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Advancements in Nanopore
Technology: Interrogating DNA,
Unveiling Proteins, and Predicting
Disease with Machine Learning
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Solddnescu, |.; Lobiuc, A.; Covasa, M.; Dimian, M. Detection of Biological Molecules Using
Nanopore Sensing Techniques. Biomedicines 2023, 11, 1625.
https://doi.org/10.3390/biomedicines11061625
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Polynucleotides Using Solid-State Nanopore with Al-Assisted Detection and Classification: Implications for Understanding Disease Severity. ACS Applied Bio Materials, 7(2), pp.1017-1027.
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* Nanopore technology revolutionized '|'_o
DNA sequencing, enabling rapid and Sy ]
cost-effective analysis of DNA.

* It allows for real-time, single-molecule

Biomarker identification and quantification
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Biomarkers

analysis, providing insights into
biological processes at a level of detail
previously unattainable.

* Nanopores have diverse applications
beyond DNA sequencing, including
protein analysis, drug discovery, and
biomarker detection.
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Ying, Y.L., Hu, Z.L., Zhang, S., Qing, Y., Fragasso, A., Maglia, G., Meller, A., Bayley, H., Dekker, C. and Long, Y.T., 2022.
Nanopore-based technologies beyond DNA sequencing. Nature nanotechnology, 17(11), pp.1136-1146.
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Principle of DNA sequencing using nanopores
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Advantages Over Traditional Sequencing Methods

Real-Time Analysis: Eliminating the need for time-
consuming library preparation and post-sequencing
processing.

Single-Molecule Sensitivity: Detection of rare mutations
and structural variations that may be missed by bulk
sequencing methods.

Portability and Accessibility: Expanding the reach of
genomic research and diagnostics.

Long Read Lengths: Assembly of complex genomes and
the analysis of repetitive regions.

Cost-Effectiveness: More accessible to researchers and
clinicians with limited budgets.

Versatility: Amino acids, nucleic acids, including DNA,
RNA, and modified bases, offering versatility for various
research and diagnostic applications.
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ABSTRACT: This study utilized solid-state nanopores, combined

with artificial intelligence (AI), to analyze the double-stranded i —
polynucleotides encoding angiotensin-converting enzyme 2, receptor- o
binding domain, and N protein, important parts of SARS-CoV-2 ﬁ
infection. By examining ionic current signals during DNA trans- 1
location, we revealed the dynamic interactions and structural
characteristics of these nucleotide sequences and also quantified
their abundance. Nanopores of sizes 3 and 10 nm were efficiently o N
fabricated and characterized, ensuring an optimal experimental 1 IR & TR
approach. Our results showed a clear relationship between DNA — !.'b' == 'sgm— "
capture rates and concentration, proving our method’s effectiveness. “." _I = e
Notably, longer DNA sequences had higher capture rates, suggesting
their importance for potential disease marker analysis. The 3 nm
nanopore demonstrated superior performance in our DNA analysis. Using dwell time measurements and excluded currents, we were
able to distinguish the longer DNA fragments, paving the way for a DNA length-based analysis. Overall, our research underscores the
potential of nanopore technology, enhanced with Al, in analyzing COVID-19-related DNA and its implications for understanding
disease severity. This provides insight into innovative diagnostic and treatment strategies.

KEYWORDS: solid-state nanopore, SARS-CoV-2, single-molecule analysis, DNA translocation, capture rate, excluded current
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Highlights

- Nanopore technology and artificial
intelligence (Al) used to investigate double-
stranded polynucleotides of ACE2, RBD, and N
protein

- Analysis of ionic current signals reveals
interactions and structures of these DNA
sequences

- Al enhances accuracy and depth of
observations, determining prevalence of
specific sequences

- Findings provide foundation for developing

new diagnostic and treatment strategies for
COVID-19

Alam, |., Boonkoom, T., Pitakjakpipop, H., Boonbanjong, P., Loha, K., Saeyang, T., Vanichtanankul,
J. and Japrung, D., 2024. Single-Molecule Analysis of SARS-CoV-2 Double-Stranded
Polynucleotides Using Solid-State Nanopore with Al-Assisted Detection and Classification:
Implications for Understanding Disease Severity. ACS Applied Bio Materials, 7(2), pp.1017-1027.
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Detection and Classification: Implications for Understanding Disease Severity. ACS
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Lucas, F.L.R., Versloot, R.C.A., Yakovlieva, L. et al. Protein identification by nanopore peptide profiling. Nat Commun 12,5795 (2021).
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Solid-state nanopore analysis of Human Serum /Glycated Albumin.
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Rondeau, P. and Bourdon, E., 2011. The glycation of albumin: structural and
functional impacts. Biochimie, 93(4), pp.645-658.
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Nanopore Arrays: Development of nanopore arrays for parallel sequencing, increasing throughput and reducing
sequencing time.

Improved Base Calling: Advancements in base calling algorithms for higher accuracy and better handling of difficult
seguences, such as repetitive regions.

Nanopore Protein Sequencing: Progress in nanopore technology for direct sequencing of proteins, enabling rapid and
accurate protein analysis.

Nanopore-Based Epigenetic Analysis: Use of nanopores for studying epigenetic modifications, such as DNA methylation
and histone modifications, providing insights into gene regulation.

Single-Molecule Imaging: Advancements in nanopore imaging techniques for real-time visualization of single molecules,
expanding applications in structural biology and drug discovery.

Integration with Microfluidics: Further integration of nanopores with microfluidic devices for automated sample
preparation and analysis, improving workflow efficiency.

Clinical Diagnostics: Continued development of nanopore-based diagnostic tools for personalized medicine, early disease
detection, and monitoring of treatment responses.

Synthetic Biology Applications: Utilization of nanopores in synthetic biology for designing novel biosensors, gene editing
tools, and bioinformatics applications.




Current Challenges:

Accuracy: Nanopore sequencing still faces challenges in achieving the same level of accuracy as other sequencing
methods, particularly in detecting repetitive sequences and base modifications.

Throughput: Despite improvements, nanopore sequencing throughput is lower compared to some high-throughput
seqguencing technologies, limiting its applicability in large-scale studies.

Cost: While nanopore sequencing is cost-effective for certain applications, the overall cost, including equipment and
reagents, can be a barrier for widespread adoption.

Signal-to-Noise Ratio: Maintaining a high signal-to-noise ratio is crucial for accurate base calling, and noise levels can
vary depending on the sample and experimental conditions.

Strategies for Overcoming Limitations:

Improving Base Calling Algorithms: Continued development of base calling algorithms to enhance accuracy, especially
in challenging regions of the genome.

Enhancing Nanopore Technology: Research efforts focused on improving nanopore design and materials to increase
throughput and reduce error rates.

Cost Reduction: Streamlining workflows and reducing the cost of reagents and consumables to make nanopore
sequencing more affordable.

Noise Reduction: Developing methods to reduce noise levels and improve signal-to-noise ratio for more accurate
sequencing results.
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