

Application of high throughput technologies in screening for stress-tolerant crops

Lamis Abdelhakim Postdoc researcher

18th NSTDA Annual Conference 2023

Outline

- Overview
- PlantScreen[™] systems
- PlantScreen[™] imaging sensors
- Case studies in screening for stress-tolerant crops

A Dist

Cultivation facilities & Indoor and outdoor phenotyping facilities

High-throughput Phenotyping

- Non-invasive rapid measurements
- Investigation of various plant traits of interest over time
- Through digital color images to determine plant growth dynamics and overall plant performance

PlantScreen[™] systems

PlantScreen[™] Robotic XYZ system

PlantScreen[™] SC system

PlantScreen[™] Compact system

PlantScreen[™] Modular system

PlantScreen[™] Root system

PlantScreen[™] Field system

Multi-sensory platform towards the plants at defined intervals

Digital data are acquired from top view

PlantScreen[™] Robotic XYZ system

PlantScreen[™] SC system

PlantScreen[™] Compact system

PlantScreen[™] Modular system

PlantScreen[™] Root system

PlantScreen[™] Field system

"PhenoCrane" (sensor-to-plant) high-throughput phenotyping systems

Compact design systems with different imaging sensors

2000000

PlantScreen[™] SC system

PlantScreen[™] Compact system

PlantScreen[™] Modular system

PlantScreen[™] Root system

PlantScreen[™] Field system

Larger scale plants up to 1.2 m Monitor the entire life cycle

PlantScreen[™] Robotic XYZ system

PlantScreen[™] SC system

PlantScreen[™] Compact system

PlantScreen[™] Modular system

PlantScreen[™] Root system

PlantScreen[™] Field system

Scale plants up to 50 cm in height in the rhizotron system

PlantScreen[™] Robotic XYZ system

PlantScreen[™] SC system

PlantScreen[™] Compact system

PlantScreen[™] Modular system

PlantScreen[™] Root system

PlantScreen[™] Field system

Autonomous, semi-autonomous and manual mobile platforms 13

Morphological and Developmental Analysis

Analyzed parameters TOP VIEW

- Area [pixel count/mm²]
- Perimeter [pixel count/mm]
- Roundness
- Compactness
- Eccentricity
- Rotational Mass Symmetry
- Slenderness of leaves
- Color index
- Leaf tracking and leaf analysis SIDE VIEW
- Growth height [pixel count/mm]
- Growth width [pixel count/mm]
- Area [pixel count/mm²]
- Perimeter [pixel count/mm]
- Compactness
- Number of leaves
- Leaf movement

COMBINED TOP & SIDE VIEW

- Biomass assessment
- Leaf movement
- Relative growth rate

Photosynthetic performance

Analyzed parameters

• Measured parameters FO, FM, FV, FO', FM', FV', FT • Calculated parameters FV/FM, FV'/FM', ΦPSII, **NPQ**, qN, qP, Rfd, ETR

Regulation of stomatal aperture

Analyzed parameters

- Leaf temperature
- Canopy temperature

Reflective indices, pigments, leaf water content

Structural plant phenotyping

Analyzed parameters

- Plant architecture assessment
- Biomass assessment
- Leaves count
- Individual leaf area
- Leaves angle measurement

Apply 3D model Registered with other imaging sensors such as chlorophyll fluorescence and hyperspectral imaging

Case studies

Main environmental stress Heat Drought Salinity **Heavy metals** Cold Flooding

Screen for tolerant & robust varieties in crops

Accelerated Development of Multiple-stress tolerant potato

Coordinated by Dr. Markus Teige

Funded by the European Union's Horizon 2020 research and innovation programme; grant agreement No GA 2020 862-858

Overview of experimental design

Cultivation 150 *in-vitro* plantlets of *Solanum tuberosum* cv Desirée available from HZPC (Marijke Woudsma)

Timeline of applied treatments

- Control: 60% field capacity
- Drought: 30% FC for 1 week
- Heat at 30/28 °C: 60% FC for 2 weeks
- Heat + Drought: 60% FC for 1 week, then 30% FC for 1 week
- Waterlogging watered up to 130% FC for 2 weeks
- Heat + Drought + Waterlogging: 60% FC for 1 week, then 30% FC for 1 week, then 130% FC for 1 week

Overview of experimental design

Dynamic morpho-physiological analysis of Desirée stress responses

Developing heat-and drought-stress tolerant potatoes

8

9

Days of stress

(Unpublished)

10 11 12 13 14 15 16 17 18 19 20 21

(Unpublished)

τον

AARHUS UNIVERSITY INTERDISCIPLINARY CENTRE

ICLIMATE

Investigating the combined drought and heat stress effect on physiological traits in spring wheat by using dynamic image-based phenotyping

Abdelhakim L. et al. (2021), Agronomy

Sensitive indicator of plant photosynthetic performance under heat stress

Investigating the combined drought and heat stress effect on physiological traits in spring wheat by using dynamic image-based phenotyping

Abdelhakim L. et al. (2021), Agronomy

JNIVERSITET

Plant growth dynamics

Soil Relative Water Content

The water consumption of genotypes under drought stress varied under combined stress reflecting different regulations and susceptibility to stresses

Plant growth dynamics

Relative Growth Rate

Genotypes that consumed more water were more susceptible to stress severity and enhanced adaptive stress was observed in heat sensitive genotype (LM19) under combined stress

Photosystem

ENTS

AARHUS

INIVERSITET

Operating efficiency of Photosystem II

Reflects efficiency of the conversion of absorbed light into photochemistry

Such enhanced adaptive stress under combined stress reflected in protected photosynthetic apparatus

Transpiration efficiency

Canopy temperature

Difference between leaf and air cuvette temperature (ΔT)

Heat tolerant (LM62) leaf cooling efficiency was less under combined stress as observed in high ΔT highlighting the importance of investigating the potential of genotypes under the combination of stresses

Other applications of plant screen technology with different stresses and crops

Acknowledgments

PSI Research Center Team

Klára Panzarová Mirella Sorrentino Bára Pleskačová Jaromír Pytela Katka Žáková Pavla Homolová

PSI team

Zuzana Benedikty Lenka Sochůrková Martin Trtílek

Thanks for your attention

psi.cz/services/research-center