
Discovery and engineering of enzymes from termite gut metagenome for green industry

Translating biodiversity to bioindustry

Verawat Champreda

Microbial Biotechnology and Biochemicals Unit

BIOTEC

Bioeconomy

Thailand 4.0 Innovation & Sustainability

Advanced Bio-industry and Biorefinery will be one of the 5 new S-curve industries in the national ageda.

This is strongly linked to the country's established strength in agricultural sector, food industry and biofuel industry.

- Renewable resource
- Green & Clean processing
- Environmental& Economic sustainability

Bioeconomy Policies around the World

dedicated bioeconomy strategy bioeconomy-related strategy

Enzyme & Bio-based economy

Enzymes play an essential role in modern biotechnology related to production of commodity and specialty products in everyday life.

- Accelerating process reactions
- Additives in products for desirable properties

4620 M US\$ 6% growth/y

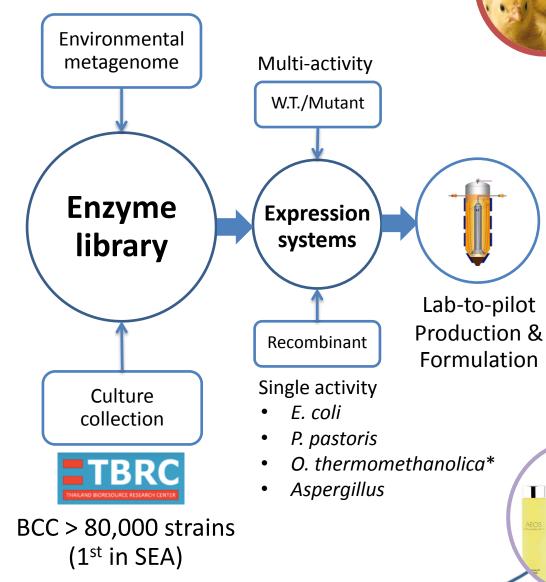
2500 M THB 15% growth/y

Food & Feed
Pre-biotics/ supplements

Biofuels & Chemicals

Saccharification/ processing

Green processingPulp/ Textile/ Detergent



Healthcares & Pharmaceuticals
Specialty high value enzymes

Enzymes for green industry

From diversity to industry

Animal Feed

Enhancing nutrition/ digestibility

Biofuels & Biorefinery

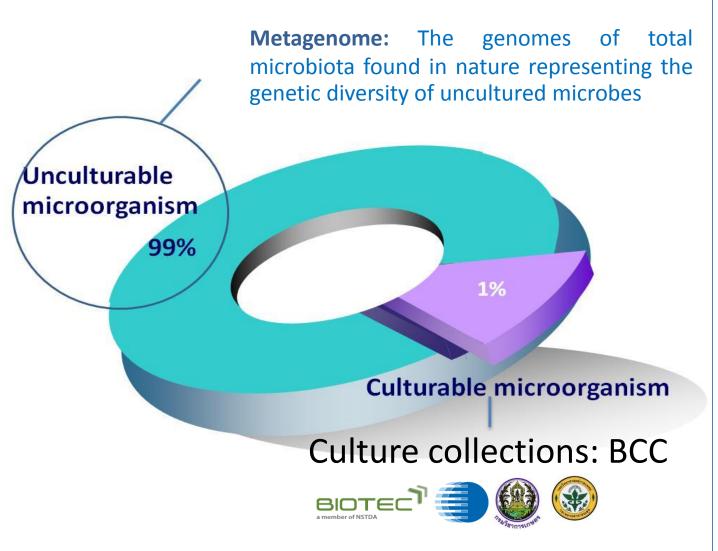
Sugar platform conversion

Green

processing

Pulp/Textile
Reducing chemicals
and energy

Specialty enzymes


Healthcare products

Exploration of uncultured microbial resources

Activity screening:

Enzyme function

Sequence screening:

Conserved sequences

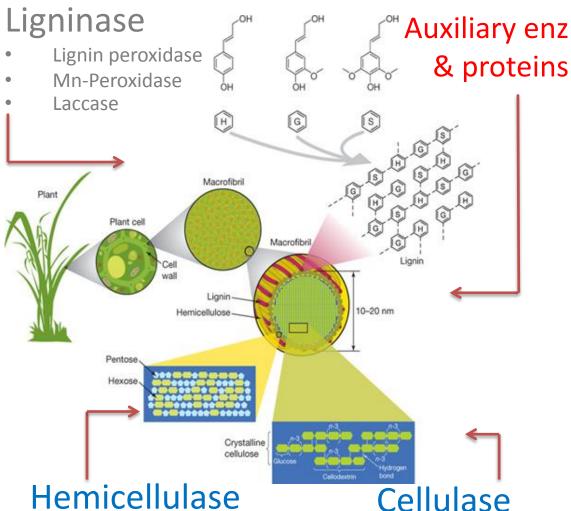
Next-gen sequencing & bioinformatics annotation

 Tagged amplicon sequencing: 16S rRNA, ITS, metabolic marker

 Direct shotgun sequencing: metagenomic library

Metagenomic exploration @BIOTEC

Source	Method/ Target	References	
Peatswamp forest Site: Narathiwas, THA Organic carbon sink	16S rRNA on NGS Biodiversity profiling Cellulose degradation	Kanokratana et al. (2011) Microb. Ecol. 61, 518-528	
Bagasse collection site Site: Chaiyapoom, THA Thermophilic lignocellose decomposition	Shortgun/16S rRNA Activity-based Cellulose degradation and enzyme isolation	Mhauntong et al. (2015) Biotechnol. Biofuel 8:16	
Termite gut symbioint Source: Trametes hindgut Alkaliphilic cellulose degradation	Activity-based screening Alkaliphilic cellulase/hemicellulase	Nimchua et al. (2012) J. Microbiol. Biotehnol. 22, 462-469	
Carnivorous plant pitcher fluids Source: 8 local Nepenthes sp. Acidic hydrolytic environment	16S rRNA on NGS Biodiversity profiling Acidophilic microbes & enzymes	Kanokratana et al. (2016) Microb. Ecol. 72: 381-393	


Cow rumen Source: Cow rumen fluid
Anaerobic cellulose
degradation

16S rRNA on NGSBiodiversity profiling
Cellulose degradation

Thoertkiattikul et al. (2012) Curr. Microbiol. 67, 130-137

Lignocellulose structure & decomposition

- Endo-acting: Xylanase/Mannanase
- Exo-acting/debranching

Cellulase

- Endoglucanase
- Exoglucanase
- **B-Glucosidase**

Bagasse

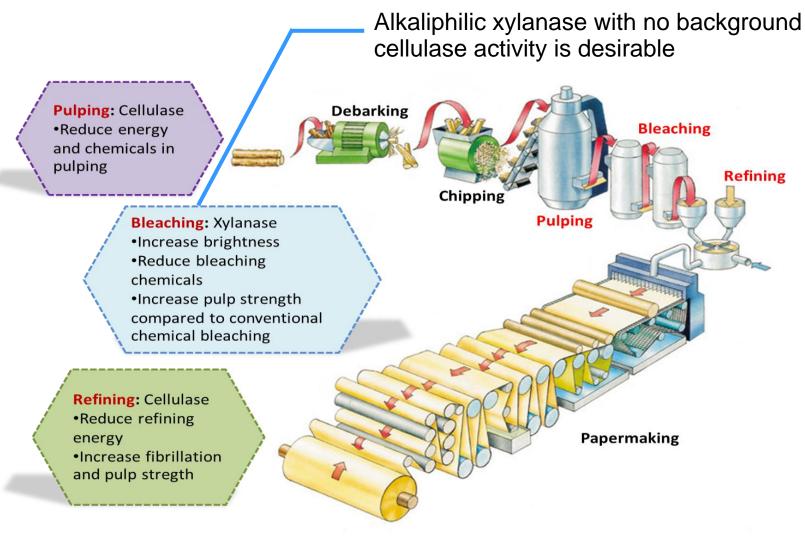
Corn stover

Agricultural waste

Animal feedstuff

Textile fiber

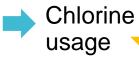
Paper pulp

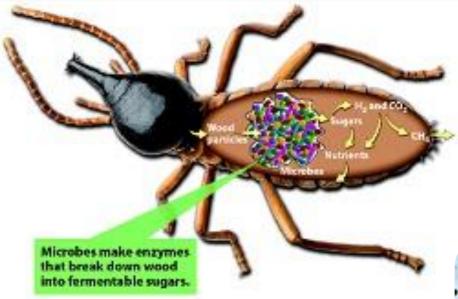

Synergistic enzymes for biomass saccharification

P. pastoris/ E. coli

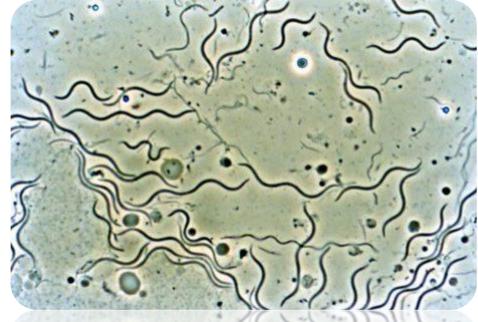
Gene pool **Application** Enzyme library Mixture formulation **BIOTEC** Synergy screening microbes CBH2 >80,000 (BCC) On-site enzyme production ACC Metagenome **AUX** Low Public BpEX CmE Sab range database Bioinformatic tool High Consolidated AA9Tr AA9Ct Sequence range Synergistic bioprocessing Structure interaction microbe Crude multi-activity enzyme DoE High-throughput Recombinant expression system Ogataea thermomethanolica/

Enzymes for green processing of pulp in paper industry


Partial xylan hydrolysis


Destruction of Lignin-Hemicellulose complex

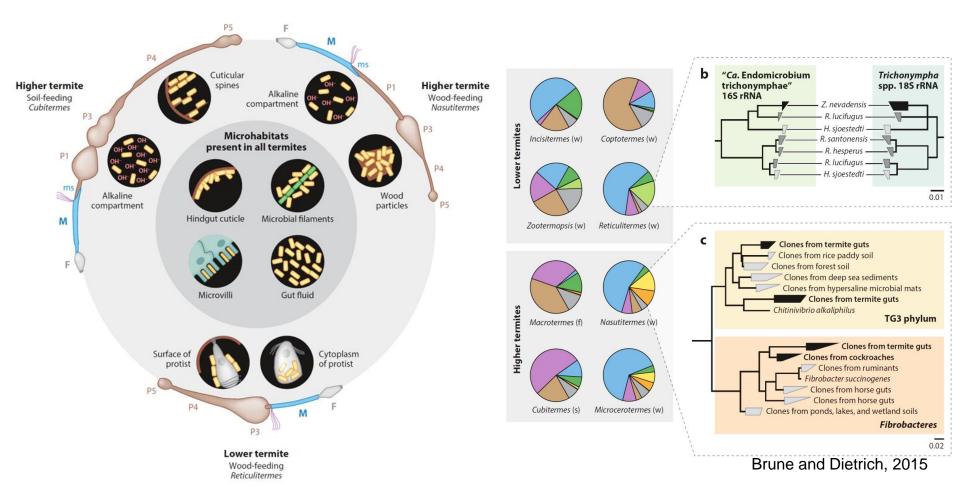
Increase accessibility of bleaching chemicals


Isolation of alkalophilic endo-xylanase from termite gut metagenome

Alkali pH with effective cellulolytic microbial community

Termite gut symbiont is one of the nature's most efficient model for the breakdown of wood. Genomic study revealed that almost 1,000 enzymes play a role in this process.

Potential source for discovery of lignocellulose degrading enzymes for biotechnological application.



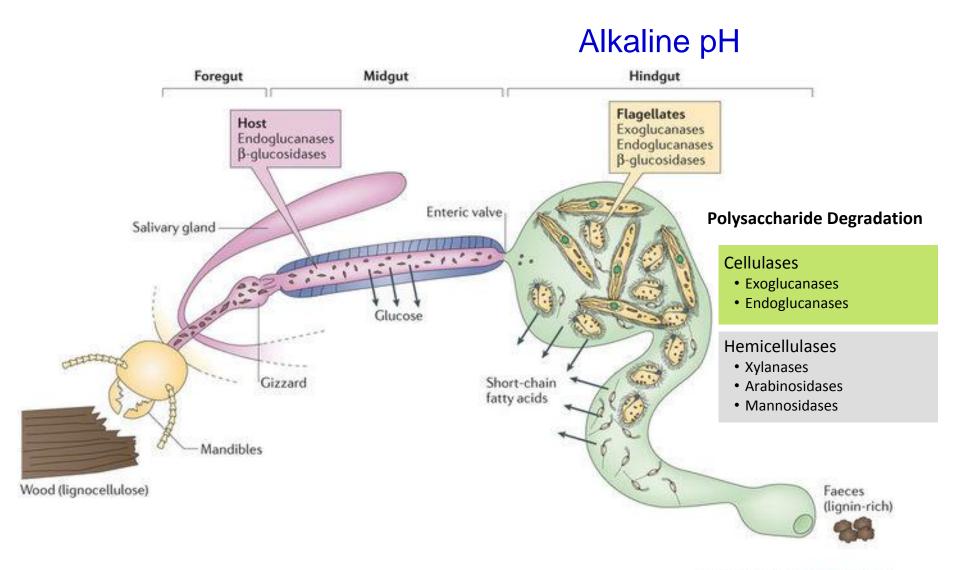
Diversity of the gut microbiota

The termite gut microbiota comprises all three domains of life:

- Bacteria
- Archaea
- Eukarya (flagellate protists in lower termites)

Bacteroidetes

Proteobacteria


Elusimicrobia TG3 phylum

Fibrobacteres

Other

Firmicutes
Spirochaetes

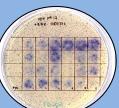
Major functional niches of the hindgut ecosystem

Sequence analysis and annotation of the cellulase and xylanase genes retrieved from the metagenomic fosmid library of termite gut.

Fosmid clone	Predicted ORF	Protein length (aa)	Most homologous protein	Organism	Identity/ similarity (%)	GH/conserved motif (range)/ catalytic residues	GenBank Accession No.	References
CL1	c0001	404	GH5 (ABW39333) from metagenomes of termite gut	Uncultured bacterium	58/71	Cellulase/GH5 (82-372)/E205 and E338	GU721061	Warnecke et al. [36]
Xyn5	x1088	651	Endo-1,4-β-xylanase (AAS85781) from metagenomes of adult lepidopteran moth	Uncultured bacterium	50/65	Xylanase/GH8 (8-405)/E44 and D276	GU721062	Brennan et al. [5]
Xyn12	x0012	273	Endo-1,4-β-xylanase (AAS85784) from metagenomes of adult lepidopteran moth	Uncultured bacterium	56/73	Xylanase/GH11 (42-250)/E142 and E244	GU721063	Brennan et al. [5]
Xyn9	x1098.1	700	GH10 (ABN52146)	C. thermocellum ATCC27405	40/58	Xylanase/GH10 (38-378)/E184 and E306	GU721064	Unpublished
Xyn9	x1098.2	664	Xylanase (AAS85784) from metagenomes of adult lepidopteran moth	Uncultured bacterium	49/66	Xylanase/GH11 (55-260)/E147 and E253	GU721064	Brennan et al. [5]
Xyn9	x1098.3	529	Xylanase (AAS85783) from metagenomes of caterpillars	Uncultured bacterium	59/73	Xylanase/GH11 (32-244)/E145 and E242	GU721064	Brennan et al. [5]

Highlights on enzyme prototype development

ENZ-Bleach: Alkaliphilic xylanase for pulp bio-bleaching



Metagenome of termite gut symbionts

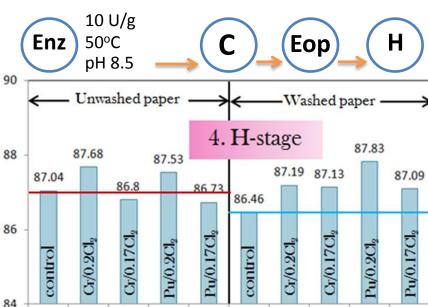
Fosmid library: 2 Gb

Activity-based screening: AZCL-xylan/ AZCL-HE-cel

12 Xyl genes 2 Cel genes

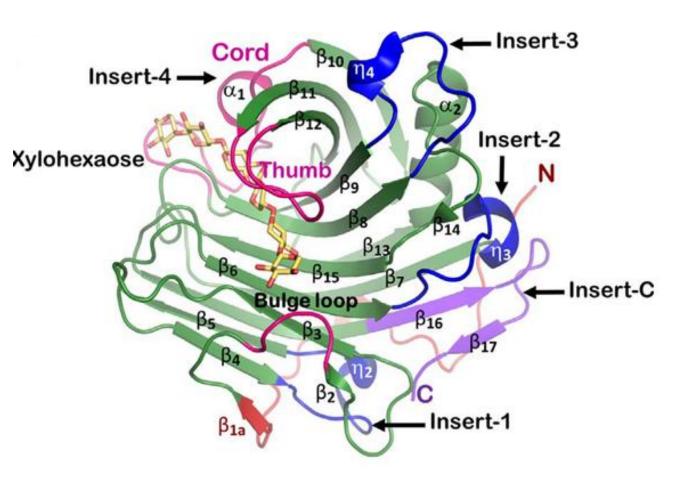
Hit-rate: 10-4

Recombinant expression in E. coli Opt T: 50-55°C


Opt pH 8.5 No cellulase act.

Chemical Energy Waste water

DoE Optimisation HCD Fermentation $OD_{600} > 50$; cost $40x \downarrow$



Nimchua et al. (2012) J. Microbiol. Biotechnol.

22: 462-469

Structure-based protein engineering for thermostable and alkaliphilic enhancement of Xyn12.2 xylanase for applications in pulp bleaching

Rational design

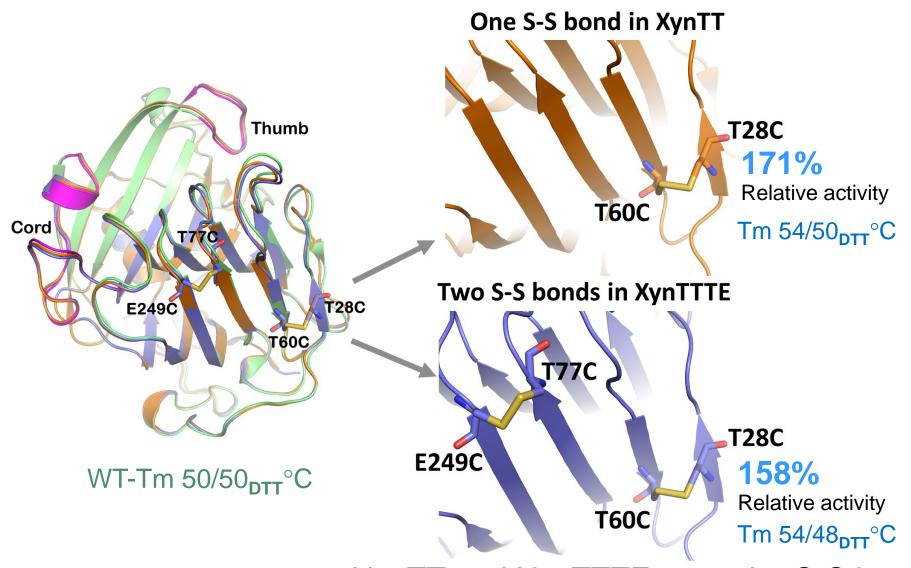
Approach 1
Enhancing H-bonding

Approach 2

Arginine replacement on polar surface

Approach 3 S-S bond

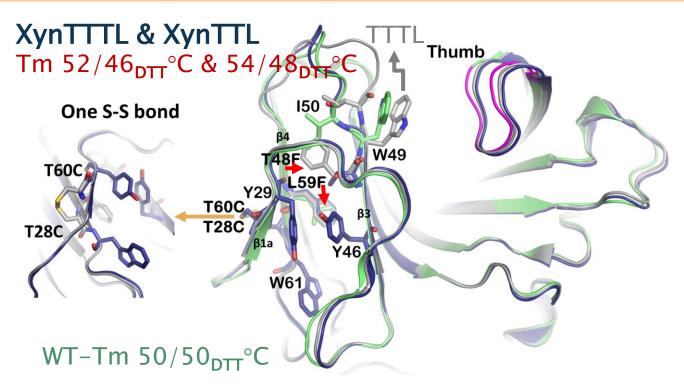
Approach 4
Hydrophobic packing


The overall structure of Xyn12.2.

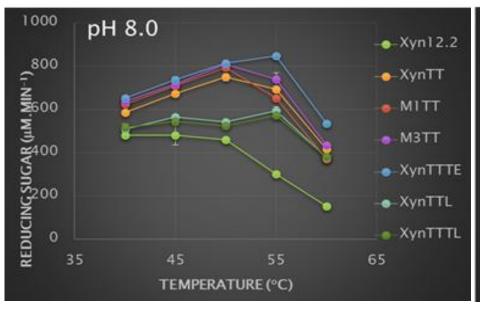
A cartoon representation of Xyn12.2 shows the right-handed β-jelly roll fold typical for GH11 xylanases. Positioning of the xylohexaose substrate was adopted from T. reesei xylanase crystal structure (PDB code 4HK8) and drawn as sticks to indicate the active site of Xyn12.2.

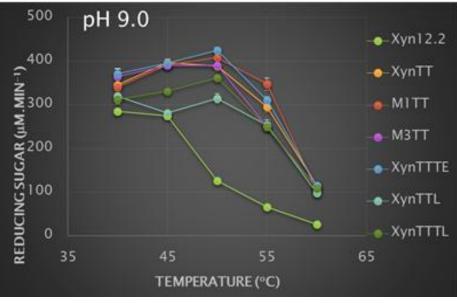
Boonyapakorn et. al. J. Biotech 259 (2017)

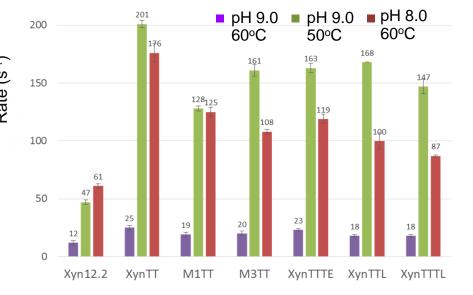
Approach II: Addition of disulfide bonds

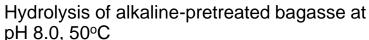

(where is good for SS bond?)

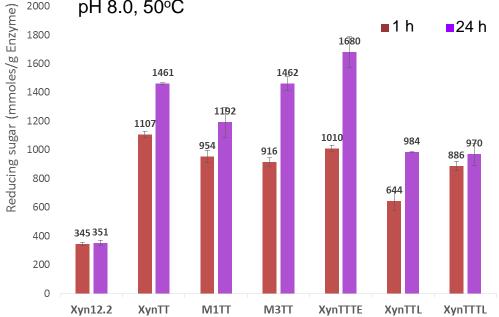
XynTT and XynTTTE: exterior S-S bond


Approach III: increasing enthalpy: Hydrophobic packing


Xylanase	Modifications	Mutations	k _{cat} (s ⁻¹)	%Relative activity		
Xyn12.2 ^{wt,c}	wild type	-	1210±16	100		
Hydrophobic packing + disulfide bond formation						
XynTTL ^{2,c}	hydrophobic core packing + S-S bond	drophobic core packing + S-S bond T28C, T60C, L59F		113		
XynTTTL ^{1,c}	hydrophobic core packing + S-S bond	drophobic core packing + S-S bond T28C, T60C, T48F, L59F		134		
Active site						
E244A*	catalytic activity disruption	E244A	8±0	1		
E244H*	catalytic activity disruption	E244H	1±0	0		
E142H*	catalytic activity disruption	E142H	2±0	0		


Successful Xyn12.2 variants


Xylanase	Modifications	Mutations	k _{cat} (s ⁻¹)	%Relative activity			
Xyn12.2 ^{wt,c}	wild type	-	1210±16	100			
Disulfide bond formation							
XynTT ^{1,c}	exterior S-S bond	T28C, T60C	$2070\!\pm\!47$	171			
XynTTTE ^{1,c}	two exterior S–S bonds	T28C, T60C, T77C, E249C	$1912\!\pm\!22$	158			
H-bond and engineered arginine + disulfide bond formation							
M1TT ^{1,c}		V5N, V6N, K7R, K223R, K227R, T28C, T60C	1859±27	154			
M3TT ^{1,c}		K73R, K185R, T28C, T60C	$1807\!\pm\!26$	149			
Hydrophobic packing + disulfide bond formation							
XynTTL ^{2,c}	hydrophobic core packing + S-S bond	T28C, T60C, L59F	1371±33	113			
XynTTTL ^{1,c}	hydrophobic core packing + S-S bond	T28C, T60C, T48F, L59F	1620±58	134			



Effect of pH and Temp at 1 h digestion time on hydrolysis of beechwood xylan

Operational stability relationship to performance of enzyme variants

We can improve the performance of Xyn12.2 by addition of S-S bonds, high pKa Arg replacement, H-bonds, and hydrophobic interactions as shown in the variants XynTT, M1TT, M3TT, TTTE, XynTTL, and XynTTL.

The performance of the variants are pH and temperature dependent, with higher threshold of tolerance than wild type.

Xyn TTTE quadruple mutants

- k_{cat}: 270% at pH 8, 60°C
- Tm: 3-6°C at pH 8-9
- Catalytic efficiency: 420% at pH
 9, 50°C, 1 h

Enzyme R&D Enhancing capability of existing bio-industry for THAILAND 4.0

Biobank & Bioservice

- National Enzyme library
- Quality control for product registration
- IP helpdesk

Innovative R&D

- Enzyme engineering
- Strain development
- HTP bioprocess opt
- Formulation

Demonstration plant (OEM/ODM)

- Non-GM/GM
- SmF/SSF
- Downstream processing
- Pre-processing unit

Creating economic impact via value chain

producer user society

Industrial & academic collaboration

National Institute of Advanced Industrial Science and Technology (AIST) 独立行政法人 產業技術総合研究所

NSTDA: driving force for Thailand's S&T

Acknowledgement

- National Center for Genetic Engineering and Biotechnology
- National Science and Technology Development Agency
- Enzyme Technology & Microbial Cell Factory Laboratory members
- JGSEE-BIOTEC Integrative Biorefinery Laboratory

Special thanks to Dr.Pemchit Chitnumsub