Discovery and engineering of enzymes from termite gut metagenome for green industry

Translating biodiversity to bioindustry

Verawat Champreda Microbial Biotechnology and Biochemicals Unit BIOTEC

Bioeconomy

Renewable resource

- Green & Clean processing
- Environmental& Economic sustainability

Thailand 4.0 Innovation & Sustainability

Advanced Bio-industry and Biorefinery will be one of the 5 new S-curve industries in the national ageda.

This is strongly linked to the country's established strength in agricultural sector, food industry and biofuel industry.

http://www.bio-step.eu

Enzyme & Bio-based economy

Enzymes play an essential role in modern biotechnology related to production of commodity and specialty products in everyday life.

- Accelerating process reactions
- Additives in products for desirable properties

Food & Feed

Pre-biotics/ supplements

Biofuels & Chemicals

Saccharification/ processing

Green processing

Pulp/ Textile/ Detergent

Healthcares & Pharmaceuticals Specialty high value enzymes

Enzymes for green industry

From diversity to industry

Animal Feed

Enhancing nutrition/ digestibility

Exploration of uncultured microbial resources

Metagenomic exploration @BIOTEC

degradation

	Source	Method/ Target	References	
	Peatswamp forest Site: Narathiwas, THA Organic carbon sink	16S rRNA on NGS Biodiversity profiling Cellulose degradation	Kanokratana et al. (2011) Microb. Ecol. 61, 518-528	
	Bagasse collection site Site: Chaiyapoom, THA Thermophilic lignocellose decomposition	Shortgun/16S rRNA Activity-based Cellulose degradation and enzyme isolation	Mhauntong et al. (2015) Biotechnol. Biofuel 8:16	
	Termite gut symbioint Source: Trametes hindgut Alkaliphilic cellulose degradation	Activity-based screening Alkaliphilic cellulase/hemicellulase	Nimchua et al. (2012) J. Microbiol. Biotehnol. 22, 462-469	
	Carnivorous plant pitcher fluids Source: 8 local Nepenthes sp. Acidic hydrolytic environment	16S rRNA on NGS Biodiversity profiling Acidophilic microbes & enzymes	Kanokratana et al. (2016) Microb. Ecol. 72: 381-393	
is.	Cow rumen Source: Cow rumen fluid Anaerobic cellulose	16S rRNA on NGS Biodiversity profiling Cellulose degradation	Thoertkiattikul et al. (2012) Curr. Microbiol. 67, 130-137	

Lignocellulose structure & decomposition

Agricultural waste

Animal feedstuff

Textile fiber

Paper pulp

Synergistic enzymes for biomass saccharification

Enzymes for green processing of pulp in paper industry

Isolation of alkalophilic endo-xylanase from termite gut metagenome

Alkali pH with effective cellulolytic microbial community

Termite gut symbiont is one of the nature's most efficient model for the breakdown of wood. Genomic study revealed that almost 1,000 enzymes play a role in this process.

Potential source for discovery of lignocellulose degrading enzymes for biotechnological application.

Diversity of the gut microbiota

The termite gut microbiota comprises all three domains of life:

- Bacteria
- Archaea
- Eukarya (flagellate protists in lower termites)

Major functional niches of the hindgut ecosystem

Nature Reviews | Microbiology Brune, 2014

Sequence analysis and annotation of the cellulase and xylanase genes retrieved from the metagenomic fosmid library of termite gut.

Fosmid clone	Predicted ORF	Protein length (aa)	Most homologous protein	Organism	Identity/ similarity (%)	GH/conserved motif (range)/ catalytic residues	GenBank Accession No.	References
CL1	c0001	404	GH5 (ABW39333) from metagenomes of termite gut	Uncultured bacterium	58/71	Cellulase/GH5 (82-372)/E205 and E338	GU721061	Warnecke et al. [36]
Xyn5	x1088	651	Endo-1,4-β-xylanase (AAS85781) from metagenomes of adult lepidopteran moth	Uncultured bacterium	50/65	Xylanase/GH8 (8-405)/E44 and D276	GU721062	Brennan et al. [5]
Xyn12	x0012	273	Endo-1,4-β-xylanase (AAS85784) from metagenomes of adult lepidopteran moth	Uncultured bacterium	56/73	Xylanase/GH11 (42-250)/E142 and E244	GU721063	Brennan et al. [5]
Xyn9	x1098.1	700	GH10 (ABN52146)	C. thermocellum ATCC27405	40/58	Xylanase/GH10 (38-378)/E184 and E306	GU721064	Unpublished
Xyn9	x1098.2	664	Xylanase (AAS85784) from metagenomes of adult lepidopteran moth	Uncultured bacterium	49/66	Xylanase/GH11 (55-260)/E147 and E253	GU721064	Brennan et al. [5]
Xyn9	x1098.3	529	Xylanase (AAS85783) from metagenomes of caterpillars	Uncultured bacterium	59/73	Xylanase/GH11 (32-244)/E145 and E242	GU721064	Brennan et al. [5]

Nimchua et al. 2012

ENZ-Bleach: Alkaliphilic xylanase for pulp bio-bleaching

National Cen

Structure-based protein engineering for thermostable and alkaliphilic enhancement of Xyn12.2 xylanase for applications in pulp bleaching

Rational design

Approach 1 Enhancing H-bonding

Approach 2

Arginine replacement on polar surface

Approach 3 S-S bond

Approach 4 Hydrophobic packing

The overall structure of Xyn12.2.

A cartoon representation of Xyn12.2 shows the right-handed β-jelly roll fold typical for GH11 xylanases. Positioning of the xylohexaose substrate was adopted from T. reesei xylanase crystal structure (PDB code 4HK8) and drawn as sticks to indicate the active site of Xyn12.2.

Boonyapakorn et. al. J. Biotech 259 (2017)

Approach II: Addition of disulfide bonds (where is good for SS bond?)

Approach III: increasing enthalpy: Hydrophobic packing

Xylanase	Modifications	Mutations	k _{cat} (s ⁻¹)	%Relative activity		
Xyn12.2 ^{wt,c}	wild type	-	1210±16	100		
Hydrophobic packing + disulfide bond formation						
XynTTL ^{2,c}	hydrophobic core packing + S-S bond	T28C, T60C, L59F	1371±33	113		
XynTTTL ^{1,c}	hydrophobic core packing + S-S bond	T28C, T60C, T48F, L59F	1620±58	134		
Active site						
E244A*	catalytic activity disruption	E244A	8±0	1		
E244H [*]	catalytic activity disruption	E244H	1±0	0		
E142H [*]	catalytic activity disruption	E142H	2±0	0		

Successful Xyn12.2 variants

Xylanase	Modifications	Mutations	k _{cat} (s⁻¹)	%Relative activity			
Xyn12.2 ^{wt,c}	wild type	-	1210±16	100			
Disulfide bond formation							
XynTT ^{1,c}	exterior S-S bond	T28C, T60C	$2070{\pm}47$	171			
XynTTTE ^{1,c}	two exterior S–S bonds	T28C, T60C, T77C, E249C	1912 ± 22	158			
H-bond and engineered arginine + disulfide bond formation							
M1TT ^{1,c}		V5N, V6N, K7R, K223R, K227R, T28C, T60C	1859±27	154			
M3TT ^{1,c}		K73R, K185R, T28C, T60C	$1807{\pm}26$	149			
Hydrophobic packing + disulfide bond formation							
XynTTL ^{2,c}	hydrophobic core packing + S-S bond	T28C, T60C, L59F	1371 ± 33	113			
XynTTTL ^{1,c}	hydrophobic core packing + S-S bond	T28C, T60C, T48F, L59F	1620±58	134			

Hydrolysis of alkaline-pretreated bagasse at pH 8.0, 50°C

2000

Operational stability relationship to performance of enzyme variants

We can improve the performance of Xyn12.2 by addition of S-S bonds, high рКа Arg replacement, H-bonds, and hydrophobic interactions as shown in the variants XynTT, M1TT, M3TT, TTTE, XynTTL, and XynTTTL.

The performance of the variants are pH temperature dependent, and with higher threshold of tolerance than wild type.

Xyn TTTE quadruple mutants

- k_{cat}: 270% at pH 8, 60°C
- Tm: 3-6°C at pH 8-9
- Catalytic efficiency: 420% at pH 9, 50°C, 1 h

Enzyme R&D

Enhancing capability of existing bio-industry for THAILAND 4.0

Biobank & Bioservice

- National Enzyme library
- Quality control for product registration
- **IP** helpdesk

Innovative R&D

- Enzyme engineering
- Strain development
 - HTP bioprocess opt Formulation

٠

Demonstration plant (OEM/ODM)

- Non-GM/GM ٠
- SmF/SSF ٠
- Downstream processing
- **Pre-processing unit**

Platform technology build-up

Creating economic impact via value chain

producer 🛑 user 📄 society

Industrial & academic collaboration

NSTDA: driving force for Thailand's S&T

Acknowledgement

- National Center for Genetic Engineering and Biotechnology
- National Science and Technology Development Agency
- Enzyme Technology & Microbial Cell Factory Laboratory members
- JGSEE-BIOTEC Integrative Biorefinery Laboratory

Special thanks to Dr.Pemchit Chitnumsub