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B-thalassemia is highly prevalent, with 80 to 90 million
people reported to be carriers across the world
(1.5% of the global population).

e o7 e 5 Births per 1000 infants with
oz a major haesmoglobinopathy
L1 < 0.1
[ ] 01-019
[ o0.2-o099
E 1-49

o
'
i -
2
57 a
»

In Thailand, 10,000 affected infants per year
= 3,000 new births / year with beta-thalalassemia major in Thailand
600,000 B-thalassemia patients (1% of Thai population)

50,000 risk couples per year
24 millions of B-thalassemia carriers (40% of Thai population)
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Autologous HSC and Gene therapy
for the treatment of thalassemia
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Gene Therapy in Patients with Transfusion-Dependent
B-Thalassemia

AA Thompson, M.C Walters, ). Kwiatkowski, J.E J. Rasko, J.-A. Rideil, S. Honge
E. Payen, M. Semeraro, D. Moshous, F, Lefrere, H. Puy, P. Bourget, A. Magnani
F. Suarez, F. Monpouy, V. Brousse, C. Poirot, C. Brouzes, J.-F. Meritet, C Ponda
T. Lefebyre, D.T, Teachey, U. Anurathapan, P.J. Ho, C. von Xalle, M. Kletzel, E. V|
O. Negre, R.W. Ross, D. Davidson, A. Petrusich, L Sandler, .
S. Hacein-Bey-Abina, S. Blanche, P. Leboulch, nsﬁ“ Cava.

ABSTRACT

BACKCROUND
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to evaluate the safety and officacy of soch gene therapy in patients with transfusioa-

dependent Bthalassemn,
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amino acd substizution (HhATY). The cells were then reinfised affer the patieres had under-
gone mycloablative busulfan conditioning, We subsequenely d adverse evenes, vectoe

T and kevels of replicats ppetent lentivins, Efficacy inclodad Jevdls
of weal hemogloben and HW™, RS0 rog: and average vector copy number.
LIE IS
At a modian of 26 months (range, 15 to 42) after infusion of the gene-modified cells, all
bot 1 of the 13 patients who had 3 noa=@*3* penctype had stopped receiving red-cell
transfusions; the levels of HOA™R ranged from 3.4 to 100 g per dexiliter, and the lovels
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ez of dpserythrop was d in evakeazed patients with hemoglobin Jevels ncar
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tion, the median annualized transfusion volume was decreased by 73%, and redwcell
transfusions were discontinued in 3 patients. Treatmentrelited adverse ovents were typie
cal of those associated wizh azologous stemecell transplintation. No cloaal dominance
related to vector intogration was obsenved,

CONCLUSIONS

Gene theragy with sutologous CD34+ cells duced with the BE305 vector reduced of
dimined the need for long2erm redccll transfissons in 22 patienes with sovere Sthulasemia
without senocs adverse events relzad to the drug product. (Fanded by Blacherd Bio and others:
HGE-204 and HGE-205 ClinicalTrials. gov oumbers, NCT01745120 and NCT02151526)
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Multicenter phase 1-2 study (since 2013)
Ages 12- 35



The success of gene therapy

Normal hemoglobin levels, No transfusion (but one)
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13 patients
22 patients
with transfusion-dependent
B-thalassemia 9 patients

Reduced number and volume
of transfusions

(Thompson et. al., 2018)
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Target Identification Engineering Targeted Cancers

Phage displays: Pediatric and young adult acute

scFV —> Chimeric Antigen-Receptor (CAR) T cells: lymphoblastic leukemia (ALL)
Ankyrin CD19, GD2 Large B cell non-Hodgkin’s Lymphoma
Alpha-repeat protein Solid tumor: neuroblastoma
g m— Bi-specific T-cell engagers (BiTEs): Solid tumor: neuroblastoma
b e, Anti-GD2-Anti-CD3

Radioimmunotherapy (RIT)

%
1

Adoptive T-cellular therapy

Antigen-specific
T-cell enrichment

Dendritic cells (DCs)

Melanoma
Chromic myeloid leukemia (CML)
Acute myeloid leukemia (AML)

T cell

Preferentially expressed
antigen of melanoma (PRAME)
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Phage display technology

Helper Phage
Rescue
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Phage antibody Monoclonal phage binding ELISA
hits

https://www.abdn.ac.uk/sbf/technology/phage-display/
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Chimeric Antigen-Receptor (CAR) T cells
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Chimeric Antigen-Receptor (CAR) T cells
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Bi-specific T-cell engagers (BiTEs)
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Representative imaging flow cytometry analysis of binding of
purified BiTEs on GD2-positive neuroblastoma SHSY-5Y cells



Bi-specific T-cell engagers (BiTEs) Radioimmunotherapy (RIT)
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Clin Cancer Res; 19(17) September 1, 2013



Establishment of a Medlcal Hub for* Sdl,an
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Has the Era of Gene Therapy

Finally Arrived?

U, N OVA RTI S QOur Work About Us News Investors

Novartis receives first ever FDA approval for a CAR-T cell
therapy, Kymriah(TM) (CTLO19), for children and young
adults with B-cell ALL that is refractory or has relapsed at
least twice

475,000 USS$

0078-0846-19

| tisagenlecleucel I??”;. -
OKYMRIAH"

Pultured, genetically modified
Target Total Volume 10mL-50mL per bag Dispense with Medication Guide

For autologous use only
Dosage: See prescribing information.

Contains 2x 10°t0 2.5 x 10‘ Mpoctmvn ble T cells

Cryopreserved in: 31.2 % Plasma-Lyte A, 31.25% (v/v) of 5% Dextrose/0.45%
sogiu]mo'rxe , 20% (v/v)of 5% HSA, 10 (w‘v)oHO% extran 40 (LMD)/5% Dextrose
an

John Doe
sm:ts mh;;c-morpmouwnm DOB: 01 JAN-2000
Donmmlumm ing filter DIN: W1234 17 123456
D

Expiry. 01-JAN-2018
Bateh: 12345678

56 For Novartis use only

1wmmun-uusa-mz) % %
U NOVARTIS m«semn 1 |

“Early 2019

U

Novartis says $4m price is ﬂ
reasonable for SMA gene therapy
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Human
Gene Therapy
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Portfolio of Products

1. Thalassemia Treatment

99
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Majority of patients are in Asia - approximate 200,00-300,000 patients in Thailand
= 3000 new births / year with beta-thalassemia major in Thailand

Technology is unigue
* No need stem cell donor
+ Treatment with Patient ‘s stem cell (No one has done this before)
* No need Immunosuppressor
* Permanent and one time treatment

3. Gaucher Disease (rare genetic disorder

. CAR-T cells - Leukemia GLOB‘%‘c:aAn'\i':ER R al1s caused by deficiency of enzyme cells)
1% America

21% = Similar Vector Platform to Thalassemia,
easy to develop along with Thalassemia

= Gaucher disease affects up to 1 in 40,000
live births in the general population.

= Currently Thai government subsidizes 5
patients in Thailand at Rama hospital

developed CAR T- Leukemia by Prof.
Suradej and Rama hospital

Ready to commercialize in near future
2019 Asia
Current treatment cost of Novartis ‘s~ 48%
CAR-T is around 500,000 USD/ shot

Europe
24% Incidence & inheritance of Gaucher disease

rica
6%

Woth poreests ez comy e Sy geon 0 bove on
ofbched chéd oot e ofected

7o 0o womeae

Source: WHO




Gene Therapy: Business Model / Medical Hub

() Celisare e () Hospital delivers cells to the lab
from the patients

- P B NEW Co. Scope
d D Vector & Process

CLINIC OR HOSPITAL
(APHERESIS/PATIENT'S CELLS)

* In the laboratory, a therapeutic gene is

0 Patients consult designed and engineered into the vector.

doctor at hospital

* The engineered vector is then mixed with
patients’ T lymphocytes (T-cells).

* The T cells from the patient thus became
genetically modified CAR-T cells.

“Living Drug Product”

CLINIC OR HOSPITAL -
(APHERESIS/PATIENT'S CELLS)

6 Deliver back to the hospital

6 The altered cells are
reinjected into the patients




Milestones: Timing - competitiveness

Activity ® ® ® ®

2019 2020 2021 2022

- Setup new entity

Administrative - Form up researcher team
Plant _ Build GMP/ GLP plant

Construction

New Vector for - Clinical trial in human, target 3 patients

Thalassemia/ - Starting clinical trial using lab in Paris - Clinical service
Gaucher dicease - Estimated 3 years to complete clinical trial

- Produce CAR-T to serve patients
CAR-T cell

- Ready to commercialize

icense

- License technology from Bluebird bio to provide clinical services to patients

teChrology from - Estimated cost of THB 10 mil / patient

. " »
Bluebird bio cluesirdbis:

#



Organizational Chart

Founder/Chief Executive

Officer

Chief Operating
Officer

Chief Medical
Officer

Chief Scientific
Officer

Chief Technology
Officer

Doctors and nurses

Drug development
team

Head of Exploratory
Research and
Development

Research Scientists

Chief Financial
Officer

Administrative
Assistants

QA manager

QA/QC assistants

Patient Advocate




Infrastructure milestone (manufacturing)

Clinical trial (mass production of the vectors): FROM LAB TO PATIENTS

Phase 4
Phase 2

1Q, 0Q, PQ, GCP, GMP compliance
software and hardware

Phase 3

Validation of the equipment
including plan, execution and report

(3 months)

Phase 1
Building and installing of equipment
(6 months)

SOPs from vector production to storage

and handling of patient samples, including

plan, unplan deviations, CAPA,
investigation templates

(3 months)

(3 months)

Budget: TBD Budget: TBD Budget: TBD Budget: TBD

Tentative Total time: 1 years and 3 months

*Starting from financial closure

#



Infrastructure milestone (Laboratory)

Exploratory and discovery phase for new technology and advancement
in gene therapy in other genetic disorders

Phase 3 Phase 4

Phase 2

1Q, 0Q, PQ, GLP compliance
software and hardware

Phase 1
Building and installing of equipment
(4 months)

SOPs on all the methods/assays,
including plan, unplan deviations,
CAPA, investigation templates

(3 months)

Validation of the equipment
including plan, execution and
report

(3 months) (3 months)

Budget: TBD Budget: TBD Budget: TBD Budget: TBD

Tentative Total time: 1 years and 1 month

*Starting from financial closure

#



Value Proposition

(10 times less)
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Costs
), NOVARTIS 7 500,000 US$
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Technology =
; 50,000 US$
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