NSTDA HPC & DA Research, Development, and Engineering

Manaschai Kunaseth

National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) Thailand Science Park, Pathum Thani, THAILAND

manaschai@nanotec.or.th

Nanomaterials Design and Simulations

Nanoscale Simulation Laboratory (NANOTEC) aims to design and predict the properties of functional nanomaterials, and to create a unique understanding of the physicochemical processes at nanoscale regime by using:

Catalysis for Green Energy Production

CO₂ Electrochemical Reduction to Methanol and Methane on Stepped Cu-based Alloys (211) Surfaces

P. Hirunsit et al. J. Phys. Chem. C 2013, 117 (16), 8262-8268.
P. Hirunsit et al. J. Phys. Chem. C 2015, 119 (15), 8238-8249.

CO₂ Electrochemical Reduction to Ethylene on Cu(100), Cu(110) and Cu(111) Surfaces (Collaboration with Jason Yeo at NUS)

Palm Oil Conversion to Biofuel using Ni₂P Catalyst

Catalytic Transfer Hydrogenation for γ-Valerolactone (GVL) using NiCu Alloy

H₂ Activation on Partially Promoted Metal Edge of CoMoS and NiMoS

C. Sattayanon, et al., Fuel Process. Technol. 2017, 166, 217.

Catalysts and Adsorbents for Pollutant Removal

Development of Nanomaterials for Heavy Metal Removal

Activated carbon for Hg⁰ removal

C. Rungnim, et al., Chem. Eng. J. 2015, 274, 132-142.

C. Rungnim et al., J. Hazard. Mater. 2016, 310, 253-260.

Nanomaterials for NO_x Removal

SCR-NH₃ of NO in metal oxide-based catalysts

NO reactions in Metal complex and carbon-based catalysts

J. Meeprasert et al., RSC Adv. 2016, 6, 20500-20506. A. Junkaew et al., RSC Adv. 2017, 7, 8858-8865.

Metal Deposited Defective Graphene for Volatile **Organic Compound Removal**

Nanomaterials for H₂S Desulfurization

a member of NSTDA

A. Junkaew et al., Catal. Sci. Technol. 2017. 7. 356-365.

 $\begin{array}{l} \mathsf{TiO}_2 + \mathsf{xH}_2\mathsf{S}(\mathsf{g}) \xrightarrow{\bullet} \mathsf{TiO}_{(2\times)} \cdot \mathsf{S}_{\mathsf{x}}^{\bullet} + \mathsf{xH}_2\mathsf{O}(\mathsf{g}) \\ \mathsf{TiO}_2 + \mathsf{xH}_2\mathsf{S}(\mathsf{g}) \xrightarrow{\bullet} \mathsf{TiO}_2 \cdot \mathsf{S}_{\mathsf{x}}^{\bullet} + \mathsf{xH}_2(\mathsf{g}) \end{array}$

A. Junkaew et al., New J. Chem. 2015, 39, 9650-9658.

Salinity Intrusion for Lower Chao Phraya Basin

River simulation includes a prediction model for (1) water current (2) water level (3) salinity. Information from these simulations helps water management from upper river's dams, water gates, and reservoirs.

7-day prediction with daily automatic update
Perform "what-if scenario" for water management

Water Current Prediction

Based on deterministic, and potentially, on ensemble models

Water Salinity Prediction

Contact: Dr. Sirod Sirisup, NECTEC

Artificial Intelligence & Big Data Technologies

NECTEC State-of-the-Art NLP

Particle analysis

- Rice breed classification
- Car park monitoring
- Silk egg monitoring
- Plant-hopper detection

Computer Vision

Contact: Dr. Chai Wutiwiwatchai, NECTEC

HPC for Computer-Aided Engineering (CAE)

Finite element analysis (FEA) of dynamic structural problems
 Computational fluid dynamics (CFD) of fluid flow problems

O₂ Gas Distribution in A Chemical Reaction Tank

The Wheel Impact Test

Contact: Dr. Somboon Otarawanna, MTEC

BIOINFORMATICS Precision Medicine

โครงสร้างพื้นฐานทางชีวสารสนเทศ เพื่อการแพทย์แม่นยำในประเทศไทย

3. Knowledge portal

Online web portal for querying valuable information

2. Big data analytics

- Software for large-scale genomic data processing
- 1. Computing infra
- HPC infrastructure
- Genomic databases for Thais

กิจกรรมหลักในการพัฒนาโครงสรังพื้นฐานทาง ชีวสารสนเทศเพื่อการแพทย์แม่นยำ

Human -Omics Resources & Data Management

 Storing and managing humanomics data and other related information so that new knowledge can be synthesized

Customized Bioinformatic Workflows

 Joining multiple tools to create suitable computational pipelines for analytics aspects of Precision Medicine **Algorithm Development**

GENOME

INFORMATICS

an

 Developing efficient algorithms for identifying plausible mutations, disease risk assessment etc.

Web-friendly Interface

 Providing web access to standard bioinformatic workflows and portal for querying information/knowledge with graphical interface

Contact: Dr. Sissades Tongsima, BIOTEC

National BioBank

and h

a member of NSTDA

Thailand's Biodiversity: 10% of the world

National Biobank for conservation, research, and utilization

NSTDA Computing Infrastructure

Compute core = (2 x 20c) x 85 = 3,400 Memory/Node = 192 GB

Compute core = (8 x 24c) x 12 = 2,304 cores Memory/Node = 3,072 GB (3.072 TB)

24 NVIDIA V100 GPUs 24 x 5,120 = 122,880 CUDA cores 168 TFLOPS

Development of Shift/Collapse (SC) Algorithm

 A fast and scalable computation and communication algorithm for many-body potentials molecular dynamics (MD) based on general *n*-tuple computation

 SC algorithm utilizes *shift* & *collapse* operations to rearrange computation pattern for optimal computation & communication

Steered Reactive-MD simulation of hydrolysis in amorphous silica using *n*-tuple computation

SC computation pattern for 3-body interaction

Scalability on Massive-Scale Supercomputer

- 25-million atom benchmark on Mira: BlueGene/Q supercomputer at the Argonne National Laboratory
 - 91.9% strong parallel efficiency on 16,384 BG/Q nodes (1,048,576 MPI tasks on 262,144 cores)
 - 90.3% weak parallel efficiency on 49,152 BG/Q nodes (3,145,728 MPI tasks on 786,432 cores)
- 9.1x speedup at small granularity (24 atoms/core) over previous method

Optimizing / Parallelizing Compiler for GPUs

- Optimizing Compiler: Automatically improve program performance through code transformation.
- Parallelizing Compiler: Convert serial program to run on GPUs.

Automated VASP Performance Tuning (AVPT)

 Tuning performance related parameters of DFT simulations using VASP: NSIM, NCORE, NBLK, ALGO

(a) Methyl levulinate (ML) adsorption (b) Graph on NiCu bi-metallic alloy

(c) HCOO" adsorption on S

doped Cu surface

(d) NbS₂ multilayers sheets #0deser2017

PI: Dr. Manaschai Kunaseth, NANOTEC

Conclusions

- HPC and DA research in NSTDA are diverse and well-mature
 - fundamental research that are recognized at international stage
 - Applied research that are useful and beneficial for Thailand's economy
 - S&T service to industrial partners and customers
 - In-house platforms & methods development
- NSTDA computing Infrastructure is a key enabling facility for NSTDA research integration, collaboration

