

การแพทย์จีโนมิกส์สู่การวินิจฉัยและ การรักษาที่แม่นยำ

Assistant Prof. Khunton Wichajarn, M.D.

Division of Medical Genetics, Department of Pediatrics

KKU Rare Diseases Center

Center of Excellence in Precision Medicine Srinagarind Hospital

Srinagarind Excellence Lab (Newborn Screening Lab)

Faculty of Medicine, Khon Kaen University

	Number of patients	%	Positive results	%
Sex				
male	178	55.28	58	32.58
female	144	48.57	65	45.14
Singleton WGS	47	14.60	16	34.04
Duo WGS	63	19.57	24	38.10
Trio WGS	190	59.00	72	37.89
Large family WGS	22	6.83	11	50.00
All (all participants)	322 (834)		123	38.08

Diagnostic Yield 38.08%

Mode of inheritance

Diagnostic yield of WGS across various phenotypic categories

Phenotypic categories	number of patients	positive results	%positive
Pulmonology	1	1	100.00
Skin	7	4	57.14
Neurology and developmental delay	87	45	51.72
Gastroenterology and hepatobiliary system	18	8	44.44
Craniofacial anomalies	13	5	38.46
Endocrinology	13	5	38.46
Multiple anomalies	47	17	36.17
Nephrology	15	5	33.33
Cardiology	18	6	33.33
Ophthalmology	24	7	29.17
Metabolic disorders	23	6	26.09
Musculoskeletal system	27	7	25.93
Hematology	24	6	25.00
Immunology	5	1	20.00

Case I Recurrent infantile onset encephalopathy

- G1 เสียชีวิตตอน 3 เดือนเป็น influenza A + acute necrotizing encephalitis
- G2 เสียชีวิตตอน 7 เดือน acute encephalopathy MRI brain: bilateral symmetrical basal ganglia lesion
- G3 ทารกแรกเกิดปกติ แต่ตรวจพบ lactate 34.8 mg/dl

MRI brain at 8 months: Symmetric abnormal increased SI on T2/FLAIR at bilateral lentiform nuclei (more prominent at putamina), caudate nuclei, thalami, and periaqueductal region. Diffusion restriction involving bilateral putamina and caudate nuclei are seen

Biotin-Thiamine-Responsive Basal Ganglia Disease

Treatment of Manifestations in Individuals with BTBGD

Manifestation/ Concern	Treatment	Considerations/Other
Acute encephalopathy	ICU care incl treatment of seizures & ↑ intracranial pressure	Empiric treatment w/antimicrobial/antiviral agents recommended until infectious causes of acute/subacute encephalopathy are ruled out
Neurologic disorder	 Both biotin & thiamine oral therapy: Biotin: 5-10 mg/kg/day Thiamine: ≤40 mg/kg/day; max of 1500 mg/day 	 Note: Some persons respond only to thiamine. Lifelong treatment w/biotin & thiamine required During acute decompensation thiamine may be ↑ to 2x regular dose & given intravenously.
	Fever control	Fever exacerbates the disease.
Seizures	Anti-seizure medication to control seizures	Avoid sodium valproate.
Dystonia	Symptomatic treatment incl trihexyphenidyl or L-dopa	
Developmental delays	Rehab, PT, OT, speech therapy, & educational programs adapted to individual needs	
Social	Education of family re importance of lifelong compliance w/medical therapy	

Felhi R, Sfaihi L, Charif M, Frikha F, Aoiadni N, Kamoun T, Lenaers G, Fakhfakh F. Vitamin B1 deficiency leads to high oxidative stress and mtDNA depletion caused by SLC19A3 mutation in consanguineous family with Leigh syndrome. Metab Brain Dis. 2023 Oct;38(7):2489-2497. doi: 10.1007/s11011-023-01280-w. Epub 2023 Aug 29. PMID: 37642897.

Tabarki B, Al-Hashem A, Alfadhel M. Biotin-Thiamine-Responsive Basal Ganglia Disease. 2013 Nov 21 [Updated 2020 Aug 20]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK169615/

Case II

- เด็กหญิงอายุ 1 ปี 8 เดือน มีพัฒนาการช้ารอบ ด้าน นั่งได้ตอน 7-8 เดือน คลานได้ตอน 1 ขวบ เกาะยืน 1.2 ปี พูดเป็นคำ ๆ ได้ 5-6 คำ
- ตรวจร่างกายไม่พบความผิดปกติ
- Chromosome study : 46,XX

MRI brain: Diffuse high SI in T2W involving subcortical, deep white matter of bilateral cerebral hemispheres and posterior limb internal capsule. There is abnormal high SI in T1W and low SI in T2W involving both thalami. DDx 1) gangliosidoses 2) Krabbe disease

- Compound heterozygous c.671del, p.Pro224LeufsTer3 (pathogenic) and c.1304_1305delinsC, p.Asp435Alafs*26 (likely pathogenic) in *FUCA1*
- Diagnosis: Fucosidosis

Fucosidosis

Michalski JC, Klein A. Glycoprotein lysosomal storage disorders: alpha- and beta-mannosidosis, fucosidosis and alpha-N-acetylgalactosaminidase deficiency. Biochim Biophys Acta. 1999 Oct 8;1455(2-3):69-84. doi: 10.1016/s0925-4439(99)00077-0. PMID: 10571005.

Table I. Lysosomal storage diseases with defects in proteases or catabolism of glycoproteins

Disorder	Enzymic defect
Fucosidosis	α-L-fucosidase (E.C. 3.2.1.51)
Sialidosis (mucolipidosis I)	N-acetyl-α-neuraminidase (E.C. 3.2.1.18) (sialidase)
G _{M1} -gangliosidosis	β-D-galactosidase (E.C. 3.2.1.23)
Sandhoff disease	β-D-hexosaminidase A and B (E.C. 3.2.1.30)
x-Mannosidosis	α-D-mannosidase (E.C. 3.2.1.24)
3-Mannosidosis	β-D-mannosidase (E.C. 3.2.1.26)
Aspartylglucosaminuria	<i>N</i> -(β- <i>N</i> -acetylglucosaminyl)-1-asparaginase or aspartylglucosaminidase (E.C. 3.5.1.26)
Schindler (Kawasaki) disease	α -N-acetylgalactosaminidase (α -D-galactosidase B) (E.C. 3.2.1.49)
-cell disease and pseudo-Hurler polydystrophy mucolipidosis II and III)	UDP-N-acetylglucosamine-1-phosphotransferase leading to multiple enzyme deficiencies
Galactosialidosis -	Protective protein/cathepsin A (E.C. 3.4.16.1)
Papillon-Lefevre syndrome	Cathepsin C (E.C. 3.4.14.1)
Dvine and murine ceroid lipofuscinosis	Cathepsin D (E.C. 3.4.23.5)
Pycnodysostosis	Cathepsin K
nfantile neuronal ceroid lipofuscinosis	Palmitoyl protein thioesterase
Late infantile neuronal ceroid lipofuscinosis	Tripeptidyl peptidase 1

Fig. 2. The main forms of attachment of carbohydrate to protein in mammalian cells.

Winchester B. Lysosomal metabolism of glycoproteins. Glycobiology. 2005 Jun;15(6):1R-15R. doi: 10.1093/glycob/cwi041. Epub 2005 Jan 12. PMID: 15647514.

Constant	FUC 41 Dath	nia	Ethnia	Conder/NI-		Phen	otype		
Set ¹	Variant(s) and Zy	gosity	Origin (pts)	of Cases	Family History	Developmental History	Additional Clinical and Enzymatic Findings	Disease Type	Ref.
G6	c.437delC, p.(Pro146Argfs*41)	hmz	Italian (8)			NA			[27]
G7	c.459G > A, p.Trp153*/ entire gene del, loss of protein	htz comp	Japanese (1)	Female	Non-consan- guineous parents	At 23 months: delayed speech and hearing difficulty. At 3 years and 7 months: coarse face, small stature and kyphoscoliosis. At 4 years: angiokeratoma on the palms, bone abnormalities and motor dysfunction gradually progressed. At age 6 years: unable to walk, myoclonic seizures developed. At age 13 years: spasticity and dystonia of all extremities with involuntary, movements, generalized angiokeratoma corporis diffusum, no hepatosplenomegaly or pubertal development.	α-L-fucosidase in leukocytes (0 nmol/h per mg protein compared with 29.1 ± 4.7 nmol/h per mg protein in control).	Chronic, slow progressive	[32]
G8	c.464C > T, p.Ser155Phe/c.790C > T, p.Arg264*	htz comp	Spanish or Portuguese (1)			NA			[33]
G9	c.467_468delAA, p.(Lys156Argfs*11)/ c.1160G > A, p.Trp387*	htz comp	Italian (1)			NA	All patients had negligible enzyme activity and reduced CRIM.	Not classified	[34]
G10	c.525-76_663- 163del3282, p.?/c.671delC, p.(Pro224Leufs*3)	htz comp	Thai (1)	Male	Non-consanguineous parents	Until 2 years of age: milestones reportedly attained within normal limits. At age 3 years and 6 months: psychomotor regression (lost his ability to communicate verbally, had spasticity in which the lower extremities were more affected than the upper). Growth parameters and development continued to deteriorate At 7 years: bed-ridden, coarse facial features with macroglossia. At age 9 years: angiokeratomas.	Brain MRI: increasing degrees of cerebral atrophy with significant signal changes in the thalamus. Chest X-ray: oar-like ribs, bullet-shaped vertebrae, and widening of both clavicular heads.	Not classified	[35]
G11	c.564G > A, p.Trp188*	hmz	Austrian (1)						[30]
G12	c.648C > A, p.Tyr216*	hmz	Belgian (1)	-		NA			[27]

Case III

- เด็กหญิงอายุ 6 ปี มีประวัติ recurrent
 hypoglycemia lactic acidosis และ
 ketosis ตั้งแต่ภายหลังคลอด อาการจะดีขึ้น
 หลังได้รับสารน้ำ
- ช่วงอายุ 1 ปีแรกมีปัญหาน้ำตาลในเลือดต่ำ หลายครั้ง ร่วมกับมี severe wide anion gap metabolic acidosis, hyperlactatemia

Birth

hypoglycemia

seizure

- Urine organic acid: tiglyglycine
- Dx: Beta-ketothiolase deficiency?

Biochemical Pa	rameters of Dis	orders in the Differential D	iagnosis of	Fructose-1,6-	Bisphosphat	ase Defi	ciency
Biochemical Parameter	FBP1	ВКТ	HFI	GSDI	PCD	FAOD	Respiratory Chain Defects
↑ lactate	Fasting	During crisis	Fasting	Permanent, also increased w/fasting	Permanent	Fasting	Permanent
Lactate/ pyruvate ratio	20-40	_	-	_	>30	_	>20
Ketosis	↑ ↑/-	↑ ↑	1	↑ ↑/-	†††	_	↑ ↑
Triglycerides	Pseudo- hyper	↑	N	1	Ν	N	N
Glucose	L	L	L	N/L	L/N/H	N/L	L
Ammonia	N	1	N	Ν	† †	1	N/↑↑
Alanine	↑ ↑	Ν	↑ ↑	N	† †	N	↑ ↑
Citrulline	Ν	Ν	Ν	Ν	Н	Ν	Ν
Liver dysfunction (transaminitis)	↑/-	↑	Î	↑	1	N	↑/—
Uric acid	↑	Ν	N	1	N	N	N
Organic acids in urine	Ketonuria, glycerol, glycerol-3- phosphate	2-methylacetocetate, 2- methyl-3- hydroxybutyryl CoA, tiglylglycine	Ketonuria	Ketonuria	Lactate/ ketonuria	↑ C16- C22	Lactate

Bijarnia-Mahay S, Bhatia S, Arora V. Fructose-1,6-Bisphosphatase Deficiency. 2019 Dec 5. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK550349/

Manifestation/ Concern	Treatment	Considerations
Mildly ↑ catabolism (fever, cough, or cold; loose stools; continues to eat; not assoc w/lethargy)	 Restriction of fructose, sucrose, glycerol, & sorbitol ↑ frequency of carbohydrate feedings Intake of glucose polymers 	 Trial of outpatient treatment at home requires good communication between family & providers. Frequent reassessment of patient
Ketonuria		An early indicator of impending crisis

Acute In-Patient Treatment in Individuals with Fructose-1,6-Bisphosphatase Deficiency

Manifestation/ Concern	Treatment	Considerations
Hypoglycemia	 IV glucose bolus (2 mL/kg of 10% dextrose) followed by continuous infusion of glucose at high rates (10% dextrose infusion) Transition to oral/enteral feeds as clinically tolerated 	The symptoms of acute illness typically subside soon after administration of IV dextrose & child should recover quickly (w/in hrs), usually w/no residual damage.
Metabolic acidosis	 IV glucose bolus as above If pH remains <7.1 or worsens, administer NaHCO₃ as 1/2 the calculated dose over a 30-min period. Restrict fructose, glycerol, sucrose, & sorbitol. 	 Acidosis usually corrects quickly w/out NaHCO₃ infusion. No consensus exists re restriction of dietary fructose & sucrose.
Hepatomegaly & ↑ transaminases	None	Transient findings that resolve spontaneously

Bijarnia-Mahay S, Bhatia S, Arora V. Fructose-1,6-Bisphosphatase Deficiency. 2019 Dec 5. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK550349/

Case IV

- เด็กชายอายุ 1 ปี มีปัญหาพัฒนาการ ถดถอย ชัก
- ร่วมกับศีรษะโต HC > P97
- มีอาการสะดุ้งตกใจง่ายเวลาได้ยินเสียงดัง
- ตรวจตา ไม่พบ cherry red spot

	Hexosaminidase A Hexosaminidase total
R	Neck 16

	results	unit	Cut-off value
lexosaminidase A	0.6	nmol/h	> 0.6
lexosaminidase total	0.6	nmol/h	> 2.0

MRI: Symmetrical bilateral hypoS1 T1, hyperT2 change or demyelination at bilateral cerebral white matter and both basal ganglia, involving subcortical U fiber and predominate at both frontal lobe. involve caudate nucleus, internal capsule, putamen involvement, T2 hypotense band at periventricular white matter (ventricular Garlands sign). DDx: Alexander disease

СК

Case V

- เด็กหญิงอายุ 14 ปี ไม่มีโรคประจำตัว ถูกส่งตัวมาด้วย ปัญหา acute liver failure ไม่ทราบสาเหตุ
- 1 สัปดาห์ก่อนมาโรงพยาบาล มีอาการท้องเสียถ่าย เหลว 4-5 ครั้งหลังกินส้มต่ำ
- 5 วันก่อนมาโรงพยาบาลมีอาการอ่อนแรง ยกคอไม่ขึ้น ลุกไม่ได้ วินิจฉัย Guillain-Barré syndrome จึง refer มา

El-Gharbawy A, Vockley J. Chapter 14 - Nonmitochondrial Metabolic Cardioskeletal Myopathies. In: Jefferies JL, Blaxall BC, Robbins J, Towbin JA, editors. Cardioskeletal Myopathies in Children and Young Adults [Internet]. Boston: Academic Press; 2017. p. 265–303. Available from:

https://www.sciencedirect.com/science/article/pii/B9780128000403000145

Sex	Female $n = 144$, male $n = 177$ not reported $n = 29$
Identified by newborn screening	2.0% (7/350) patients
Identified by family screening	1.4% (5/350) patients
Acute symptoms	33.1% (111/335) of patients
Chronic symptoms	85.3% (291/341) of patients
Acute and chronic symptoms	20.4% (68/333) of patients
Mean age at onset of symptoms	19.2 years (n = 273)
Mean diagnostic delay	3.9 years (0-29 years)
Asymptomatic	2.6% (9/349) of patients
Deceased patients	5.2% (18/349) of patients
Riboflavin responsiveness	98.4% (256/260) of patients

Grünert SC. Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme A dehydrogenase deficiency. Orphanet J Rare Dis. 2014 Jul 22;9:117. doi: 10.1186/s13023-014-0117-5. PMID: 25200064; PMCID: PMC4222585.

~98% of persons with late-onset MADD respond to riboflavin (100-300 mg/day).

Prasun P. Multiple Acyl-CoA Dehydrogenase Deficiency. 2020 Jun 18. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK558236/ Challenges in implementing WGS from the Genomics Thailand project into healthcare services in Thailand.

Thank you

กธมวิทยาศาสตธ์กาธแพทย์ Department of Medical Sciences

