

## **How Multi-GNSS Brings Benefits to SEA A Technical Point of View**





Bangkok, Thailand, 2 April 2014

# International Collaboration Centre for R&D on Satellite Navigation Technology in South East Asia

http:



nav



"The mission of Navis is to boost the R&D of satellite navigation technology, especially the European Galileo System, in South-East Asia."

/navis.hust.e

# Work Motivation

- South East Asia (SEA) region is covered by:
  All 4 GNSSes (GPS, Galileo, GLONASS, Beidou); and
   1 RNSS (QZSS).
- Now: GPS-standalone solution still dominates, but
- Future is multi-GNSS + RNSS;

Verification of the advantages of Multi-GNSS over stand-alone solutions in SEA by <u>real data</u> <u>collected from all system constellations.</u>

## Content

### **1. Multi-GNSS Environment**

- Challenges of Multi-GNSS Environment
- Advantages of Multi-GNSS Environment
- 2. Multi-GNSS Signal Processing Chain
  - Experiment Result
- **3. QZSS augmentation services:** 
  - Sub-meter class: L1-SAIF;
  - Centimeter class: L6-LEX.
- 4. Conclusions

## Content

### Multi-GNSS Environment

- Challenges of Multi-GNSS Environment
- Advantages of Multi-GNSS Environment
- Multi-GNSS Signal Processing Chain
   Experiment Result
- QZSS augmentation services:
  - Sub-meter class: L1-SAIF;
  - Centimeter class: L6-LEX.
- Conclusions

# Multi-GNSS Environment



## Multi-GNSS Environment



## Challenges of Multi-GNSS Environment

- Inter-system interference: GNSSes broadcast navigation signals in overlapped frequency bands → Inter-system interference.
- Complexity increase:
  - ➤ Analog part: operate with multiple systems, multiple frequency bands at larger signal bandwidths → Increase complexity and receiver cost.
  - ➢ Digital part: More advanced and complex algorithms, more channels for more satellites → Increase the computational complexity, the resource capability requirements and receiver cost.
- Different Coordinate Reference System: each GNSS uses its own coordinate reference systems

| System                      | GPS           | GLONASS  | Galileo       | Beidou        |
|-----------------------------|---------------|----------|---------------|---------------|
| Satellite position          | Kepler param. | ECEF     | Kepler param. | Kepler param. |
| Coordinate reference system | WGS-84        | PZ-90.02 | GTRF          | CGCS2000      |

# Advantages of Multi-GNSS environment

• More signals, more services => more options

Satellite positioning for consumer use in various countries



Source: qzs.jp 9

• Increase in availability and coverage:





- More robust and reliable services:
  - Reliable services: Integrity information is provided by SBAS or GNSSes;
  - Robustness positioning:
    - New advanced signals
    - The redundancy of multi-systems and multi-bands;
    - => more difficult to be jammed and spoofed;





## Content

### 1. Multi-GNSS Environment

- Challenges of Multi-GNSS Environment

Advantages of Multi-GNSS Environment

### 2. Multi-GNSS Signal Processing Chain – Experiment Result

**3. QZSS augmentation services:** 

- Sub-meter class: L1-SAIF;

– Centimeter class: L6-LEX.

4. Conclusions

# **GNSS Signal Processing Chain**



 Signals in concerns: open and free signals of the 5 systems, namely:

| Signals | Carrier  | PRN     | Code   | Code  | Data |
|---------|----------|---------|--------|-------|------|
|         | (MHz)    | code    | Length | rate  | rate |
| GPS     | 1575.42  | Gold    | 1023   | 1.023 | 50   |
| L1-C/A  |          |         |        |       |      |
| Galileo | 1575.42  | Memory  | 4092   | 1.023 | 250  |
| E1      |          |         |        |       |      |
| Beidou  | 1561.098 | Gold    | 2046   | 2.046 |      |
| B1      |          |         |        |       |      |
| Glonass | 1602+    | Maximal | 511    | 0.511 | 50   |
| L1-OF   | k×0.5625 | length  |        |       |      |

Note: GLONASS L1-OF is the only FDMA signal; the others are CDMA ones

# Analog parts (1/2): (Antenna & Front-end)

- Antenna requirements:
  - Capable of receiving all 4 signals;
  - Aero Antenna Choke Ring AT1675-120:
    [1525 ÷1615] MHz





# Analog parts (2/2): (Antenna & Front-end)

- Front-end:
  - Functionalities: conditioning and digitizing analog signals
  - Chosen front-end: MAX2769



| Table 1. MAX 2709 Holt-end configuration |                                                     |  |  |  |
|------------------------------------------|-----------------------------------------------------|--|--|--|
| Sampling frequency                       | $F_{\rm S} = 16.368 \text{ MHz}$                    |  |  |  |
| Intermediate frequency                   | $F_{\rm IF1} = 4.092$ MHz (for L1-                  |  |  |  |
|                                          | C/A, E1 and B1)                                     |  |  |  |
|                                          | $F_{\rm IF2} = -16 \text{ kHz} \text{ (for L1-OF)}$ |  |  |  |
| Bandwidth                                | $B_{\rm w1} = 4.2$ MHz (for L1-                     |  |  |  |
|                                          | C/A, E1 and B1)                                     |  |  |  |
|                                          | $B_{w2} = 8 \text{ MHz} \text{ (for L1-OF)}$        |  |  |  |
| Number of quantization bits              | 2 bits                                              |  |  |  |

Table 1: MAX 2769 front-end configuration



## **Signal Acquisition Process**



• Choice of the step sizes of Doppler and code delay estimations:



# **Signal Tracking Process**

- Refine the acquisition results (rough estimations of  $(\hat{\tau}, \hat{f}_d)$ );
- Estimate continuously (follow dynamically track) the values of  $(\tau,f_d)$
- For Carrier wipe-off and Code wipe-off;
- Carrier wipe-off: Phase Lock Loop (PLL);
- Code wipe-off: Delay Lock Loop (DLL)



DLL & PLL are strictly interrelated, and work in a concatenated way



## Data demodulation

The tracking output: bit stream

- Sub-frame synchronization;
- Data validation;
- Message content reorganization/recovery

Time, clock, ephemeris, almanac information.





• Navigation data format of GNSSes

| Signals        | GPS L1 C/A | GLONASS L1 OF | Galileo E1 | BeiDou B1 (D1) | BeiDou B1 (D2) |
|----------------|------------|---------------|------------|----------------|----------------|
| Preamble       | 8b×20ms    | 30b×10ms      | 10b×4ms    | 11b×20ms       | 11b×2ms        |
| Subframe       | 300b×20ms  | 200b×10ms     | 250b×4ms   | 300b×20ms      | 300b×2ms       |
| Data           | 292b×20ms  | 85b×20ms      | 120b×8ms   | 19b×20ms       | 19b×2ms        |
| Error checking | Parity     | Hamming       | CRC        | BCH(15         | , 11, 1)       |

• Data demodulation procedure:



• Note: Sub-frame synchronization is important for pseudo-range measurements

## **Satellite Position Computation**



## Pseudo-range Computation (1/2)

| System              | GPS      | GLONASS  | Galileo  | Bei      | Dou       |
|---------------------|----------|----------|----------|----------|-----------|
| Time system         | GPST     | GLONASST | GST      | BI       | TC        |
| Orbit               | MEO      | MEO      | MEO      | MEO      | GEO, IGSO |
| Altitude            | 20180 km | 19140 km | 23222 km | 21528 km | 35786 km  |
| Approx. travel time | 70 ms    | 66,53 ms | 80,15 ms | 74,5 ms  | 122,06 ms |

- Facts:
  - Ranges are computed via estimated travel time;
  - In fact, only pseudo-ranges are derived because of bias between satellite and receiver clocks;
  - Different GNSSes use different time systems.
  - In a GNSS, all satellites are synchronized to a common time system;

#### Adaptations to Multi-GNSS: Pseudo-range Computation (2/2)



- t<sub>tr</sub>: real transmit time of GPS;
- t<sub>tr assumed</sub> assumed transmit time;
- startOffset: assumed shortest travel time;
- δt<sub>GPS-GLO</sub>: different between GPS and GLONASS time systems

## **PVT Computation: Navigation equations**

- Stand-alone GNSS:
  - 4 equations needs 4 satellites
- Multi-GNSSes:
  - Each system has its own time system;
  - Extra unknowns for these differences; or
  - Use the time system offsets broadcasted by GNSSes, e.g. GPS-Galileo offset; GPS-Beidou offset...

$$\begin{cases} \rho_{1,GPS} = \sqrt{(x_{1,GPS} - x_u)^2 + (y_{1,GPS} - y_u)^2 + (z_{1,GPS} - z_u)^2} + ct_{GPS} \\ \rho_{2,GPS} = \sqrt{(x_{2,GPS} - x_u)^2 + (y_{2,GPS} - y_u)^2 + (z_{2,GPS} - z_u)^2} + ct_{GPS} \\ \vdots \\ \rho_{i,GPS} = \sqrt{(x_{i,GPS} - x_u)^2 + (y_{i,GPS} - y_u)^2 + (z_{i,GPS} - z_u)^2} + ct_{GPS} \\ \vdots \\ \rho_{i,Gal} = \sqrt{(x_{i,Gal} - x_u)^2 + (y_{i,Gal} - y_u)^2 + (z_{i,Gal} - z_u)^2} + ct_{Gal} \\ \vdots \\ \rho_{i,Glo} = \sqrt{(x_{i,Glo} - x_u)^2 + (y_{i,Glo} - y_u)^2 + (z_{i,Glo} - z_u)^2} + ct_{Glo} \\ \vdots \\ \rho_{i,Bei} = \sqrt{(x_{i,Bei} - x_u)^2 + (y_{i,Bei} - y_u)^2 + (z_{i,Bei} - z_u)^2} + ct_{Bei} \\ \vdots \end{cases}$$
(1)

# **Result Analyses: Acquisition**

#### **GLONASS PRN 1** CHANNEL-1 ж 10 14 12 10 ž 140 120 100 80 15000 60 40 10000 5000 20 Doppler shift (Hz) Code delay (samples)

**Beidou PRN 5** 



GPS PRN 22





27

## **Result Analyses: Tracking**









### Result Analyses: Data demodulation

- Sky-plot (satellite positions): 26 satellites-in-view of 5 systems, namely:
  - 8 GPS;
  - -4 Galileo;
  - 5 GLONASS;
  - 8 Beidou;
  - 1 QZSS.



#### Result Analyses: Stand-alone Positioning (1/3)



#### Result Analyses: Stand-alone Positioning (2/3)



### Result Analyses: Stand-alone Positioning (2/3)

• Accuracy of GNSSes at the campaign

| System  | $\delta_{\text{East}}(m)$ | $\delta_{\text{North}}(m)$ |
|---------|---------------------------|----------------------------|
| Glonass | 3.2584                    | 8.1746                     |
| Beidou  | 3.7629                    | 13.4952                    |
| Galileo | 4.0887                    | 12.8882                    |
| GPS     | 2.9859                    | 6.3924                     |

**Horizontal Errors** 



#### Result Analyses: Multi-GNSS Positioning GPS+Galileo



- GPS L1 C/A and Galileo BOC(1,1) are two interoperability signals:
  - Common carrier frequency;
  - Mutual interference mitigation (BOC modulation).

Suitable for combined positioning

#### Result Analyses: Multi-GNSS Positioning 3 GPS + 2 Beidou



 Geostationary SVs of Beidou always visible at high elevation in SEA

### Result Analyses: Multi-GNSS Positioning All GNSSes + QZSS



- GPS/GLONASS/Galileo/Beidou/QZSS: 26 satellites are involved
- Better accuracy in comparison with any stand-alone
- But complexity increase

## Content

### **1. Multi-GNSS Environment**

- Challenges of Multi-GNSS Environment
- Advantages of Multi-GNSS Environment
- 2. Multi-GNSS Signal Processing Chain – Experiment Result

### **3. QZSS augmentation services:**

- Sub-meter class: L1-SAIF;
- Centimeter class: L6-LEX.

4. Conclusions

# Overview of QZSS

- The Quasi-Zenith Satellite System (QZSS) is a RNSS of Japan.
- Functional Capability:
  - GNSS Complementary
  - GNSS Augmentation:
    - Sub-metter class
    - Centimeter class
  - Messaging Service
- Signals:
  - L1C/A, L1C, L2C and L5
  - L1S (L1-SAIF)
  - L6 (LEX)
- 2018: provide services by 4 SVs



• Coverage: East Asia and Pacific Region



**Ground Track of a QZSS satellite** 

• Elevation and Azimuth of the 1<sup>st</sup> SV: Michibiki







- Modulated by BPSK with C/A code (PRN 183);
- 250 bps data rate with 1/2 FEC; message structure is identical with SBAS;
- Differences from GPS L1C/A: Large Doppler and additional messages.

# L1-SAIF Error Correction Algorithm

• Clock and Orbit error correction (Long-term correction):



Fast Correction and Atmospheric Delay



- Ionospheric delay correction:
  - ✓ Step 1: Determination of Ionospheric Pierce Point (IPP) based on 4 surrounding Ionospheric Grid Points
  - ✓ Step 2: Computation of Ionospheric Correction



# Experiment Results with L1-SAIF

- Long term correction and Fast Correction are available
- However, ionospheric correction is not available since the there are not enough IGPs (often 2 points only)
- Therefore, the correction is not as expected at least during many campaigns, which we have done so far



| IGP No. | Long | Lat | Ionospheric delay [m] |
|---------|------|-----|-----------------------|
| 67      | 110  | 15  | -                     |
| 42      | 105  | 15  | 3.5                   |
| 41      | 105  | 10  | 4.125                 |
| 66      | 110  | 10  | -                     |

### QZSS – LEX: Centimeter Service

- Based on Precise Point Positioning (PPP) Technology:
- With single receiver (no reference station)
- Conventionally post-processing
- With recent services such as: IGS Realtime, QZSS LEX it is possible to have realtime PPP
- Need satellite orbit and clock
  - Post-processing (IGS final) or real-time (IGS RT, QZSS LEX)
  - Require observation data of tracking stations world-wide
  - Vietnam does not have any IGS station, NAVIS is the first one in MGA
  - Data format:
    - SP3 for orbit (ECEF positions of satellite mass center)
    - CLK for clock biases

#### Precise Point Positioning – IGS Products



**IGS Station Network** 

### Precise Point Positioning – QZSS LEX



#### Precise Point Positioning – Some Results



- LEX Realtime positioning is possible (almost as good as IGS Rapid product)
- Convergence time is still a problem (30-60 minutes to reach decimeter level in kinematic mode)

# Fast Precise Point Positioning (FPPP)

 Proposed by Research group of Astronomy and GEomatics (gAGE), Universitat Politècnica de Catalunya (UPC)

**IONOSPHERIC CORRECTION** will be used to fasten the convergence process of the PPP filter



**IGS Station Network** 

## Precise Point Positioning – **FPPP**



Horizontal RMS: 2 Freq + Iono: Reset every 2h DoY 54 - Year 2013

. .

ebre 230 km to mall



**Classic PPP with IGS Final** 

**Fast PPP** 

# Conclusions

- Multi-GNSS environment increases: availability, reliability and accuracy of the navigation services
- South-East Asia is covered by the largest number of systems (GNSSes + RNSSes) => interesting region for GNSS research
- Multi-GNSS positioning solutions are validated in South-East Asia, with results showing the advantages of multi-GNSS solutions
- QZSS-LEX is a good solution for precise positioning (no local infrastructure required, good performance...)
- ... but just the beginning, exhaustive research on "smart" combinations of G(R)NSSes (with complexity & cost concerns) must be done.

### Thank you very much for your attention!



#### Please visit us at http://navis.hust.edu.vn