



# Electrical Drive System Technology for Next-Generation Electric Vehicles

Nisai H. Fuengwarodsakul NSTDA Annual Conference 2022 31 March 2022



#### The Sirindhorn International Thai-German Graduate School of Engineering

(TGGS)

co-founded in 2005 by



King Mongkut's University of Technology North Bangkok





**Vision** : <u>National Frontier</u> Engineering Graduate School with strong orientation to <u>industry</u> and <u>international</u> collaboration





#### **Outlines**

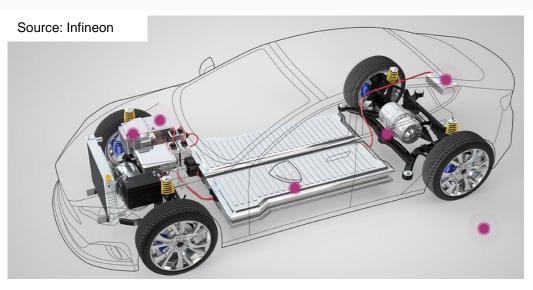
#### **Electrical drives system in electric vehicles**

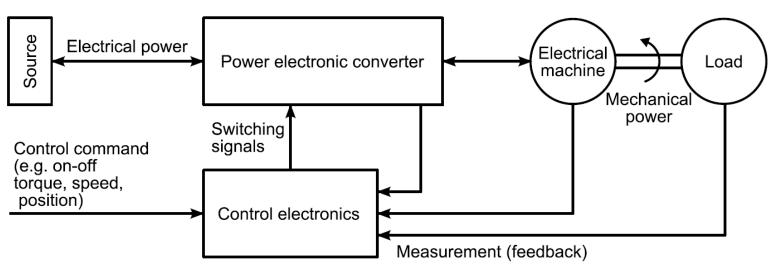
- System overview
- Comparison to ICE

#### **Technology status & further development**

- Electrical machine types
- Integration aspects
- Modern R&D cycle of electrical drive
- Alternative & new design concept
- Trend of new materials

# Electrical drives system in electric vehicles



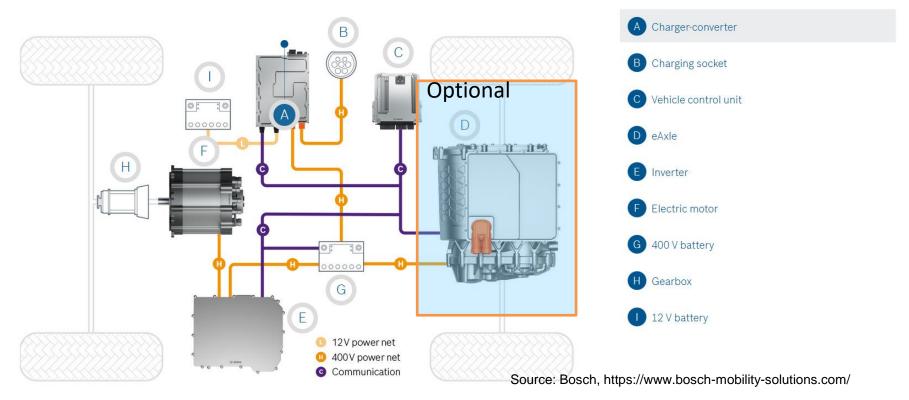

### **Electrical Drive System for Electric Vehicle**

System which converts electrical power into mechanical power and is able to control the mechanical motion.

 Battery, power electronics converter, electrical machines & control electronics

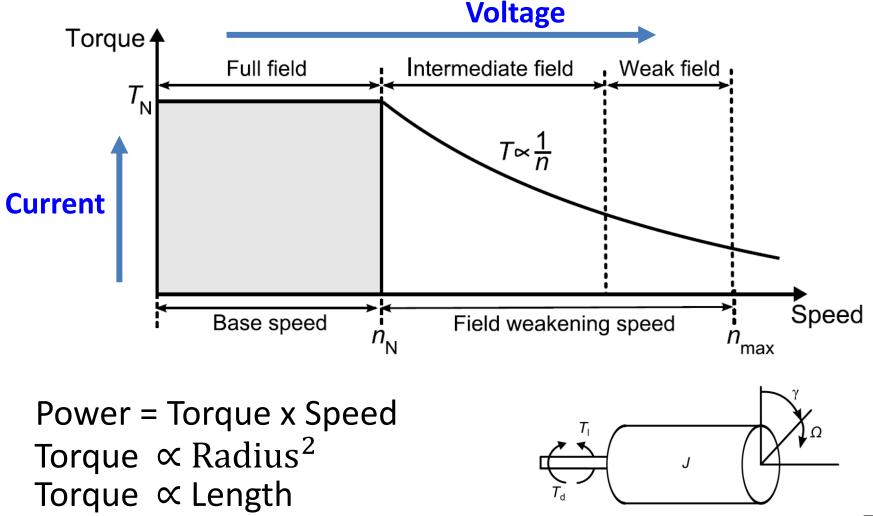









#### System overview


# - 12 V system is still used for lighting and other components (charged by a dc-dc converter)

System overview electrical drive





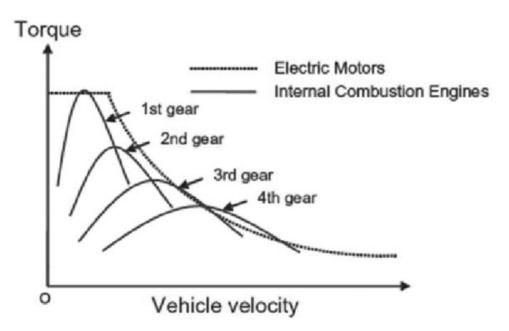
# Generic torque-speed characteristic for electrical machine







# Advantages of electric drive vs ICE in torque-speed curve


Operation from stand still Higher dynamic More quiet No emission Torque Overloading capability Possibility for renewable energy

#### **Efficiency Plug-to-Wheel**

- Battery EV Overall 60-80%

#### **Efficiency Well-to-Wheel**

- Battery EV 20-40%
- ICE x-25%



Source: R. Zhang, Novel electronic braking system design for EVS..., DOI: 10.1007/s12239-017-0070-0



### **Overloading capability**

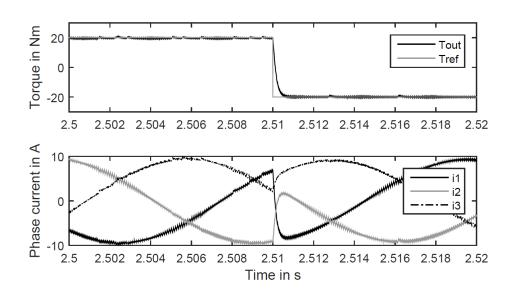


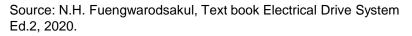
140

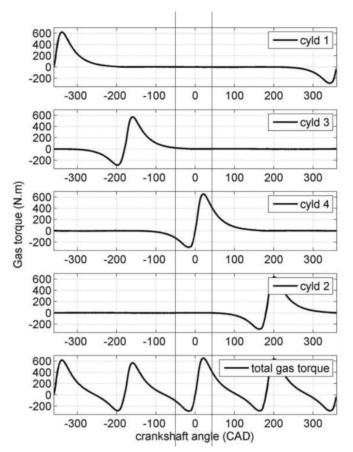
120

#### **Performance Prediction 4 Turn:**

|                                 |               |                                    |                                                                                                                                    | 1600                                |                                        |           |
|---------------------------------|---------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------|-----------|
| N_t                             | 4             | (Number of Turns)                  |                                                                                                                                    |                                     | APEV70-12(07) performance              |           |
| /s_DC                           | 391 V         |                                    |                                                                                                                                    |                                     |                                        |           |
| / P                             | 1             | (1 for parallel, 2 for seri        | es)                                                                                                                                | 1400                                | / <u>\</u>                             |           |
| nom                             | 300 A         |                                    |                                                                                                                                    |                                     |                                        |           |
| _max                            | 380 A         |                                    |                                                                                                                                    | 1200                                |                                        |           |
| 700<br>600<br>500<br>400<br>300 |               |                                    | 160<br>Nim (sont)<br>140<br>Nim (60s)<br>120<br>Nim (15s)<br>120<br>kW (cont)<br>100<br>kW (60s)<br>60<br>kW (15s)<br>80<br>2<br>2 | 1000<br>Torque<br>N.m<br>800<br>600 |                                        |           |
| 200                             | 500 1000 1500 | 2000 2500 3000 3500<br>Speed [rpm] | 40<br>40<br>4000 4500                                                                                                              | 200                                 | 00 1000 1500 <sub>Speed rpm</sub> 2000 | 2500 3000 |
|                                 |               | Practical                          |                                                                                                                                    |                                     | Ideal                                  |           |


9


3500




# Torque dynamics and ripples: electric drive vs ICE

Extremely fast torque dynamic (time constant of few ms) Very low ripples



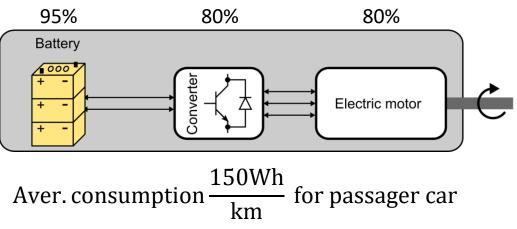




Source: F. Liu, An Experimental Study on Engine Dynamics Model Based In-Cylinder Pressure Estimation, SAE International







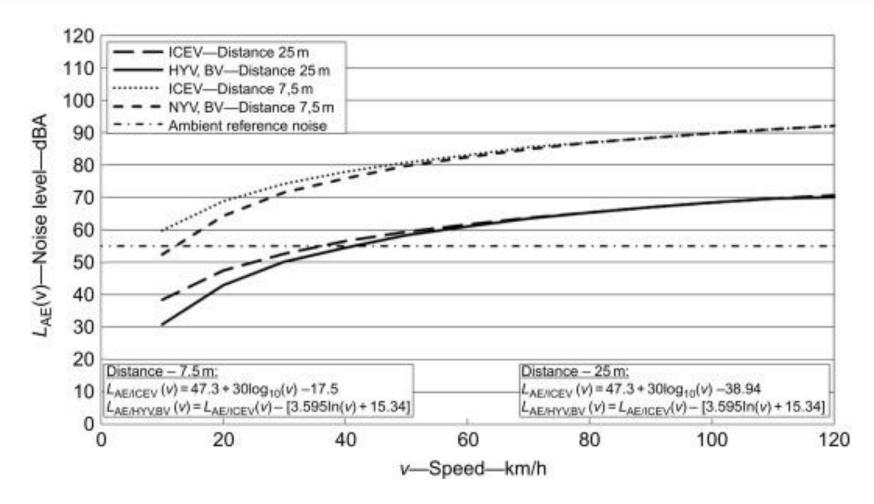

#### **Regenerative braking**

- A car with 1000kg at 70kmh has kinetic energy of 189kJ or 52 Wh.
- Energy consumption per km 150-300Wh.
- Not all energy can be regenerated, the electric braking is activated depending on driving control algorithm, in general, not down to standstill.
- Regenerative in the form of engine braking.
- Efficiency of regenerative braking is varies from 20-60% approx.
- In certain case, the regenerative braking is omitted.

$$E = \frac{1}{2}mv^{2}$$
$$= \frac{1}{2}1000kg \ (\frac{70\times1000kmh}{3600})^{2}$$

$$= 189$$
kJ  $= 52$ Wh




• Advantages: Energy saving and less wear for mechanical brakes

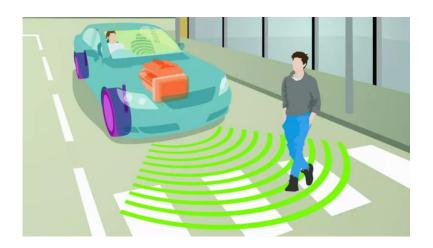
NSTDA Annual Conference 2022





#### **Acoustic noise of electric drives vs ICE**




Source: D. Teodorović, M. Janić, Transportation, Environment, and Society in Transportation Engineering, 2017



#### **Acoustic noise problematics in EVs**

- Acoustic noise is mainly emitted from the propulsion system.
- Acoustic comfort for passenger is important.
- Pedestrian safety is also a major concern.
- Acoustic Vehicle Alerting System (AVAS)

"From July 1,2019 any electric vehicle with four or more wheels that wants to be approved for road use in the European Union is going to have to have an "Acoustic Vehicle Alert System," or AVAS, fitted, making a continuous noise of at least 56 decibels if the car's going 20 km/h (12 mph) or slower."

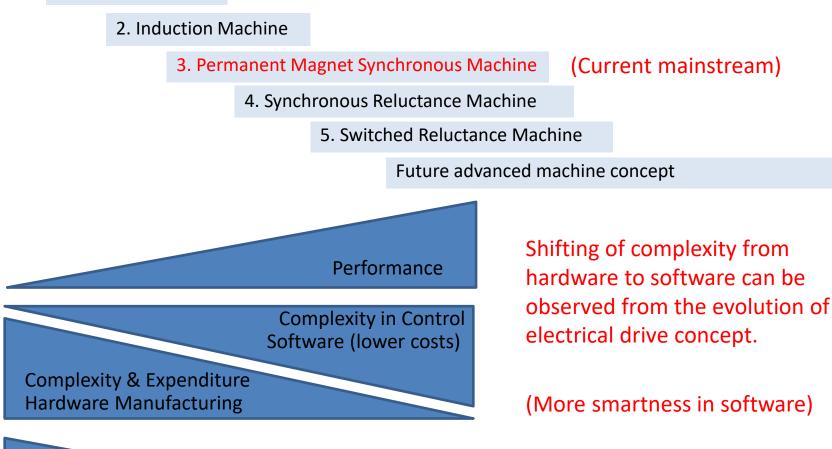


Source: https://newatlas.com/eu-ev-acoustic-noise-avas/60022/

# Technology status & further development

# **Electrical machine types**






### **Electrical machine types and evolution**

#### 1. DC-Machine

Material costs &

**Rare-earth material** 





#### **Types of motors in electric car**

|                  |                 | 1                   |  |  |
|------------------|-----------------|---------------------|--|--|
| Vehicle          | Motor type      | Specifics           |  |  |
| BMW i3           | Interior PM     | Rare-earth          |  |  |
| Chevrolet Volt   | Interior PM     | Ferrite/ Rare-earth |  |  |
| Hyunday Sonata   | Surface PM      | Rare-earth          |  |  |
| Mitsubishi PHEV  | Interior PM     | Rare-earth          |  |  |
| Nissan Leaf      | Interior PM     | Rare-earth          |  |  |
| Porsche Panamera | Surface PM      | Rare-earth          |  |  |
| Tesla S          | Induction motor | Copper cage         |  |  |
| Toyota Prius     | Interior PM     | Rare-earth          |  |  |

| EV models              | EV motors                   |  |  |
|------------------------|-----------------------------|--|--|
| Fiat Panda Elettra     | Series dc motor             |  |  |
| Mazda Bongo            | Shunt dc motor              |  |  |
| Conceptor G-Van        | Separately excited dc motor |  |  |
| Suzuki Senior Tricycle | PM dc motor                 |  |  |
| Fiat Seicento Elettra  | Induction motor             |  |  |
| Ford Think City        | Induction motor             |  |  |
| GM EV1                 | Induction motor             |  |  |
| Honda EV Plus          | PM synchronous motor        |  |  |
| Nissan Altra           | PM synchronous motor        |  |  |
| Toyota RAV4            | PM synchronous motor        |  |  |
| Chloride Lucas         | Switched reluctance motor   |  |  |

Source: Marco Villani, High Performance Electrical Motors for Automotive Applications – Status and Future of Motors with Low Cost Permanent Magnets Source: C. C. Chan, K. T. Chau, Modern Electric Vehicle Technology

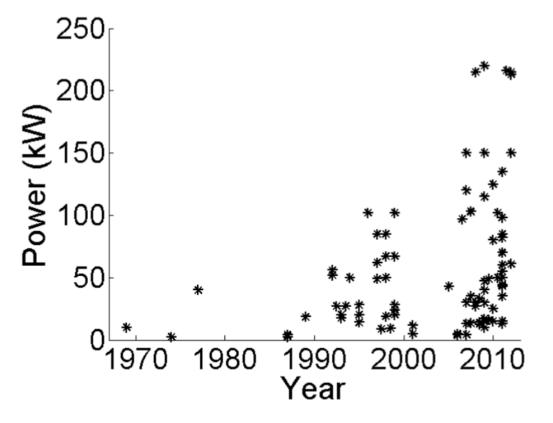








#### Types of motors in electric car (cont.)


| Model          | Battery type | Energy<br>storage<br>(kWh) | Nominal<br>range (km) | Market<br>release | Power (kW) | Motor type | Tata Indica<br>Vista EV<br>Ford Tourneo<br>Connect EV<br>Kangoo | Li<br>Li<br>Li | 26,5<br>21<br>22 | 241<br>160<br>170 | 2011<br>2011<br>2011 | 55<br>50<br>44 | PM<br>IM<br>SB |
|----------------|--------------|----------------------------|-----------------------|-------------------|------------|------------|-----------------------------------------------------------------|----------------|------------------|-------------------|----------------------|----------------|----------------|
|                | 1:           | 40                         | 050                   | 0010              | 015        |            | Express Z.E                                                     |                | 18               |                   |                      |                | IM             |
| Tesla Model S  | Li           | 42                         | 258                   | 2012              | 215        | IM         | Fiat Doblò<br>Peugeot iOn                                       | Li             | 16               | 140<br>130        | 2011<br>2011         | 43<br>35       | PM             |
| Tesla Model S  | Li           | 65                         | 370                   | 2012              | 215        | IM         |                                                                 | Li<br>Li       | 7                | 100               | 2011                 | 35<br>15       | PIVI           |
| Tesla Model S  | Li           | 85                         | 483                   | 2012              | 215        | IM         | Renault Twizy                                                   |                | •                |                   |                      | 13             | 18.4           |
| Lightning GT   | Li           | 40                         | 240                   | 2012              | 150        | PM         | REVA NXR                                                        | Pb             | 9,6              | 160               | 2011                 |                | IM             |
| Hyundai        | Li           | 16,4                       | 140                   | 2012              | 61         | PM         | BYD F3M                                                         | Li             | 15               | 100               | 2010                 | 125            | PM             |
| BlueOn         |              | 10,4                       | 140                   | 2012              | 01         |            | Nissan Leaf                                                     | Li             | 24               | 175               | 2010                 | 80             | PM             |
| Honda Fit EV   | Li           |                            | 113                   | 2012              |            | IM         | Ford Transit                                                    | Li             | 28               | 129               | 2010                 | 50             | IM             |
| Toyota RAV4    | 1.1          | 20                         | 100                   | 2012              |            | 18.4       | Connect EV                                                      |                | 10               | 100               | 0040                 | 40             |                |
| EV             | Li           | 30                         | 160                   | 2012              |            | IM         | Citroen C zero                                                  | Li             | 16               | 130               | 2010                 | 49             | PM             |
| Saab 9-3       |              |                            |                       | 0011              | 105        |            | Gordon                                                          | Li             | 12               | 130               | 2010                 | 25             |                |
| ePower         | Li           | 35,5                       | 200                   | 2011              | 135        |            | Murray T-27                                                     |                |                  |                   |                      |                |                |
| CODA Sedan     | Li           | 34                         | 193                   | 2011              | 100        |            | Wheego Whip<br>LiFe                                             | Li             | 30               | 161               | 2010                 | 15             | IM             |
| Ford Focus     | Li           | 23                         | 160                   | 2011              | 100        | IM         | Venturi Fétish                                                  | Li             | 54               | 340               | 2009                 | 220            |                |
| Electric       | LI           | 25                         | 100                   | 2011              | 100        | 1111       | Mini E                                                          | Li             | 35               | 195               | 2009                 | 150            | IM             |
| Skoda Octavia  | Li           | 06 F                       | 140                   | 2011              | 85         |            | BYD e6                                                          | Li             | 60               | 330               | 2009                 | 115            | PM             |
| Green E Line   | LI           | 26,5                       | 140                   | 2011              | 80         |            | Mitsubishi i                                                    |                |                  |                   |                      |                |                |
| Volvo C30      |              |                            | 4 5 6                 |                   | ~~         |            | MiEV                                                            | Li             | 16               | 160               | 2009                 | 47             | PM             |
| DRIVe Electric | Li           | 24                         | 150                   | 2011              | 82         |            | Subaru Stella                                                   |                |                  |                   |                      |                |                |
| Renault        |              |                            |                       |                   |            |            | EV                                                              | Li             | 9,2              | 80                | 2009                 | 40             |                |
| Fluence Z.E.   | Li           | 22                         | 161                   | 2011              | 70         | SB         | Smart ED                                                        | Li             | 16,5             | 135               | 2009                 | 30             | PM             |
| Renault ZOE    | Li           | 22                         | 160                   | 2011              | 60         | SB         | Citroën C1                                                      |                |                  |                   |                      |                |                |
|                | LI           | 22                         | 100                   | 2011              | 00         | 50         | ev'ie                                                           | Li             | 30               | 110               | 2009                 | 30             | IM             |

Source: de Santiago, J., Bernhoff, H., Ekergård, B., Eriksson, S., Ferhatovic, S. et al. (2012) "Electrical Motor Drivelines in Commercial All Electric Vehicles: a Review", IEEE Transactions on Vehicular Technology SB = Synchronous brushed



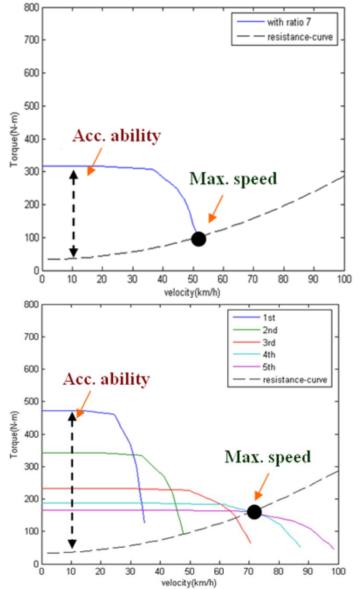
#### **Driving power of electric cars**

Driving power by electric motor sufficiently covers all EV power requirements.



Source: de Santiago, J., Bernhoff, H., Ekergård, B., Eriksson, S., Ferhatovic, S. et al. (2012) "Electrical Motor Drivelines in Commercial All Electric Vehicles: a Review", IEEE Transactions on Vehicular Technology

# Integration aspects




# **Mechanical coupling**

- Direct drive (rare)
- Multiple gear ratio (rare, old models)
- Fixed speed ratio transmission
- Freewheel gear (small vehicles)

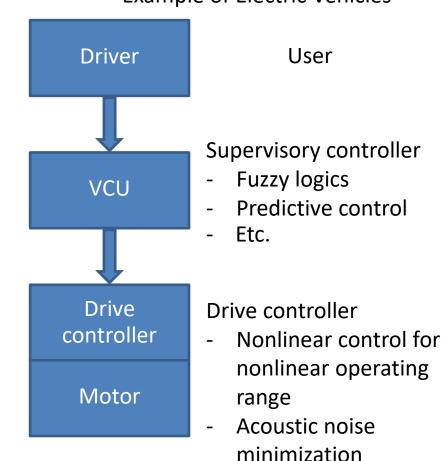
- Hub motor or integrated wheel motor
  - Popular in small vehicles
- Limited use in large vehicles due to large spring mass.

Source: CHANG CHIH-MING, SIAO JHENG-CIN, Performance Analysis of EV Powertrain system with/without transmission, EVS25










#### Multi-objective control of electrical drives in electric vehicles Example of Electric Vehicles

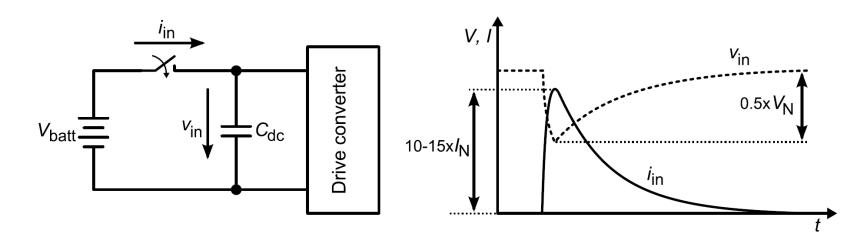
Sophisticated control scheme for achieving different objectives.

- Control accuracy
- Efficiency
- Dynamic response
- Acoustic noise & vibration
- Example 1 : Electric vehicle drive
- Efficiency
- Dynamic response

Supervisory controller could optimize the drive behaviors by

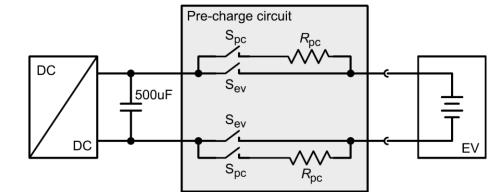


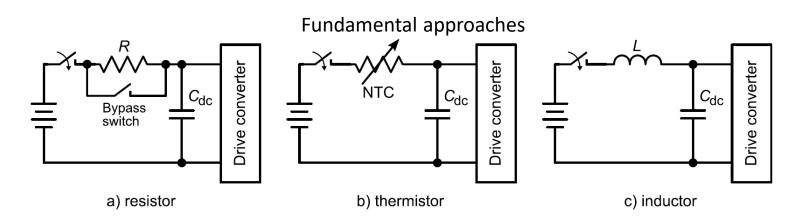





#### Inrush current of electrical drive converter

• Inrush current occurs during the initial connection between the battery and the drive converter for charging the input large DC-link capacitors.


Negative consequences:

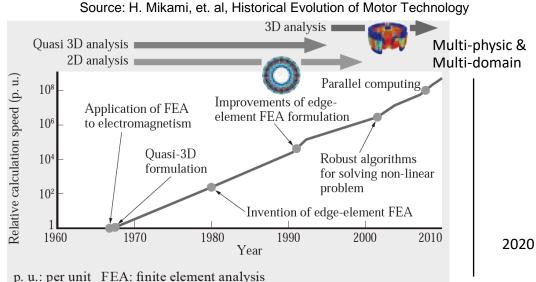

- Gradual damage to components, e.g. capacitor and relay contacts
- Mistaken fault detection by overcurrent or undervoltage protection
- High current surge causing unintended behaviors



#### **Inrush current mitigation**

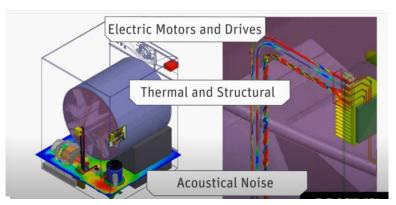
- Pre-charge circuit is required with coordination by vehicle controller.
- Advanced inrush current mitigation with semiconductor switches for high power range still under development






# Modern R&D cycle of electrical drive

#### FEA for predicting performance of designed motor Source: H. Mikami, et. al, Historical Evolution of Motor Technol


Precise performance prediction of designed motor could help:

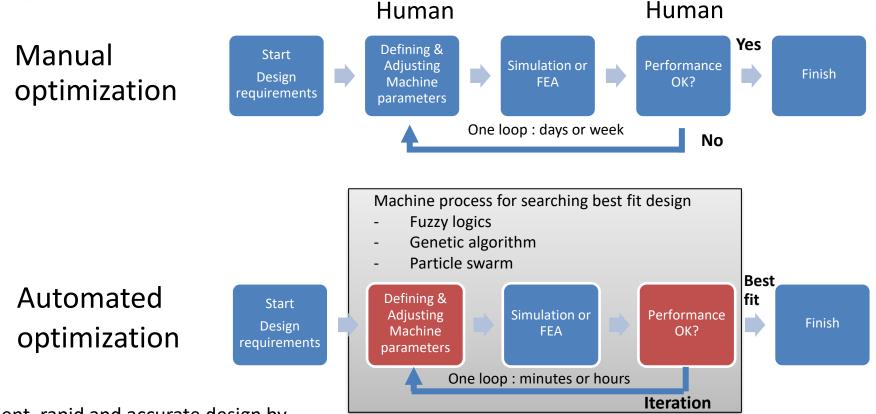
- speed-up development cycle
- saving prototype costs
- improved accuracy of design optimization



#### Recent development

- Multi-physics and Multi-domain simulation linked to dynamic model (Simulink, Simplorer, etc)
- Electromagnetic + Thermal + Electrical + Mechanical
- Performance, control, temperature and vibration & acoustic noise




Source: ANSYS (Excerpt from Youtube)

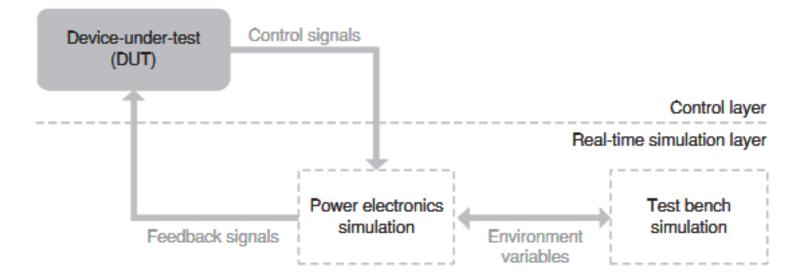






# Automation and AI for motor design optimization




Efficient, rapid and accurate design by

- Automatic generation of FEA machine model
- Automatic and reliable performance assessment



#### Hardware-in-the-loop for electrical drive system

- Using hardware in-the-loop can shorten the development of control software & controller unit (widely applied for automotive industry)
- Recent advancement with power hardware in the loop with emulation by power electronics load to represent real current & voltage, (for example, dSPACE)
- Highly cost-intensive equipment and with requirements of high-skill users



Source: J. J. Poon, M. A. Kinsy, N. A. Pallo, S. Devadas and I. L. Celanovic, "Hardware-in-the-loop testing for electric vehicle drive applications," 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012, pp. 2576-2582, doi: 10.1109/APEC.2012.6166186.

# Advanced & alternative design concept





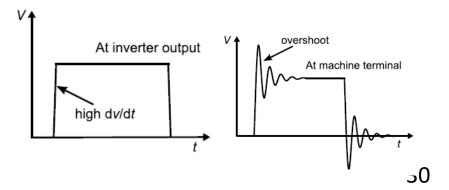
#### **Integration between Motor & Converter**

#### **Integrated Drives**

Compactness aspect

- Higher torque and power density
- Less required space good for space-limited applications, e.g. EVs.

Costs aspect


- Lower effort for EMC
- Less high voltage wire harness



Source: US Department of energy (DOE) http://energy.gov/sites/prod/files/2014/09/f18/fy\_2014\_vto\_amr\_apeem\_overview-final\_version.pdf

#### Challenges

- Temperature increase in semiconductor devices due to close physical integration
- Design of cooling



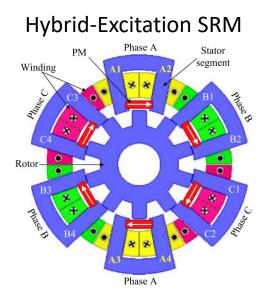


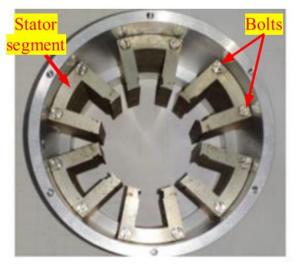


### **Further degree of integration**

Motor & PE converter




 Motor + PE converter + Transmission




Motivation: Reduction of development cycle & Modularity



#### Modularized or segmented machine concept





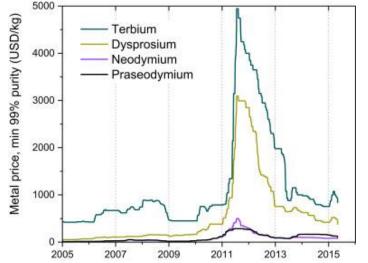


Source: DING et al.: CHARACTERISTICS ASSESSMENT AND COMPARATIVE STUDY OF A SEGMENTED-STATOR PERMANENT-MAGNET, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 33, NO. 1, JANUARY 2018

#### Advantages of segmented or modularized machine

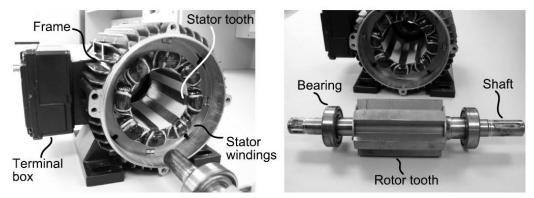

- Lighter weight
- Simple manufacturing
- Pre-fabrication process with lower expenditure is possible.

# Trend of new materials






#### Magnetic material & No-rare earth concept




Source: H. Mikami, et. al, Historical Evolution of Motor Technology



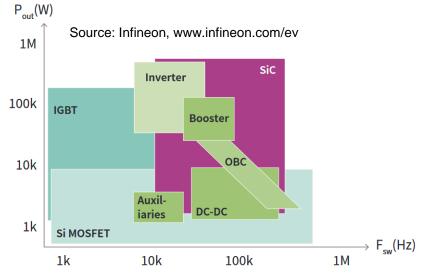
- Magnetic material by rare-earth increases power and torque performance of electrical machines greatly. (permanent magnet synchronous machine)
- On the other hands, due to costs and availability, there are attempts to develop no-rareearth electrical machine (induction machine and reluctance machine) to reach comparable performance.

Source: C.C. Pavel, et. Al., Substitution strategies for reducing the use of rare earths in wind turbines, Resources Policy, Volume 52, June 2017, Pages 349-357



Switched reluctance machine




# Wide Bandgap (WBG) Semiconductor Devices for Electrical Drives – GaN and SiC

Pros against Si-based

- Lower on-resistance higher efficiency
  - thinner voltage blocking layer, hence, reduced on-resistance by two orders of magnitude
- Higher temperature ability now 200 Cdeg limited by packaging technology
- Lower gate charge higher switching speed and frequency

Cons against Si-based

- Higher cost
- Challenges in EMC high dv/dt



| TABLE I                            |   |
|------------------------------------|---|
| PROPERTIES OF WIDE BANDGAP DEVICES | 6 |

| Property                                           | Si   | GaN  | SiC |
|----------------------------------------------------|------|------|-----|
| Bandgap (eV)                                       | 1.1  | 3.4  | 3.2 |
| Electron mobility (cm <sup>2</sup> /Vs)            | 1450 | 2000 | 900 |
| Critical electric field (MV/cm)                    | 0.3  | 3.5  | 3.0 |
| Electron saturation velocity $(10^7 \text{ cm/s})$ | 1.0  | 2.5  | 2.2 |
| Thermal conductivity (W/cm-K)                      | 1.5  | 1.3  | 5.0 |
| Maximum operating temperature (°C)                 | 200  | 300  | 600 |
| Specific heat capacity (J/KgK)                     | 712  | 490  | 681 |

Source: A. Morya, Wide Bandgap Devices in AC Electric Drives: Opportunities and Challenges, IEEE Transactions on Transportation Electrification 5(1):3-20, Mar 2019.

# WBG for electrical drives



#### High efficiency

• Efficiency-critical application

High frequency capability

- To maintain low current ripple in low inductance motor (uH range) – large airgap SMPMSM or low leakage inductance traction motor IM
- High speed drive with fundamental frequency of several kHz – switching frequency range 50-100kHz

High temperature capability

 High ambient temperature application – Integrated Drives, harsh environment

#### SIC INVERTER PROTOTYPES FOR TRACTION APPLICATIONS

| <b>D</b> ( | <b>D</b>                  | D       | <b>T</b> 07 :  |
|------------|---------------------------|---------|----------------|
| Reference  | Description               | Power   | Efficiency     |
| and year   |                           |         |                |
| [76], 2017 | EV inverter made of       | 200 kVA | Mean 96% and   |
|            | 900 V half bridge         |         | peak 98.1% for |
|            | modules                   |         | Vdc=450 V      |
| [77], 2017 | EV inverter 1200 V half   | 110 kVA | Mean 96.3%     |
|            | bridge modules            |         | and peak 98.9% |
| [78], 2017 | Front end boost + 3 phase | 100 kW  | -              |
| 2 2        | VSI for EV, 1 kV de bus   |         |                |
| [79], 2018 | Megawatt-scale inverter   |         | 99%            |
|            | based on a three-level    |         |                |
|            | active neutral-point-     |         |                |
|            | clamped (3L-ANPC) for     |         |                |
|            | hybrid-electric aircraft  |         |                |
| [80], 2018 | EV inverter with          | 128 kW  | -              |
| L 37       | specially designed 2 in 1 |         |                |
|            | module                    |         |                |
| [81], 2017 | HEV power control unit    | 430 kVA | -              |
| [01], 2017 | comprising front end      |         |                |
|            | boost and two inverters   |         |                |
|            | boost and two inverters   |         |                |
| [82], 2018 | EV inverter               | 60 kW   | -              |
| [],        |                           |         |                |
| [83], 2016 | Front end boost + VSI for | 55 kW   | 99% peak       |
| L J/       | EV                        |         | 1              |
| [84], 2018 | EV inverter               | 30 kW   | 99.5% peak     |
| [85], 2018 | 3-level T-type traction   | 250 kW  | 98% peak       |
|            | inverter                  |         | -              |

Source: A. Morya, Wide Bandgap Devices in AC Electric Drives: Opportunities and Challenges, IEEE Transactions on Transportation Electrification 5(1):3-20, Mar 2019.





# Electrical Drive System Technology for Next-Generation Electric Vehicles

Nisai H. Fuengwarodsakul NSTDA Annual Conference 2022 17 February 2022