

NAC2023 oth NSTDA Annual Conference การประหุมวิชาการประจำปี สวทษ. ครั้งที่ ๑๘

Hope and Challenges in ASF vaccine development

Challika Kaewborisuth (D.V.M., Ph.D.) Virology and Cell Technology Research Team (AVCT), BIOTEC, NSTDA

What is in a vaccine?

A biological product that can be used to safely induce an immune response that confers protection against infection and/or disease on subsequent exposure to a pathogen

The difficulties in ASF vaccine research and development

SARS-CoV-2

SARS-CoV-2

Immune response to ASFV infection

Urbano and Ferreira, 2022

Large ASFV genome, 170 - 193kbp and large size of ASFV virion, 200nm.

Complexity of ASFV particle only partially known.

Scarce knowledge related to virulence genes and immune protection.

Gaps in knowledge on virus-host interactions.

Not fully neutralizing antibodies.

Gaps in knowledge regarding immune mechanisms of protection.

Genetic variation among ASFV isolates.

Gaps in knowledge regarding cross protection among ASFV isolates.

Unknown role for most of the genes

Unknown protective immune mechanisms

Unknown protective virus antigens

No commercial vaccine

2

ASF vaccine research and development

Li et al., 2021

ASF vaccine History

Type of vaccine candidate		Percentage of studies
Live attenuated vaccines (LAV)		69%
LAV based on naturally attenuated isolates	24%	
LAV based on cell passages	12%	
LAV based on deleting specific genes	64%	
Inactivated virus vaccines		4%
Subunit protein vaccines		6%
DNA vaccines		6%
Virus vectored vaccines		6%
Combined vaccination strategy		9%

3

Subunit, DNA and virusvectored vaccines

Vaccine strategy	Vaccine candidate (ASFV isolate)	Vector/System	Challenge (ASFV isolate)	Percentage of protection	Reference
Inactivated virus	Pol16/DP/OUT21	-	Homologous (Pol16/DP/OUT21)	0%	(Cadenas-Fernández et al., 2021)
vaccines	Armenia08	-	Homologous (Armenia08)	0%	(Blome, Gabriel, & Beer, 2014)
	E70	Synthetic peptides	Homologous (E70)	0%	(Ivanov et al., 2011)
Subunit protein	Pr4	Baculovirus	Homologous (Pr4)	0%	(Neilan et al., 2004)
vaccines	E75	Baculovirus	Homologous (E75)	100%	(Barderas et al., 2001)
	E75	DNA expression library	Homologous (E75, E75CV1)	50-60%	(Lacasta et al., 2014)
DNA vaccines	E75	pCMV	Homologous (E75)	0-33%	(Argilaguet et al., 2012)
	E75	pCMV	Homologous (E75)	0%	(Argilaguet et al., 2011)
	Georgia 2007/1	Adenovirus	Heterologous (Arm07)	0%	(Cadenas-Fernández et al., 2020)
Virus vectored vaccines	Georgia 2007/1	Adenovirus	Homologous (Georgia2007/1)	20-56%	(Lokhandwala et al., 2019)
	E75	BacMam	Homologous (E75)	67%	(Argilaguet et al., 2013)
	OURT88/3, Benin97/1	r Ad prime + MVA boost	Homologous (OURT88/1)	0-100%	(Goatley et al., 2020)
Combined vaccination	OURT88/3	r Ad prime + MVA boost	Homologous (OURT88/1)	0%	(Netherton et al., 2019)
strategy	Georgia 2001/1, Ba71V	DNA + protein	Heterologous (Arm07)	0%	(Sunwoo et al., 2019)
	Georgia 2007/1	DNA prime + r VACV boost	Homologous (Georgia2007/1)	0%	(Jancovich et al., 2018)

Subunit, DNA and virus-vectored vaccines

• Gene targets

- B- and T-cell immunogenic major structural protein families (e.g., viral proteins comprising or associated with the complex viral envelope and capsid shell),
- nonstructural proteins associated with viral replication and assembly
- a few proteins of predicted but unknown function
- Structural proteins p54, p30, p72 and the hemagglutinin CD2v, and these proteins have traditionally been the main targets of vaccine strategies

Vaccine Type	ASFV Target Protein (Strain)	Number of Immunizations; Dose, Adjuvant	Specific/Neutralizing Antibodies	T Cell Response	Challenge Strain; Dose	Clinical Outcome
Baculovirus-expressed proteins	CD2v (E75CV)	3×; 0.5–1 × 10 ⁷ HAU + Freund's adjuvant	Yes; No	NA	E75; 4×10^2	100% protection, $n = 3/3$
Baculovirus-expressed proteins	p30, p54, p54 + p30 (E75)	3×; 100 μg + Freund's adjuvant	Yes; Yes	NA	E75; 5×10^2	50% protection, $n = 3/6$
Baculovirus-expressed proteins	p54/p30 chimera (E75)	5×; 100 μ g + Freund's adjuvant	Yes; Yes	NA	E75; 5×10^2	100% protection, $n = 2/2$
Baculovirus-expressed proteins	p54 + p30 + p72 + p22 (Pr4)	4×; 200 μg + Freund's adjuvant	Yes; Yes	NA	$Pr4; 10^4$	Slight delay of clinical disease and viremia; No protection, (n = 0/6)
HEK cell-expressed proteins	p72, p54, p12 (Georgia 2007/1)	2×; 200 μg/antigen + TS6 adjuvant	Yes; NA	Some	NA	NA

Table 1. Antigen-based African swine fever virus (ASFV) vaccines evaluated in the swine model.

p30 also referred to as p32; CD2v also referred to as HA = hemagglutinin; NA = not available.

Table 2. DNA-based ASFV vaccines evaluated in the swine model.

 Vaccine Type	ASFV Target Protein (Strain)	Number of Immunizations; Dose	Specific/Neutralizing Antibodies	T Cell Response	Challenge Strain; Dose	Clinical Outcome
DNA (pCMV)	p54/p30 fusion (E75)	3×; 600 µg	No; NA	No	E75; 10 ⁴	No protection, $(n = 0/4; n = 0/4)$
DNA (pCMV)	SLA-II/p54/p30 fusion (E75)	3×; 600 µg	Yes; No	Yes	E75; 10 ⁴	No protection, $(n = 0/4)$
DNA (pCMV)	sHA/p54/p30 fusion (E75)	3× and 4×; 600 μg	Yes; No	Yes	E75; 10 ⁴	No protection, $(n = 0/6)$
DNA (pCMV)	Ub/sHA/p54/p30 fusion (E75)	2× and 4×; 600 μg	Not detectable	Yes	E75; 10 ⁴	Partial protection, (2 immunizations, $n = 2/6$; 4 immunizations, $n = 1/6$)
DNA expression library	80 ORFs fragments fused with Ub (Ba71V)	2×; 600 μg	Yes-after challenge; NA	Yes-after challenge	E75; 10 ⁴	60% protection, (<i>n</i> = 6/10)

p30 also referred to as p32; CD2v also referred to as HA = hemagglutinin; sHA = extracellular/soluble domain; Ub = cellular ubiquitin; SLAII = swine leukocyte antigen class I molecule; pCMV = plasmid under cytomegalovirus promotor; ORFs = open reading frames; NA = not available.

Vaccine Type	ASFV Target Protein (Strain)	Number of Immunizations; Dose, Adjuvant	Specific/Neutralizing Antibodies	T Cell Response	Challenge Strain; Dose	Clinical Outcome
BacMam	sHA/p54/p30 fusion (E75)	3×; 10 ⁷ PFU	No (only after challenge); No	Yes	E75; 2x sublethal challenge 10 ²	Partial protection, (n = 4/6)
Adenovirus	p30+p54+pp62+p72 (Georgia 2007/1)	2×; 10 ¹⁰ or 10 ¹¹ per Ad5-antigen + adjuvants	Yes; NA	Yes	NA	NA
Adenovirus	A151R+B119L+B602L+ EP402RΔPRR+B438L+K205R+A104R (Georgia 2007/1)	2×; 10 ¹¹ per Ad5-antigen + adjuvant	Yes; NA	Yes	NA	NA
Vaccinia virus Ankara	p72, C-type Lectin, CD2v (Georgia 2007/1)	2×; rVACV-ASFV 10 ⁷ TCID ₅₀	No; NA	Yes	NA	NA
Alphavirus RPs	p30, p54, p72, sHA/72 (Ba71V)	3×: 2-4.5 × 10 ⁷ RPs	Yes; NA	NA	NA	NA

Table 3. Virus vector-based ASFV vaccines evaluated in the swine model.

p30 also referred to as p32; CD2v also referred to as HA = hemagglutinin; sHA = extracellular/soluble domain; rVACV = recombinant vaccinia virus; RPs = replicon par NA = not available.

Vaccine Type	ASFV Target Protein (Strain)	Number of Immunizations; Dose, Adjuvant	Specific/Neutralizing Antibodies	T Cell Response	Challenge Strain; Dose	Clinical Outcome
Combination						
DNA-Protein	Combinations of DNA and protein: p15, p30, p35, p54, p72, CD2v, CP312R, g5R (Georgia 2007/1; Ba71V)	3×; 100 μg per DNA, 100 μg protein + ISA25 adjuvant	Yes; Yes	Some	NA	NA
DNA-Protein	Proteins: p15, p35, p54, p17; DNA: CD2v, p72, p54, p30, p17 (Georgia 2007/1; Ba71V)	3×; 100 μg per DNA, 100 μg protein + ISA25 adjuvant	Yes; No	Some	Armenia 2007; 360 HAU	No protection; disease enhancement
Heterologous Prime-Boos	st					
DNA prime + vaccinia virus boost	47 antigens (Georgia 2007/1)	Prime 2×: 10 μg pCMV-DNA + CpG oligo adjuvant; Boost 2×: 10 ⁸ PFU rVACV-ASFV	Yes; No	Yes	Georgia 2007/1; 10 ⁴	No protection; reduced viral load, higher clinical scores
Vaccinia virus prime + protein boost	p72, C-type Lectin, CD2v (Georgia 2007/1)	Prime: rVACV-ASFV 10 ⁷ TCID ₅₀ ; Boost: 200 µg/antigen + TS6 adjuvant	NA	Yes	NA	NA
Alphavirus RP prime + live attenuated ASFV boost	p30 (Ba71V) + OURT88/3	Prime 2×: 2-4.5 × 10 ⁷ RPs; Boost: 10 ⁴ TCID ₅₀ OURT88/3	Yes; Yes	NA	NA	NA

Table 4. Combination and heterologous prime-boost ASFV vaccine strategies.

p30 also referred to as p32; CD2v also referred to as HA = hemagglutinin; sHA = extracellular/soluble domain; rVACV = recombinant vaccinia virus; RPs = replicon par NA = not available.

Subunit, DNA and virus-vectored vaccines

• **Proof-of-concept:** clinical study designs (e.g., relatively high vaccine doses, multiple immunizations, unsafe adjuvants, ASFV low challenge doses) impractical for direct transition to a regulatory product development program.

How to identify the antigens?

frontiers in Immunology

ORIGINAL RESEARCH published: 19 June 2019 doi: 10.3389/fimmu.2019.01318

Identification and Immunogenicity of African Swine Fever Virus Antigens

Christopher L. Netherton^{1*}, Lynnette C. Goatley¹, Ana Luisa Reis¹, Raquel Portugal¹, Rachel H. Nash¹, Sophie B. Morgan¹, Lynden Gault², Raquel Nieto³, Veronica Norlin², Carmina Gallardo³, Chak-Sum Ho^{2†}, Pedro J. Sánchez-Cordón^{1†}, Geraldine Taylor¹ and Linda K. Dixon¹

¹ The Pirbright Institute, Woking, United Kingdom, ² Gift of Life Michigan Histocompatibility Laboratory, Ann Arbor, MI, United States, ³ European Union Reference Laboratory for ASF, Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain

Screening Peptides Pools Against ASFV Immune Lymphocytes by IFNg ELIspot

Netherton et al., 2019

TABLE 1 Pools of peptides that induced a significant IFN γ response in lymphocytes from at least one ASFV-immune pig.

	DD Minipig ^a		CC Mi	CC Minipig ^b		ham ^c	Total	
Gene Name	# pigs	%	# pigs	%	# pigs	%	# pigs	%
KP177R	0	0	0	0	1	50	1	10
MGF110-1L	0	0	0	0	2	100	2	20
MGF110-4L	5	100	0	0	2	100	7	70
MGF110-5L	4	80	0	0	0	0	4	40
MGF300-1L	1	20	0	0	0	0	1	10
285L	1	20	0	0	0	0	1	10
A151R	5	100	0	0	1	50	6	60
F334L	З	60	0	0	0	0	3	30
K78R	0	0	1	33.3	2	100	3	30
K205R	0	0	2	66.7	0	0	2	20
M1249L	4	80	0	0	0	0	4	40

Recombinant replication deficient adenoviruses (rAd) and modified vaccinia Ankara (MVA) expressing codonoptimized ASFV genes expressing each of the 18 selected ORFs were generated.

M448R	5	100	0	0	0	0	5	50
C257L	2	40	0	0	0	0	2	20
C475L	1	20	0	0	2	100	3	30
C129R	4	80	0	0	0	0	4	40
C962R	1	20	0	0	0	0	1	10
B646L*	4	100	NT	NT	0	0	4	66.7
CP204L	5	100	1	33.3	2	100	8	80
CP530R	4	80	3	100	2	100	9	90
CP312R	4	80	2	66.7	2	100	8	80
O174L	1	20	0	0	0	0	1	10
NP419L	1	20	0	0	0	0	1	10
NP868R	0	0	1	33.3	0	0	1	10
H359L	0	0	0	0	2	100	2	20
H339R	1	20	0	0	2	100	3	30
E146L	5	100	0	0	0	0	5	50
E184L	0	0	0	0	2	100	2	20
E165R	0	0	0	0	2	100	2	20
E296R	2	40	0	0	0	0	2	20
E248R	0	0	0	0	1	50	1	10
1243L	1	20	0	0	0	0	1	10
173R	5	100	3	100	2	100	10	100
1215L	5	100	0	0	0	0	5	50
DP238L	1	20	0	0	1	50	2	20
MGF360-16R	1	20	0	0	0	0	1	10
MGF505-11L	0	0	0	0	2	100	2	20
L8L	5	100	0	0	0	0	5	50
1 10	1	20	0	0	2	100	3	30

Α

Spots/10⁶ cells

L8L

700-종 600-중 500-

8 400-

Netherton et al., 2019

Article

A Pool of Eight Virally Vectored African Swine Fever Antigens Protect Pigs against Fatal Disease

Lynnette C. Goatley ¹, Ana Luisa Reis ¹, Raquel Portugal ¹, Hannah Goldswain ¹D, Gareth L. Shimmon ¹, Zoe Hargreaves ¹, Chak-Sum Ho ²D, María Montoya ^{1,†}D, Pedro J. Sánchez-Cordón ^{1,‡D}, Geraldine Taylor ¹, Linda K. Dixon ¹ and Christopher L. Netherton ^{1,*D}

- ¹ The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; lynnette.goatley@pirbright.ac.uk (L.C.G.); ana.reis@pirbright.ac.uk (A.L.R.); raquel.portugal@pirbright.ac.uk (R.P.); hannah.gold@outlook.com (H.G.); gareth.shimmon@gmail.com (G.L.S.); zoe.hargreaves@pirbright.ac.uk (Z.H.); maria.montoya@cib.csic.es (M.M.); Pedro.Sanchez-Cordon@apha.gov.uk (P.J.S.-C.); geraldine.taylor@pirbright.ac.uk (G.T.); linda.dixon@pirbright.ac.uk (L.K.D.)
- ² Gift of Hope Organ and Tissue Donor Network, Itasca, IL 60143, USA; sho@giftofhope.org
- * Correspondence: christopher.netherton@pirbright.ac.uk; Tel.: +44-(0)-1483-232-441
- Present address: Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
- ‡ Present address: Present address: Animal and Plant Health Agency, Addlestone KT15 3NB, UK.

Female Landrace Large white pigs

Table 1. Composition of Antigen Pools. The individual HA-tagged ASFV genes in each pool and the dose of each individual vector used in the prime and/or boost are indicated. Genes highlighted in bold were administered by rAd prime and MVA boost whereas those shown in italics by rAd prime and rAd boost.

Experiment	1		periment 1			2
Antigen Pool	Α	В	Α	С		
	B602L	B602L	B602L	B646L		
	B646L	EP153R	B646L	CP204L		
	CP204L	EP364R	CP204L	E199L		
Conos	E183L	F317L	E183L	F317L		
Genes	E199L	I329L	E199L	MGF505-5R		
	EP153R	MGF360-11L	EP153R			
	F317L	MGF505-4R	F317L			
	MGF505-5R	MGF505-5R	MGF505-5R			
rAd Dose (IU)	5×10^{9}	5×10^9	1.5×10^{10}	1.5×10^{10}		
MVA Dose (pfu)	7.5×10^{7}	7.5×10^{7}	2×10^8	2×10^{8}		

There was a no detectable correlate(s) of immune protection

How to improve subunit ASF vaccine

Live attenuated vaccines (LAVs)

Live attenuated vaccines (LAVs)

- LAVs can successfully replicate within the host
- Mimic natural infection thereby triggering both humoral and cellular pathways
- Do not require adjuvants with co-stimulatory activity to enhance the magnitude and quality of the immune response
- Elicit mucosal IgA antibodies
- May regain pathogenicity, causing the spread of disease
- They have the potential to cause post-vaccination reactions and side effects

	SY18ΔL7-11	L7L, L8L, L9R, L10L, L11L	Homologous (SY18)	100%
	ASFV-G-Δ I177L	I177L	Homologous (Georgia 2010)	100%
	HLJ/18-7GD	MGF360, MGF505, EP402R (CD2)	Homologous (HLJ/18)	100%
	ASFV-G-Δ9GL	B119L (9GL)	Homologous (ASFV-G)	100%
	ASFV-G-Δ9GL/ΔCD2v	B119L (9GL), EP402R (CD2)	Homologous (ASFV-G)	0%
	ASFV-G-Δ9GL/ΔCD2v/ΔEP153R	B119L (9GL), EP402R (CD2), EP153R	Homologous (ASFV-G)	0%
	BA71∆CD2	EP402R (CD2)	Heterologous (RSA/11/2017, Ken06.Bus)	17-83%
	BA71ACD2 + BA71 boost	EP402R (CD2)	Heterologous (Ken06.Bus)	100%
	OURT88/3∆I329L	1329L	Homologous (OURT88/1)	33%
	Benin∆MGF	MGF 360, MGF 505, MGF 530	Homologous (Benin 97/1)	0%
	ASFV-GΔ9GL/ΔNL/ΔUK	B119L (9GL), DP71L (NL), DP96R (UK)	Homologous (ASFV-G)	0%
	NH/P68	-		100%
	NH/P68∆A238L	A238L		0%
	NH/P68∆A224L	A224L	Homologous (L60) followed by heterologous (Arm07)	50%
Gene deleted	NH/P68ΔΕΡ153R	EP153R		0%
Vacenies	NH/P68	-	Heterologous (Arm07)	33-100%
	NH/P68ΔA238L	A238L		40%
	NH/P68ΔA276R	A276R		0%
	Benin∆MGF	MGF 360, MGF 505, MGF 530	Homologous (Benin 97/1)	50-83%
	BA71ΔCD2	EP402R (CD2)	Homologous (BA71) and heterologous (E75, Georgia 2007/1)	17-100%
	ASFV-G-Δ9GL/ΔUK	B119L (9GL), DP96R (UK)	Homologous (Georgia 2007)	20-100%
	Benin∆DP148R	DP148R	Homologous (Benin 97/1)	83-100%
	Pret∆9GL	B119L (9GL)	Homologous (Pretoriuskop/96/4)	40-80%
	ASFV-G-Δ9GL/MGF	B119L (9GL), MGF 360, MGF 5050	Homologous (Georgia 2007)	0%
	Benin∆MGF	MGF 360, MGF 505, MGF 530	Homologous (Benin 97/1)	100%
	ASFV-G/V-ΔTK	ТК	Homologous (ASFV-G)	0%
	ASFV-G-∆MGF	MGF 360, MGF 5050	Homologous (Georgia 2007)	100%
	ASFV-G-∆9GLv	B119L (9GL)	Homologous (Georgia 2007)	40-100%
	OURT88/3ΔDP2	DP2	Homologous (OURT88/1)	67%
	MALD9GL	B119L (9GL)	Homologous (Malawi)	100%

Deletion of the CD2v/EP402R gene (also known as 8DR) from the genotype I BA71 isolate

- attenuated the virus
- BA71 Δ CD2v strain conferred protection against challenge with homologous and heterologous virulent viruses

The genotype II Georgia2010 isolate, ASFV-G-Δ8DR

- did not significantly alter the virulence of the virus
- produced clinical disease indistinguishable from that induced by the virulent parental strain

Monteagudo et al., 2017

LAV candidates

Genes	Strains	Genotype	Minimal Protective Dose	Route	Challenge	Gene Function	References
A137R	Georgia2007/1	Π	102HAD50	IM	Georgia2007/1	Unknown	[152]
I226R	SY18	Π	102HAD50	IM	Georgia2007/1	Unknown	[270]
L7L-L11L	SY18	Π	103HAD50	IM	SY18	Unknown	[271]
MGF505/360 and EP402R	HLJ/18	Π	103HAD50 105HAD50	IM ON	HLJ/18	Hemadsorbing and inhibition of type I	[242]
EP402R	Ba71V	Ι	104HAD50	IM	Ba71V E75 Georgia2007/1	Interferon responses Hemadsorbing	[13]
I177L	Georgia2007/1	П	102HAD50 106HAD50	IM ON	Georgia2007/1 Georgia2007/1	Unknown	[15,16]

More safety and cross-protective ability tests are needed for the commercial vaccine production of LAVs because ASFV consists of duplications, mutations or deletions of certain sequences in the genome of different genotypes, which may lead to changes in virulence.

• The absence of international standard guidelines for the assessment of ASF vaccine purity, potency, safety, and efficacy.

Safety evaluation

- Long studies with many animals to assess the degree and stability of attenuation
- Assays be implemented that distinguish attenuated from both fully virulent and partially virulent strains to assess reversion

An environmental risk assessment

• The possibility of shedding of vaccine organisms following administration

- Experiments with pigs require strict biosafety level 3 (BSL3) biocontainment laboratories, tend to be extremely expensive, and are also environmentally and ethically difficult
- Increasing biosafety tests for ASF LAV prototypes should be mandatory

- Detection of new ASF viruses that may arise from LAV vaccine strain and naturally circulating wild-type virus recombination
- A DIVA strategy is essential.
 - A multiplex real-time PCR targeting both wild-type ASFV strain and the deleted gene(s) of the LAV
 - The detection of antibodies induced by the deleted gene-encoded protein by enzyme-linked immunosorbent assay (ELISA)

Directions for ASF LAV

Lack of recombination in Genetic stability of LAVs Establishment of a vaccination experiments pipeline for evaluation of Vaccine registration during culture in vitro and with wild type challenge pig passage in vivo LAV candidates virus Selection at the stage of safety and cell culture immunogenicity; a The selection of targeted range of doses safety of virulence genes to be repeated administration deleted and overdose Identifying correlates of in vitro pathogenesis The availability of a licensed cell line to grow the LAVs for vaccine production Ability to induce protection

Further research to improve ASF vaccines

ASF vaccine candidates

Short term LAVs

Medium term LAVs with the increased safety

Long term Subunit

Last but not least..

- A relatively small number of government and academic laboratories with top tier ASF vaccine expertise.
- Global funding levels for ASF vaccine research and development have been historical relatively low and intermittent.

Research is a key!

ASF R&D in Thailand?

VS

Knowledge & Experience & Creativity

Features of porcine macrophage (pMF) cells

filipodia and lamellipodia

Features of porcine macrophage (pMF) cells

ASFV infection in pMF

Applications

Support virus replication

- Virus isolation
- Wild-type ASFV propagation (to avoid virus adaptation)
- Virus-host interaction
 - How the virus interacts with macrophages as to identify the protective mechanisms and how the virus evades them.
 - Identify viral receptors and ligands (identification, how virus interacts).
 - Identify viral attachment proteins.

A macrophage based - ADCC assay

Recombinant ASFV001 expressing mCherry generated by homologous recombination technique

LAVs

Virus-host interaction

Inhibition assay (Antivirals, Immune response)

Development of attenuated ASFV that can be classified as BSL2 agent.

Acknowledgment

ห้องปฏิบัติการไวรัสวิทยาและเซลล์เทคโนโลยี ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ (BIOTEC) สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ สวทช.

NAC2023 h NSTDA Annual Conference การประหุมวิชาการประจำปี สวทษ. ครั้งที่ ๑๔

Thank you

