. It can be seen
that the 12 methods of the M1 approach achieved a higher
F1-score than the 12 methods of the M2 approach for 61 out
of 120 runs. However, the mean F1-score achieved by the
methods in theM2 approach was higher than that achieved by
the methods in the M1 approach. In addition, the result from
a two-sample t-test indicated that the mean scores from both
approaches were not significantly different at p = 0.5161;
therefore, we concluded that M1 and M2 approaches per-
formed equally well in terms of F1-score.

4) A COMPARISON OF MOST ROBUST METHODS
The performances of all methods were sorted according to
the sum of their F1-score ranks of 10 runs and are shown
in Figure 24. The reliability of the ranked order was statis-
tically evaluated with a tool called Kendall’s Coefficient of
ConcordanceW,

W =
12

∑N
i=1 R̄

2
i − 3N (N + 1)2

N (N 2 − 1)
, (17)

where R̄ is the average ranked order of the i-th can-
didate and N is the number of candidate methods
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FIGURE 22. Confusion matrices of the top two performers, WELMM1-CF1 and WELMM2-CF1, and the bottom two performers,
MLPM1-CF4 and MLPM1-CF1.

FIGURE 23. Images of Healthy RBCs with artefacts which were predicted
as parasites of the Ring Form stage.

(equals to 24 here). The value of W found was 0.6984
which was transformed into a χ value by the following
equation,

χ2
= k(N − 1)W , (18)

where k is the number of experiments (equals to 10). The χ2

value obtained was 160.64 which indicates that the ranked
order shown in Figure 24 was reliable at a confidence level
of 99.9%.

Furthermore, it can be seen that the most robust model
in this study was WELMM2-CF1 of which the sum of
its ranked order was only 48 from 10 experimental runs
of 24 methods, followed byWELMM1-CF1, WELMM1-CF4,
and WELMM2-CF4, respectively. The sums for these three
latter methods were nearly the same at about 50. Not
surprisingly, the worst methods were MLPs of which
the sums were over 200 because of overfitting prob-
lem. However, the approaches (M1 and M2) of each
method provided nearly the same ranked order in total
agreement with the obtained classification statistics shown
in Table 7.

FIGURE 24. Sums of ranked order in terms of F1-score performance,
reported as stacked bars in descending order of 10 experiments.

B. EVALUATION THE PERFORMANCE OF WHOLE
PROCESS OF PROPOSED SYSTEM
In this section, we evaluate the proposed system described
in section IV in order to count and classify RBCs in blood
film images. The best classification method obtained from
Section VI-A4 was used in the proposed system.

1) EVALUATION OF RBCs COUNTING TASK
We evaluate the performance of the system on 60 ran-
domly selected film images. The performance is reported
in Table 8. It can be seen that our system can efficiently per-
form segmentation and count with the correct identification
of 9,218 out of 9,420 RBCs that is equivalent to 97.86%
accuracy. We found that the main problem of this task is
the blood film staining quality. The proposed system can
highlight RBCs and parasites in blood films but also misclas-
sified those artifacts and spot of noises as well. The three
percentages of error of this experiment mostly came from
mistreated artifacts, as shown in Figure 23, and miscounting
a clump of RBCs as one.
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TABLE 8. Accuracy of counting performance of the proposed system.

2) EVALUATION OF RBCs CLASSIFICATION TASK
To complete the classification of malarial infected stages,
the 9,218 countable RBCs from the prior process will be
classified using the most robust method, WELMM2-CF1.
However, we were unable to assign infection stage classes
to 19 RBCs due to ambiguity. Therefore, we allocated

TABLE 9. Proposed system prediction accuracy.

them to the unknown class. We reported the experimental
results of the proposed system in two aspects—evaluated
with and without unknown class—as shown in Table 9.
The performance metrics used in this table is the accuracy
of each class. It performed nearly 100% accuracy, espe-
cially on the classification of Trophozoite which is 99.64%.
In overall picture, the system can achieve 95.99% and
96.18% accuracy for counting with and without unknown,
respectively.

In addition, we fine-tuned the AlexNet model by training
the last three layers of the architecture to differentiate four
classes i.e. Healthy RBC, Ring Form, Trophozoite and Sch-
izont. Themodel was trained for 10 epochs with 8 batch sizes.
The accuracy that it achieved was compared to that from the
most robust model, WELM, as shown in Table 9. It can be
seen that WELM yielded a higher average accuracy score for
three out of four classes. Therefore, it was remarkable that
AlexNet was able to recognize Ring Form class at three more
percent higher accuracy.

C. EVALUATION OF THE ADDITIONAL DATASET
We have proved the performance of our method by evalu-
ating it on another dataset from Lister Hill National Cen-
ter for Biomedical Communications (LHNCBC), part of
National Library of Medicine (NLM), US [57], against com-
parable traditional methods, i.e., WELM, MLP, SVM and
ELM [68]. Two different types of the kernel function—
Linear and Radial Basis Function (RBF)—were employed
in SVM, here, we refer as Linear-SVM and RBF-SVM,
respectively. This dataset contains 27,558 cell images and
consists of two classes: Healthy RBC and Infected RBC. The
dataset wasmadewith a balanced number of samples between
classes.

The experiment was run with five-fold split tests at the
patient-level. The performance results were reported as con-
fusionmatrices in Figure 25. According to the Figure,WELM
still performed very well—obtaining the highest overall accu-
racy. It yielded the highest recognition rate of Infected RBC
class at 94.6%. Besides, MLP could recognize the Healthy
RBC class with the same level of accuracy as WELM
at 93.5%. The worst one was Linear-SVMwhich got a 92.3%
overall score and also got the lowest recognition rate of
Healthy RBC class at 90.2%. The overall score could be
ranked as those from WELM, MLP, RBF-SVM, ELM and
Linear-SVM, respectively. Thus, the most robust method on
this dataset was WELM.
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FIGURE 25. Confusion matrices of comparable methods perform on additional dataset.

VII. CONCLUSION
An automated malaria parasite detection system for a
Giemsa-stained thin-film image was presented. The pro-
posed image processing system can count and classi-
fied both healthy and malaria-infected RBCs. The system
could achieve as high as 96.18% accuracy. In this work,
we employed both user-defined image features (i.e., color,
shape, texture) and deep-learned features in the RBCs clas-
sification task. Deep-learned features were extracted from
a pre-trained deep convolutional neural network named
AlexNet. The 23 different sets of features were evaluated
and compared using various methods, including MLP, LDA,
SVM, WELM. It was found that a combination of color fea-
ture and deep-learned (AlexNet_FC7) features could enhance
the overall performance of the task, conveying the need of
a combination of obvious image feature with deep-learned
features. We also showed that WELM in conjunction with
a combination of color and AlexNet_FC7 features is the
most robust method for this task. For future work, we aim
to (i) enhance our system to be able to classify more malar-
ial species, such as P.vivax, P.ovale, and P.malariae, and
(ii) perform semantic segmentation for RBC in order to
eliminate the background instead of using standard image
processing techniques that contain many tuning parameters.
Furthermore, we also aim to make an explainable-AI system
for malaria domain. A black-box approach and its decision
cannot be explained. However, users of a system, such as

doctors or patients, need to understand the origin of the
problems and to retrace the decisions made by the system.
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