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ABSTRACT

This study presents the results of a large scale analysis of the carbon budget of teak
(Tectona grandis Lin F.) which is an important species in tropical deciduous forests in
northern Thailand. BioGeochemical Cycles (BIOME-BGC) was calibrated to estimate net
primary production (NPP) using data assimilation with remote sensing data (SPOT-LAI).
Genetic Algorithm (GA) was coupled with BIOME-BGC (BIOME-BGC-GA) to find optimal
ecophysiological model parameters. Calibration was performed by adjusting simulated LAI to
satellite LAI, and the best fit of both of them confirmed the BIOME-BGC-GA method’s
accuracy. The optimized model was evaluated using the NPP satellite data, and showed good
improvement to the results obtained by the BIOME-BGC-GA using the default literature
parameterization. This improvement was mainly because the model’s optimized parameters
reduced the bias by reducing the systematic underestimation of the model. These results
encourage the operational application of BIOME-BGC in teak forests in tropical zones and
present an enhanced method of using BIOME-BGC-GA to develop the ecophysiological
parameters that are crucial for NPP simulation. NPP plays a significant role in large scale
forest carbon studies.
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CHAPTER 1
INTRODUCTION

1.1 Background

The concentration of a greenhouse gas or carbon dioxide (CO,) in the atmosphere has
increased regularly in coincidence with the great increase in global mean air temperature
since the 1910s (IPCC 2001). Due to these phenomena, decreasing the amount of the
atmospheric CO, and understanding the carbon storage and balance in the terrestrial
ecosystems are in urgent need, especially forest ecosystems. Forest ecosystems are an
environmental and economic resource which is still widely spread. Forests are able to
provide numerous wood products (e.g. timber, paper products, etc.), prevent soil erosion,
contribute to maintain biodiversity and are often used for recreational purposes;
additionally they have a great role both in the water and carbon cycles (Waring and
Running, 1998). Hence, the necessity for monitoring and quantifying the amount of carbon
accumulated within forests has recently increased also in view of the application of the
Kyoto Protocol and related documents (IPPC, 2001). A measure of the amount of
atmospheric CO; absorbed by vegetation is known as the net primary production (NPP).
NPP is a tool for measuring forest productivity and establishing carbon budgets. The data
obtained by calculating NPP can be used as the basis for estimating the impact of both
natural disturbances and management activities on forest productivity or assessing the
effects of climate change.

Numerous studies have been recently conducted and trials have been performed to
produce estimates of forest processes on different spatial and temporal scales using various
instruments (i.e. eddy-covariance techniques, satellite images, biogeochemical models,
etc.). Among the proposed methodologies, those based on the use of remote sensing data
and ecosystem simulation models are particularly promising. In addition, the remote
sensing technique and ecosystem simulation models are mostly encouraging. Especially,
the remote sensing data have provided the efficient values of vegetation conditions (e.g.
LAIL FAPAR, etc.) related to global forest productivity (Waring and Running, 1998 and
Maselli et al., 2006). Besides, the ecosystem simulation models are used to effectively
combine a variety of data such as the meteorological and soil measurements and the
structural and ecophysiological information in order to completely characterize vegetation
processes including transpiration, photosynthesis, respirations, allocations and etc.

For the biogeochemical models, the input parameters are combined to use for
identifying the physiology, biochemistry, structure and allocation patterns of vegetation
functional types or biomes. In case of single-stand simulations, the required model
parameters can be measured when spatial coverage increases, data availability decreases,
and generalized biome parameterizations are applied. Parameterization may be simplified



by using data from the literature in order to make foliar nitrogen across a biome constant.
Likewise, allocation of carbon to plant tissues may be assigned as fixed fractions across
age classes and climatic zones. Major limitations for regional and global modeling consist
of undocumented parameter selection and unknown model sensitivity to parameter
variation for larger resolution simulations (White et al. 2000). Admittedly, some ecosystem
process models are dynamic and converge towards carbon, nitrogen and water balances.
Nevertheless, the models can result in the right answer for the wrong reasons. Besides, a
predicted variable such as net primary productivity can have significant error because there
are some uncertainties in models.

Due to a lot of variables, it is very important to select suitable inputs for predictive
ecological modeling (Faraway and Chatfield, 1998 and Kaastra and Boyd, 1995).
Predictive powers of models are varied by specification of inputs. If most of input
variables were neglected, the models would loss information significantly. On the other
hand, data field collection is both time-consuming and expensive. Generally, the procedure
is used to identify the simplest parameterizations or the default variables. Then, it is also
applied to test the model in order to determine which parameters need more specification.
Another method for parameterization called “data assimilation” begins being applied for
scaling ecosystem process recently, even though this method has been used for a long time
in atmospheric research (e.g., Cescatti 1997). Data assimilation causes the most consistent
model representation with the observation.

1.2 Statement and Rationale of Problem

Carbon fixation is an important process that could balance the global carbon budget. It
is commonly evaluated through various observations such as examination of biomes and
observation of the Net Primary Production (NPP) (Gamo M and Panuthai S., 2005). NPP
measures not only the energy input to the biosphere and terrestrial CO, assimilation from
the atmosphere, but it can also give information regarding the performance of an
ecosystem and the status of a wide range of ecological processes (ORNL DAAC, 2009).
Therefore, NPP has oftentimes been remarkably pointed out as a fundamental ecological
variable. However, certain limitations of existing field data could impede one’s capability
of understanding NPP as well as controlling NPP in the forest ecosystems (Clark et al.
2001 and Gower et al. 2001). The reason for this could be the difficulty in directly
measuring the above-ground and below-ground biomass increments (Vogt et al, 1996;
Silver, 1998). Furthermore, sampling and measuring NPP over a large area could also be
difficult over a large area could also be difficult to undertake in spite of the availability of
accurate measurements for biomass increments (Wang et al, 2003).

There are several ways of estimating the terrestrial NPP depending on the types of
plants and the available measurement tools such as applied satellite data and ecosystem



process models, specifically in studying the NPP in a wide area. Such ecosystem process
models include the BIOME-BGC or the BioGeochemical Cycles Model, which is one of
the well-known models used in forest studies. BIOME-BGC has been applied in finding
the NPP of different types of forest ecosystems in various areas of the world. Meng, Wu
and Zhou (2005) for example, combined BIOME-BGC, remote sensing and climate model,
in estimating the NPP over the entire terrestrial land of China. Nonetheless, one crucial
limitation of the BIOME-BGC model is the accuracy of the ecophysiological input
parameters for different types of forests because determining the parameter values for
modeling in a certain place can be difficult and time consuming (Running 1994). For the
deciduous forests, the ecophysiological input parameters' are mostly available only for
temperate areas such as the Pacific Northwest (Hessl, Milesi, White, Peterson and Keane,
2004). However, to our knowledge, it is rare to find the ecophysiological input parameters
of the BIOME-BGC model for tropical deciduous forests.

Tropical deciduous forest plays a significant role in the global carbon budget (Yoshifuji
2006). Whittaker and Likens (1975) reported that tropical forests including deciduous
forest could have a mean NPP which is more than the other plant communities in the
terrestrial ecosystem. The estimation of NPP in tropical deciduous forest has however,
received much less attention than in temperate and boreal deciduous forests (White et al.
1997, Wison and Baldocchi, 2000; Barr et al, 2004). Considering the few but incomplete
applications of the BIOME-BGC model for correct parameterization of the
ecophysiological input parameters for the accuracy of the modeled NPP in tropical
deciduous forests (Aber 1997, White et al. 2000), we chose the Teak (Tectona Gandis
Linn. F.) for simulating the NPP. An important species in tropical areas, Teak is a fast
growing tree species in tropical deciduous forests and widespread in tropical monsoon Asia
including southern and central India, Myanmar, Lao PDR and northern Thailand (Bebarta.
K.C.,1999).

At the onset, a primary attempt was directed towards the development of a calibration
procedure in order to be able to adapt a model for tropical deciduous forests. Applications
and reviews of typical inversion algorithms used in ecosystem model calibration found for
instance, in Wang et al. (2001, 2006), Knorr and Kattge (2005), Williams et al. (2005), and
Raupach et al. (2005), Migliavacca M et al (2009), were used as references and as basis for
the development of such procedure. Since the accuracy of modeled NPP is dependent on a
correct parameterization of the plant ecophysiological parameters such as C:N ratios,
canopy light extinction coefficient, fraction of leaf N in Rubisco which had been assumed
to be constant for certain species or even plant-functional types (e.g. evergreen needleleaf
forest, deciduous broadleaved forest, etc.), several applications described at continental
levels (Vetter et.al 2008) were also used as reference. Considering that the aforementioned
assumptions do not include parameters from deciduous broadleaved forest in tropical areas
such as the Teak tree species, it was proposed in this study to incorporate the measured
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observations into the ecological process model outputs (e.g. leaf area index, LAI) in the
data assimilation, and to optimize the values of one or more unknown model parameters
(e.g. allocation ratio).

Data assimilation was incorporated in the study to reduce the impact of incorporating
measurement data when such data are unavailable or insufficient, many powerful search
and optimization procedures (Migliavacca M et al., 2009 and Srinuandee P et al., 2004)
such as the Genetic Algorithm or GA could also be used as an optimization technique.
However, GA techniques are different from other optimization techniques in a number of
significant ways (Goldberg, 1989). GA consists of three basic operators, namely: selection,
crossover, and mutation. The three processes are repeated for many generations to produce
the best individual that can represent the optimal solution to the problem. GA has been
observed to be robust and appropriate in a wide range of situations to solve optimization
problems where ordinary search and optimization techniques are difficult to achieve. It is
suitable for solving complex problems in the real world systems. In several studies, GA has
been highly applied with crop models such as the coupling SWAP-GA to identify the
SWAP unknown parameters (Chemin et al., 2005; Chemin and Honda, 2006; Ines et al.,
2006; Akhter et al., 2007; Ines and Mohanty, 2008). However, there are few difficulties
and limitations associated with the application of GA with complicated models. It was
therefore very challenging to combine the BIOME-BGC with GA and incorporate the
performance of genetic algorithm in determining the unknown parameters of BIOME-BGC
model using external source of data that have been optimized by the fitness function.

In this dissertation, a data assimilation technique was developed for BIOME-BGC by
coupling BIOME-BGC with GA (BIOME-BGC-GA). The coupling was to allow
assimilation of remotely-sensed time series (SPOT-LAI) into the ecosystem process model
for assimilation of the SPOT-LAI data into the process model. For this purpose, the BIOME-
BGC-GA was inverted against the SPOT-LAI in order to retrieve the key drivers of the
modeled NPP for tropical deciduous forests. Evaluation of the accuracy of the model was
carried out daily and yearly, where the NPP values were compared with those from available
literatures, from the MODIS NPP as well as from actual field measurements.

1.3 Research Hypotheses

The following hypotheses are postulated for this study:

H The complexities in the field can be determined by using the biogeochemistry
model wherein input data are plausible and expect range of values.

2) The distributed model parameters can be derived from remote sensing
observations through the process of data assimilation by exploring dependency
of the observed leaf area index to the physical and non-physical properties of the
system.



3) Genetic Algorithms can be applied to implement data assimilation.

1.4 Objectives

The general objective of this research is to develop methodology that could investigate
improved carbon fixation in tropical deciduous forest area in Thailand by BioGeochemical
Cycles model via the advanced spatial information including remote sensing technique and
an optimization technique based on natural genetic called Genetic Algorithm.

The specific objectives are as follows:

1. To develop data assimilation technique for BIOME-BGC using remote sensing
data.

2. To find optimized ecophysiological parameters of a deciduous broadleaf forest
(Teak forest) in BIOME-BGC model.

3. To simulate and validate the Net Primary Production (NPP)

1.5 Scopes and limitations

The application and validation of the model are limited to one pixel of SPOT —
Vegetation (SPOT-VGT) and MODIS NPP. Only one type of biome which is teak or
Teciona grandis Linn. F. in tropical deciduous forest has been considered in the
applications. The case study was conducted in Lampang province, northern of Thailand.

1.6 Study area

The test site is in the Mae Moh Teak (Tectona grandis Linn. F.) Plantation of the Forest
Industry Organization (FIO) located in Lampang Province, Thailand at 18°25' N, 99°43' E
and about 380 m above sea level (Figure 1). During the study period from 2004 to 2007,
the annual temperature and precipitation in the study site were 29.8 °C and 1,226 mm,
respectively. The dry season in the area could be classified into two: the cool dry season
and hot dry season (Yoshifuji, 2006).

The cool dry season (November to February) brings relatively low air temperatures
while the hot dry season (March to April) which follows the cool dry season brings high air
temperature and vapor pressure deficit (VPD). Tropical monsoons influence the weather in
the area by producing great seasonal change in the precipitation. The wet season in the area
is from May to October, lasting for six months due to the influence of the south-west
monsoon. The mean monthly precipitation during the six-month wet season is 1,120
mm/month. Mean monthly precipitation below 100 mm was however, observed in the dry
season from November to April during the 4-year study period.



The study site is 10.64 km?, which is covered by almost homogenous 40-year old teak
forest. The density of the plantation is 360 trees/ha, with mean height of 17.2 m and
diameter at breast height (DBH) of 19.5 cm. As observed during the study period, the
understory of the forest has been sometimes slashed and often burned in the dry season.
The meteorological and some field data for this study were sourced from the AsiaFlux
project, which has been conducting flux observations in various places in Asia including in
the study site where the project has established a flux tower (Figure 1). The project has
been recording and measuring the flux data in the study from 2000 until the present.

40 40 Kilometers

Figure 1.1 Mah Moh study site, Lampang Province, Thailand and position of Flux
Tower



CHAPTER 11
LITERATURE REVIEW

2.1 General

This chapter begins with a review of the basics of the stated problems and the
postulated hypotheses indicated in the previous chapter. It is formulated to illustrate the use
of data assimilation for ecophysiological parameterization of BIOME-BGC model in order
to assess the net primary production for carbon fixation in the forest biome. This chapter
consists of several sections that include the overview of forest carbon budget (Section 2.2).
Section 2.3 reviews briefly the comparison of the model on ecosystem process and Section
2.4 shows the Biome-BioGeochemical Cycles modeling, while the overview of the
characteristics of SPOT-VEGETATION, data assimilation, and genetic algorithm are
presented in Sections 2.5, 2.6 and 2.7, respectively.

2.2 Forest carbon budget

Carbon budgets or sometimes called carbon balances could be calculated for
individual plants using physiological factors such as photosynthesis, respiration, and
allocation (the relative amount of C stored in specific organs), using time steps in terms of
hours or days. Understanding the carbon budget in forest ecosystem is necessary to assess
the function of forests especially under the current global climate change situation
(Schlesinger 1997; Warning and Running 1998; Chapin et al. 2002). In the forest
ecosystem, biogeochemical processes of carbon include biotic and abiotic relationships and
their interactions (Figure 2.1). Plants produce organic matters from carbon dioxide and
water by photosynthesis while plants also emit CO; to the atmosphere through the plants’

respiration photosynthesis

metabolism process.

vegetation . pove>

detritus
1 (literal)

( | sy stream

Figure 2.1 General outlines of carbon budget and cycling in forest ecosystem (Shibata et al.
2005)
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Photosynthesis in vegetation is the process of injecting carbon into the vegetation and
soil ecosystem. The photosynthesis rate of a single leaf is mainly controlled by various
environmental factors that include light, air, CO, concentration, water, nutrients, and so on.
Net photosynthesis is the balance of photosynthesis and respiration from leaf, shoot,
branch, trunk, and roots. Plant respiration (autotrophic respiration) includes two major
components which could be used to express the productivities in the ecosystem such as
Gross Primary Production (GPP) and Net Primary Production (NPP).

Considering the balance of CO, as shown in Figure 2.2, on an annual time scale the
net exchange of carbon dioxide between a terrestrial ecosystem and the atmosphere (NEP)
can be defined as the difference between the GPP and the Ecosystem Respiration (Re.) as
indicated in Equation 2.1 (Gamo and Panuthai 2005).

NEP = GPP-R, 2.1)

NEP is the net ecosystem production, which is the difference of the CO, absorption
and emission of a community. If the value of NEP is positive then the ecosystem is
considered a sink while if NEP is negative then the ecosystem is a source. Ecosystem
respiration Re is the total respiration of plants (R,) and non-plant matters (Ry). The value
of Ry indicates the respiration by non-plant activity, such as respiration mainly due to the
decomposition of soil organic matters. The value of GPP or the gross primary production
signifies the amount of photosynthesis. The expression NEP=NPP-R;, could therefore be
derived from Equation (2.1).

Figure 2.2 carbon flux process in terrestrial ecosystem
NEP=NPP-R;. (2.2)

NPP which is the net primary production and expressed as GPP-R,, could also be described
by the following equation:



NPP=AB+L+C, (2.3)

where AB is growing rate of biomass, L, the litter production (litter fall), C the
consumption by insects.

2.2.1 Definition of Net Primary Production

Net primary production (NPP) is defined as the net flux of carbon from the atmosphere
into green plants, such as the amount of vegetable matter produced. NPP is a tool for
measuring forest productivity and establishing carbon budget. The data obtained by
calculating NPP can be used as the basis for many issues such as estimating the impact of
activities on forest productivity, assessing the effects of climate change on forests and
assessing the role that these forests can play in achieving greenhouse-gas reduction.

Net primary production (NPP) is the most important index of plant productivity,
related to plant adaptation and crop and woody yields available for consumers:

NPP = GPP-R, (2.4)

Table 2.1 shows the global total values of area, biomass and NPP for major biomes.
(Saugier et al. 2001)

Biome Area Biomass NPP
(10° km?) (PgC) (PgCyr)
Tropical forests 17.5 340 219
Temperate forests 10.4 139 8.1
Boreal forests 13.7 57 2.6
Arctic tundra 5.6 2 0.5
Mediterranean shrublands 2.8 17 1.4
Crops 13.5 4 4.1
Tropical savanna and grassland 27.6 79 14.9
Temperate grasslands 15 6 5.6
Deserts 27.7 10 3.5

2.2.2 Production in tropical forest

Whittaker and Likens (1975) reported that the mean net primary production (NPP) of
tropical rainforests is more than those of the other plant communities in a terrestrial
ecosystem. In Table 2.1, Saugier et al. (2001) showed that the mean NPP in tropical,
temperate and boreal forests are 21.9, 8.1 and 2.6 Pg C yr’', respectively.



2.2.3 Monitoring and analytical method of carbon dynamics

Limitations of the existing field data could however impede the progress in
understanding NPP and the control of NPP in forest ecosystems (Clark et al. 2001 and
Gower et al. 2001). In spite of the enormous amount of ecological papers on this topic,
estimates of forest NPP are sometimes reported based only on incomplete and
inappropriate field measurements. Moreover, some hindrances in understanding NPP could
also include the substantial efforts for NPP field studies, the challenges of unresolved
methods, and a regular lack of conceptual clarity. However, there are several ways of
estimating the terrestrial NPP in a wide area depending on the type of plants and available
measurements such as through the application of satellite data and models.

2.2.3.1 Field and flux measurement

Observation from the eddy fluxes on forest canopies could be used to quantify the
NPP following Equation 2.3. In order to estimate the increment of the stand volume of
vegetation in a certain research area, the measurement of the annual increment of the
diameter of the breast-height (DBH) and tree height are usually taken. The algometric
function of the DBH, tree height and biomass of each component (leaf, branch, root, etc.)
of the vegetation are the used to estimate the annual increment (AB) of woody tissues of a
tree (Hiura 2005).

The litterfall from above-ground vegetation is measured using litter traps set up in
certain collecting areas. Good quantification for measuring the litterfall at several points in
the study area is essential as these could be considered as replicates, considering that the
amount of litterfall largely varies with space.

Observation of the NPP in below-ground vegetation could be difficult to undertake
due to some methodological reasons (Smit et al. 2000a). A sequence sample of soil core,
in-growth core (Tripathi et al. 2005) and minirhizothron (Majdai et al. 2005; Smit et al.
2000b) are therefore often used to estimate the rate of production and mortalities of fine
roots. However, disturbances during in situ sampling and measurement of roots sometimes
cause serious uncertainties for the quantification of root dynamics (Smit et al. 2000b).

Clark et al. (2001) provided a conceptual framework to guide researchers in their
studies toward improving the estimates of forest NPP. For the total NPP field studies,
Clark et al. (2001) defined NPP quantity as the sum of the classes of organic materials that
should be measured or estimated, and discussed the above- and below-ground components
of NPP and the available methods for measuring such components in the field. In their
study, the implications of the limitations of past studies for understanding the NPP in forest
ecosystems were assessed, and discussed how field NPP measurements can be used to
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complement tower-based studies of forest carbon flux. In addition, design criteria for
future field studies of forest NPP were also recommended.

Clark et.al (2001) also synthesized the data in primary literatures on NPP in old-growth
tropical forests and came up with a consistent data set on NPP for such forests. In their
studies on the biome, only a few NPP components, all above-ground were however
addressed. Given the limited scope of the direct field measurements, they looked for the
relationships of the existing data that allow the estimation of unmeasured aspects of
production, with those that could be more easily assessed. Their study found a predictive
relationship between the annual litterfall and the aboveground biomass increment. For 39
diverse tropical forest sites, they then developed consistent and documented estimates of
the upper and lower bounds around the total NPP to serve as benchmarks for calibrating
and validating the biogeochemical models with respect to such biome. They developed
these estimates based on existing field measurements, current understanding of
aboveground consumption and biogenic volatile organic carbon emissions. Based on their
findings, we observed that the belowground production is bounded by the range 0.2-1.2 x
ANPP (aboveground NPP). Across this broad spectrum of tropical forests (dry to wet,
lowland to montane areas, nutrient-rich to nutrient-poor soils), our estimates of the lower
and upper bounds on total NPP range were from 1.7 to 11.8 Mg C/ha yr' (lower bounds)
and from 3.1 to 21.7 Mg C/ha yr’' (upper bounds). Clark et.al (2001) also showed that the
two relationships that have been used for estimating NPP (the Bray-Gorham relationship
based on leaf litterfall and the Miami model based on temperature or precipitation) could
not be found in tropical forests.

2.2.3.2 Remote Sensing Observation

Satellite remote sensing of terrestrial vegetation could be used to detect the amount of
chloroplast or its activity by processing the “vegetation indexes”. Although it could be
difficult to estimate NEP directly, some modeling of the NPP could be undertaken using
vegetation index.

Goward et. al. (1985) showed that vegetation indices, such as Normalized Difference
Vegeta-tion Index (NDVI) are related to net primary production (NPP, g m-2 yearl).
Monteith (1987) suggested that NPP under non-stressed conditions is linearly related to the
amount of photosynthetically active radiation (PAR, MJ m-2) that is abosrbed by green
foliage (APAR, MJ m-2). Further, Kumar and Monteith (1981) showed how the fraction of
PAR absorbed (APAR) relates to the ratio of red reflectance to near infrared (NIR). Asrar
et.al. (1984) subsequently related the NDVI to the Fapar; hence NDVI may be used to
estimate NPP at global scale.
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Eck and Dye (1991) described a simple, physically based, satellite remote sensing
method for estimating IPAR that uses ultraviolet (UV) reflectivity data from the Nimubus
Total Ozone Mapping Sepectrometer (TOMS). Subsequently, Dye and Gward (1993) also
created a global APAR image using spectral reflectance measurements from the NOAA-7
AVHRR and TOMS data. Hunt (1994) suggested that global estimates of NPP based on
vegetation indices should include a classification among established forest, young forest
and non-forest ecosystems to account for difference in zone. To address this problem,
Hooda and Dye (1995) developed an automated technique for the identification of
agricultural areas using NDVI-climatological modeling.

Rasib etal. (2007) illustrated the estimation of MODIS NPP using
micrometeorological approaches for Peninsular Malaysia and Pasoh Forest Reserve in
2004. They applied continuous field modeling of the tropical rain forest using MODIS
satellite data especially for the Pasoh Forest Reserve which has an area of approximately
600 hectares. The model used in such study was successful in estimating the annual above-
ground NPP using MODIS satellite data. The approach the applied could be considered as
a straightforward scientific method which was significant to estimate the NPP from
satellite data. Nonetheless, the results obtained are still being processed taking into account
the shortage of recent accurate ground measurements that could be used to validate the
findings from their study.

Chhabra and V.K. Dadhwal (2004) report here estimates of monthly net C fixation and
net primary productivity over India and its eight regions, using SPOT-VEGETATION 10-
day NPP composites, and comparing the monthly patterns of NPP and NDVI. Although
many studies use calendar year for reporting NPP, they have adopted an agriculture year
(June 1998-May 1999) to better represent the effect of monsoon and the role of
agroecosystem in controlling NPP over India. The preprocessing of data included
reprojection of the original dataset from geographic coordinates to Albers Equal Area
Projection using ENVI 3.5 Image Processing software and computing per pixel and
regional NPP.

Furumi et al. (Year) examined the Net Primary Production (NPP) using data from
satellites. In order to take the measurement of reflectance (wave-length ranged from 520
nm to 920 nm), they used a helicopter to fly over a cedar forest in Nara, Japan in July
2002. The sensor installed in the helicopter was able to record the Bi-directional
Reflectance Distribution Function (BRDF) of the said cedar forest as well as the
reflectance of several adjacent areas from the lowest point of the sensor. They also
examined the relationship between the reflectance and the sensor observations at the
opening and solar illumination angles. When the opening angle is zero, the reflectance is
highest because of the effect of less shadow. Taking into account such relationship and
using the developed PDM (Pattern Decomposition Method), the VIPD from the reflectance
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was then calculated and the NPP was then estimated from the VIPD value. The average
NPP per month in July 2002 of the cedar forest in Nara, Japan was estimated to be 0.338
kg COo/m?.

2.2.3.3 Model

Biogeochemical models could be one of the main tools for assessing the net exchange
of carbon between the terrestrial biosphere and the atmosphere by their ability to fix
Equations 1 and 2 at continental and global scales (Melillo et al. 1993; Foley et al. 1996;
Bonan 1998; Cramer et al. 1999). These models account for the diversity and complexity
of nature by dividing the terrestrial biosphere into broad vegetation classes, such as plant
functional groups, as defined by their functions and climate (Holdridge 1967; Woodward
1984; Bonan 2002). The type and amount of vegetation present in a particular location
could be evaluated either diagnostically using remote sensing information derived from
satellites (Running et al. 1999) or prognostically using dynamic vegetation models
(Haxeltine and Prentice 1996; Foley et al. 1996). The results could then be used to
parameterize the algorithms in order to determine the photosynthesis and respiration
algorithms (Hunt et al. 1996; Bonan 1998; Cramer et al. 1999). Finally, the photosynthesis
and respiration algorithms could be evaluated as a function of the environmental variables
such as light, temperature and soil moisture. Such factors could be derived either by
interpolating the weather measurements or numerically using the weather/climate
prediction models.

Recent methods used to evaluate NPP involve the breaking up of productivity into
independent parameters such as the incoming solar radiation, radiation absorption
efficiency and conversion efficiency of absorbed radiation into organic matter (Kumar and
Monteith 1981). The models developed through their study could be considered as
advancements over the previous statistical models for the various steps in the productivity
build-up process had been properly accounted for in their models.

Generally, the models producing the C budgets are called process models, as they
describe the process underlying the system under study. The models are quite useful for
investigating certain aspects of C budgets, but they are generally less accurate within
observed limits and more expensive for policy analysis than the empirical models based on
biomass.

2.3 Model of forest ecosystem process

2.3.1 Overview

Biogeochemical dynamics refer to the interactions among the biological, geological, and
chemical components of the Earth’s environment. These dynamics are influenced by the



interactions between organisms and their surroundings, including soil, sediments, rocks,
water, and air, that are the center for understanding the various changes, such as:
* global changes in the cycle of atmospheric greenhouse gases, including carbon
dioxide, methane, and nitrogen compounds
* loss of biological diversity from the accelerated cycle of the elements, especially in
association with changes in land use
» forest die-back from increased deposition of nutrients and acids from the atmosphere
* degradation of water quality from increased inputs of nutrients through the
acidification of streams and lakes from atmospheric deposition

Biogeochemistry models have been used to determine the effects of climate change on
forests through the simulation processes of the ecosystem (photosynthesis, transpiration)
resulting from tree biomass growth, death and organic matter decomposition with fully-
implemented nitrogen, carbon and water cycles. Well-known examples include the PnET
(Photosynthesis and Evapotranspiration, Aber et al. 1997) and BIOME-BGC (Thornton et
al. 2002), etc. The PnET simulates the monthly output, while BIOME-BGC simulates daily
fluxes. Furthermore, PnET could also store carbon, nitrogen and water at specified
locations provided appropriate weather data are available, physiography information and
ecophysiological traits of the vegetation (Thornton et al. 2002). On the other hand, the
BIOME-BGC model predicts the leaf flush and leaf senescence as functions also of
available weather data.

2.3.2 Ecological model comparison

Many models are used in studying the ecosystem, and some research studies attempted
to establish the differences of such models. Certainly, these models were not designed to
determine which models are “best” for diagnosis (i.e., explaining the current function of the
models) or prognosis (i.e., predicting the response of the models to future conditions), but
rather, to harmonize the similarities and clear up the differences among the models and their
components in order that all models could be improved.

Carbon Models Reviewed

* BIOME-BGC: The BIOME-BGC (BioGeochemical Cycles) model simulates the
NPP for multiple biomes. Since NPP is computed as the difference between the
simulated GPP and autotrophic respiration, the environmental controls operate on
the process of photosynthesis as well as respiration. Although nitrogen dynamics
have been added, BIOME-BGC relies primarily on the hydrologic cycle and how
water availability controls the uptake and storage of carbon (C). The response of
NPP to elevated CO; is determined mainly by the changes in transpiration
associated with reduced leaf conductance, rather than feedbacks from nutrient
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cycles. BIOME-BGC has a daily time step but without explicit spatial scale. The
model has an intermediate number of vegetation and litter/soil pools.

Century: The CENTURY model simulates carbon, nutrients, and water dynamics
for different types of ecosystems. CENTURY includes a soil organic
matter/decomposition sub-model, a water budget sub-model, two plant production
sub-models (grassland and forest), and functions for scheduling events. The model
computes the flow of carbon, nitrogen, and (optionally) phosphorus, and sulfur
through the model compartments. Although these four elements have identical
organic matter structure, they differ in terms of inorganic compounds. Carbon
uptake in CENTURY is controlled primarily by the availability of nitrogen. The
grassland/crop and forest production sub-models assume that the monthly
maximum plant production is controlled by moisture and temperature, and that the
maximum plant production rates depend on the availability of nutrients. Using a
monthly time step, the CENTURY model has the finest partitioning of the soil/litter
and vegetation pools.

TEM: The Terrestrial Ecosystem Model (TEM) is a process-based ecosystem
model that describes the carbon and nitrogen dynamics of plants and soils for
terrestrial ecosystems. This model simulates the limitation of GPP by a multiple of
factors, and since plant respiration is explicitly modeled, NPP is simulated as the
difference between the GPP and carbon respiration. TEM explicitly simulates the
nitrogen mineralization and immobilization dynamics. However, TEM does not
consider the influence of vapor pressure deficit on the stomatal conductance or
photosynthesis. TEM uses spatially referenced information on climate, elevation,
soil, vegetation and water availability as well as soil- and vegetation-specific
parameters in order to determine the monthly estimates of carbon and nitrogen
fluxes and pool sizes. The response of NPP to elevated CO; in TEM is handled by
controlling the availability of nitrogen on carbon uptake and storage. TEM operates
on a monthly time step and is considered as a global model with a spatial resolution
of 0.5 degrees latitude/longitude. This model uses relatively few compartments,
with only one carbon pool each for vegetation and soil/litter (two for nitrogen).
PnET: The PnET models provide a nested set of modular approaches in simulating
the carbon, water and nitrogen dynamics of forest ecosystems. The forms of the
different versions of PnET are modular and built from the simplest to the most
complex versions, however, the algorithms such as for photosynthesis are identical
among the model versions. PnET-Day uses foliar mass, specific leaf weight, foliar
N concentration, temperature, and radiation flux to predict daily gross and net
photosynthesis of the whole forest canopies. In PnET-II carbon allocation and
respiration as well as a full water balance are added to predict the NPP,
transpiration and runoff. In an empirical soil respiration, PnET-II allows the
prediction of carbon balance in the total ecosystem under ambient conditions. This
version has been used to predict the combined effects of climate change and
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increased atmospheric CO,. In PnET-CN, compartments for woody biomass and
soil organic matter as well as algorithms for biomass turnover, litter and soil
decomposition are incorporated to allow for the computation of complete carbon
and nitrogen cycles. The original PnET uses a monthly time-step while the PnET-
Day uses a daily time-step. Although the PnET models do not have an explicit
spatial scale, it could be viewed as regional.

* LoTEC: LoTEC is a mechanistic soil-plant-atmosphere mode! for carbon storage,
and CO; and H,O flux in the ecosystem. Canopy photosynthesis is described by the
“Bigleaf” implementation of either the C3 or C4 biochemical model of
photosynthesis combined with the sub-model - on stomatal conductance.
Maintenance respiration for four plant compartments is considered as a function of
the tissue nitrogen concentration and temperature, while growth respiration is
assumed to be proportional to the change in compartment size. Canopy
photosynthesis and maintenance respiration are calculated hourly while carbon
allocation, growth, and growth respiration are calculated daily. Litter and soil
carbon dynamics are simulated with a monthly time-step. The spatial scale of the
model is a half-degree grid cell. This model uses the empirical Miami model,
including a factor that represents the response to changing CO; as basis for
estimating the steady-state of NPP instead of the Farquahar model or other process-
based models. Since the Rubisco-limited photosynthesis is not simulated, the use of
LoTEC is best justified when light is the limiting factor. A complete run generally
requires three phases of simulation, namely: spin-up, historical, and future.

* SiBD: The Simple Biosphere 2 (SiB2) model can simulate the local and regional
scale land-surface energy, momentum and mass fluxes using observed forcing
(“off-line” mode) or could also serve as the land surface component of the General
Circulation Model (GCM). The strength of SiB2 is its vegetation modeling, with
dynamic treatment of LAI based on remote-sensed imagery. The meteorology
driver data are typically provided at 30-min intervals. Results of the modeling could
be provided with a high (in matter of seconds) or low (monthly) temporal
resolutions. The spatial scale of each model simulation is the local canopy, but
global simulations can also be made by providing separate inputs for each location
in a grid. The SiBD model was developed for integration with the GCMs. In SiBD,
the dynamic vegetation is simulated using satellite-derived global data from
vegetation phenology. Soil hydrological parameterization is then modified to give
more-reliable calculations of the inter-layer exchange within the soil profile. SiBD
also simulates the gradual changes in surface temperature and reflectance as the
amount of snow varies.

This study used BIOME-BGC for the main reason that its general model structure is

flexible enough to integrate large scale information, such as regional as well as forest stand
level data. This model was selected for our study among other possible alternatives due to its
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specific suitability in providing information on the water, carbon and nitrogen cycles within
the forest and non-forest ecosystems (Running and Hunt 1993; White et al. 2000). BIOME-
BGC, however, has established only few and incomplete applications in Southeast Asian
areas. Thus, a primary effort was directed to develop a calibration procedure capable of
adapting the model to environments, different from those for which it was originally
developed.

2.4 The Biome-BioGeochemical Cycles (BIOME-BGC) modeling

2.4.1 BIOME-BGC description

The BIOME-BGC (BioGeochemical Cycles) model is a multi-biome generalization of
the FOREST-BGC, a model originally developed to simulate forest stand developments
(Running and Gower 1991). The model requires daily climate data and the definition of
several key conditions of the climate, vegetation and site to estimate the fluxes of carbon,
nitrogen, and water (Figure 2.3) in the ecosystems. In applying the BIOME-BGC, the
components of the model should first undergo testing and validation, including the carbon
dynamics (McLeod and Running 1988; Korol et al. 1991; Pierce 1993; Running 1994) and
the hydrology (Nemani and Running 1989). The model has been successfully applied and
validated over a range of diverse biomes, spatial scales and climate regimes including the
boreal forests of Alaska and Canada (Keyser et al. 2000; Kimball et al. 1997; 2000;
Amthor et al. 2001). The details of the model include applications for multiple biome types
and spatial scales (e.g., Thornton et al. 2002; White et al. 2000).

gt —————— N deposition
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Figure 2.3 Carbon, nitrogen and water fluxes of the ecosystem

The carbon balance portion of BIOME-BGC makes use of daily meteorological data in
conjunction with the general stand and soil information to predict net photosynthesis,
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growth, maintenance and heterotrophic respiration at daily time-step. BIOME-BGC is
general in the sense that the surface is represented by singular, homogeneous canopy and soil
layers. Detailed descriptions of BIOME-BGC logic are given by Running and Coughlan
(1988) and Running and Hunt (1993) as shown in Figure 2.4.
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Figure 2.4 Logic of the BIOME-BGC Model

2.4.2 Model Parameters

Simulation using the BIOME-BGC model requires inputs from a series of
meteorological data including the minimum and maximum daily temperatures and daily
precipitation. In addition to the meteorological data, information about environmental
changes including CO, concentration and nitrogen deposition as well as site elevation and
soil texture are also used to run the model.

2.4.2.1 Description of input parameters

The BIOME-BGC model can also assimilate the input data from multiple sources
(notably plot level measurements of parameters such as foliar nitrogen concentration) and
could disaggregate the carbon cycle processes sufficiently enough to allow comparison with
a wide variety of observations. BIOME-BGC models use input parameters including
physiology, biochemistry, structure, and allocation to describe the processes and fluxes such
as productivity, nitrogen cycle and water conditions. The BIOME-BGC model operates
using the following sets of input data:

(1) Initialization data including important site and scenario parameters. The key site
parameters are elevation, soil texture and effective soil depth. The important scenario
parameters include the length of the simulation period, ambient CO; concentration (constant
or variable), nitrogen deposition, among others.
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(2) Existing daily meteorological data series for the simulated site. This data file can be
prepared manually or using the MTClim model (Running et al. 1987; Thornton and Running
1999) as inputs in the meteorological data series from a base weather station, which should
include at least the daily minimum and maximum temperatures as well as the daily
precipitation. MTClim generates other necessary information based on the site parameters
(latitude, elevation and annual precipitation total of the base station and site, site aspect and
slope) and parameters characterizing the change of temperature with respect to the elevation.

(3) Ecophysiological parameters (Table 2.2) characterizing the biome selected for the
simulation. BIOME-BGC is also provided with default ecophysiological parameter sets for
the major biome types, such as evergreen needle-leaf and deciduous broadleaf forests (White
et al. 2000).

Estimation of ecophysiological parameters

Ecosystem models use input parameters such as physiology, biochemistry, structure,
and allocation to describe the processes and fluxes such as productivity, nitrogen cycle,
and water conditions. Many ecosystem models used for investigating these interactions are
based on the ecophysiological relationships originally measured in the laboratory or field,
typically at scales ranging from the leaf to the plot level. These lab- or field-based
measurements function for the parameterization and validation of the data sets for the
ecosystem models and therefore play crucial roles in current and future model development
and implementation.

One of the limitations of the application of the BIOME-BGC model in the field could
be the unavailability of accurate physiological input parameters. This is due to the fact that
the ecophysiological relationship of forest ecosystems, especially in the Teak species in
deciduous tropical forests in Southeast Asia, has not been studied extensively. Moreover,
locating such parameter values in existing literatures could also be difficult and time
consuming (Running 1994). Although certain data may exist for deciduous forest
species, these values are applicable for temperate areas such as the Pacific Northwest
(Hessl et al. 2004). Despite this limitation, it is critical that the important parameter
values and all the references for such parameter values should be made available for any
model-based study (Aber 1997; White et al. 2000).

In biome-based ecosystem models, the commonly measured ecophysiological variables
taken from a large number of observations of many communities and locations are typically
averaged across the broad vegetation -classes (e.g., evergreen needleleaf, broadleaf
deciduous, etc.) in order to generate the default parameterization values (Nilson 1995; White
et al. 2000). Such default values could include the data collected from low-elevation to
subalpine locations, mesic to xeric sites, and recently the disturbed to old-growth forests.
Thus, the average or default values could include a high degree of variability even within the
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broad vegetation types. New parameterization data sets may be required to apply the existing
models to new locations, to parameterize new models, or to parameterize existing models
more specifically to account for the changes in the physical environment or species.

This study developed a species- and location-specific database of published
ecophysiological variables typically used as input parameters for the biogeochemical models
of the Teak species or for certain types of deciduous forest ecosystems in Thailand. We
selected the parameters based on the requirements of Biome-BGC (White et al. 2000) and on
their sensitivity to LAI and NPP outputs, which are described in details in Chapter III.
Biome-BGC is a daily time step, spatially independent model that simulates the development
of soil as well as plant carbon and nitrogen pools using 43 parameters (Table 2.2). Although
the input parameters for this database were investigated based on the structure of Biome-
BGC, several other ecosystem models, including Century 5, Daycent, TEM, VEMAP
(1995), and PnET (Aber et al. 1996), have been used for determining some of the necessary
inputs.

Table 2.2 Ecophysiological input parameters and associated units required to run the
Biome-BGC model

Parameter description Units
Woody or nonwoody Flag
Evergreen or deciduous Flag

C3 or C4 grass Flag
Model-defined phenology or user-specified phenology Flag
Yearday to start new growth (user-specified phenology) Yrday
Yearday to end new growth (user-specified phenology) Yrday
Transfer growth period as a fraction of growing season Proportion
Litterfall as fraction of growing season Proportion
Annual [eaf and fine root turnover fraction Proportion/yr
Annual live wood turnover fraction Proportion/yr
Annual whole-plant mortality fraction Proportion/yr
Annual fire mortality fraction Proportion/yr
Allocation new fine root C:new leaf C 7 Ratio
Allocation new stem C:new leaf C Ratio
Allocation new live wood C:new total wood C Ratio
Allocation new root C:new stem C Ratio
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Allocation current growth Proportion
C:N of leaves kg C/kg N
C:N of leaf litter, after translocation kg C/kg N
C:N of fine roots kg C/kg N
C:N of live wood kg C/kg N
C:N of dead wood kg C/kg N
Leaf litter labile DIM
Leaf litter cellulose , DIM
Leaf litter lignin DIM
Fine root labile DIM
Fine root cellulose DIM
Fine root lignin DIM
Dead wood cellulose DIM
Dead lignin DIM
Canopy water interception coefficient I/LAld
Canopy light extinction coefficient DIM
All-sided-area to projected-leaf-area ratio DIM
Canopy average specific leaf area (projected area basis) m’/kg C
Shaded SLA:sunlit SLA DIM
Fraction of leaf N in rubisco DIM
Maximum stomatal conductance (projected area basis) m/s
Cuticular conductance (projected area basis) m/s
Boundary later conductance (projected area basis) m/s
Leaf water potential:start of conductance reduction MPa
Leaf water potential:complete conductance reduction MPa
Vapor pressure deficit:start of conductance reduction -Pa
Vapor pressure deficit:complete conductance reduction -Pa

2.4.2.2 Description of the output parameters

The parameter values for the daily and annual algorithms have all been derived, directly
or indirectly from the terrestrial ecosystem process model Biome-BGC. The main outputs
include the daily and annual (White 2002) data.
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Daily

The daily outputs gave the values of GPP (Gross Primary Productivity in kg C m?),
NPP (Net Primary Productivity in (kg C m™), NEE (Net Ecosystem Exchange in kg C m™),
ET (Evapotranspiration in kg W m?), OF (soil water outflow in kg W m™), PRCP
(Precipitation in kg W m?), LAI (Leaf Area Index in m? m), and LEAFC (Leaf Carbon in
kg C m?).

Annual

The annual data gave the Average Temperature (°C), Precipitation (C m yr'"), GPP (g C
m?yr'), NPP (g C m™ yr''), MR (g C m? yr''), Max LAI (m? m™), Evapotransporation (cm
yr'"), and Outflow (cm yr').

2.4.3 BIOME-BGC application

Turner (2006) evaluated the NPP and GPP of MODIS products across multiple biomes.
The ground-based NPP and GPP surfaces were generated by applying the BIOME-BGC
model. Tatarinov (2006) presented a sensitivity analysis and an adaptation of the BIOME-
BGC process model which was thereafter applied to manage forest ecosystems in Central-
European conditions. Pietsch (2006) used Biome-BGC to find species-specific parameters
for some tree species in central European forests. Kimball (2006) studied the satellite radar
remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests. He
explained that radar remote sensing measurements of the initiation and length of the growing
season corresponded closely with both site measurements. The BIOME-BGC model
simulations of these parameters for the sensitivity of the K,-band scatterometer to snow
cover the freeze-thaw dynamics and associated linkages between the initiation of the
growing season and the timing of the seasonal snowmelt. Qian et al. (2003) studied the
correlation between aircraft fluxes and MODIS NDVI, EVI and LAI. The MODIS GPP,
PSN, NPP were validated by the tower measurements at long-term temporal scale and by
aircraft measurements at larger spatial scale (Qian et al. 2003).

BIOME-BGC application on deciduous forest

Jolly and Running (2002) utilized an ecosystem process model to investigate the
influence of precipitation and soil water potential on the vegetation phenology in semi-arid,
drought-deciduous ecosystems in the Kalahari region of South Africa. The timing of the leaf
flush was assumed to be the first day during which a rainfall event exceeded that day’s
estimate of the potential evapotranspiration after a defined dry season. The leaf senescence
was assumed to be a dynamic feedback between soil water potential and the net plant carbon
gain, and was determined by dynamically modeling the effects of concomitant trends in soil
water potential and the net primary production on the leaf area index (LAI). Model
predictions of the LAI were compared with the satellite-derived normalized difference
vegetation indices (NDVI) for three (3) years at two sites along the Kalahari transect. The
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mean absolute error for the prediction of the modeled leaf flush data compared with the leaf
flush data estimated from NDVI were 10.0 days for the Maun site and 39.3 days for the
Tshane site. The correlations between the model-predicted 10-day average LAl and the 10-
day composite NDVI for both Maun and Tshane, were high (50.67 and 0.74, respectively,
P<0.001), suggesting that this method adequately predicts the intra-annual leaf area
dynamics in these dry tropical ecosystems.

Turner and et.al (2003) studied the Scaling Gross Primary Production (GPP) over boreal
and deciduous forest landscapes in support of the MODIS GPP product validation. The 2001
MODIS GPP product was compared with the scaled GPP. estimates (25 km?) based on
ground measurements at two forest sites. The ground-based GPP scaling approach relies on
the carbon cycle process model run in a spatially distributed mode. The land cover
classification and the maximum annual leaf area index, as derived from Landsat
ETM+imagery, were used in order to initialize the model. The model was run using the daily
meteorological observations from an eddy covariance flux tower situated at the center of
each site. The model-simulated GPPs were confirmed with the daily GPP estimates from the
flux tower. The results indicated that at the hardwood forest site, the MODIS GPP phenology
started earlier than was indicated in the scaled GPP. As a result, the summertime GPP from
MODIS was generally lower than the scaled GPP values. However, the fall-off in production
at the end of the growing season was similar to the validated data. At the boreal forest site,
the GPP phenologies generally matched because both responded to the strong signal
associated with the minimum temperature. Moreover, the midsummer MODIS GPP was
generally higher than the ground-based GPP. The differences between the MODIS GPP
products and the ground-based GPPs were induced by the differences in the timing of FPAR
and the magnitude of light use efficiency as well as by the differences in other inputs to the
MODIS GPP algorithm such as the daily incident PAR, minimum temperature, and vapor
pressure deficit. It should be noted that ground-based scaling of GPP has the potential to
improve the parameterization of light use efficiency in satellite-based GPP monitoring
algorithms.

Churkina and Running (2004) used the measurements of extracted timber and modeled
forest productivity to investigate the relationship between harvested timber and natural forest
productivity under the current conditions as well as the global change scenario. The analysis
was confined to coniferous forests and countries that have coniferous forests within their
territories. The annual round wood production from the database of the Food and Agriculture
Organization (FAO) was used as an approximation of the annual timber harvest for each
country. The annual stem primary productivity of coniferous forests was estimated using the
BIOME-BGC model. Based on current rates, the annual timber extraction was extrapolated
for each country over the next 80 years. In addition, the timber harvest on a country basis
was related to the modeled forest stem productivity, assuming that the area of coniferous
forests would remain unchanged for the next 80 years. The results of the study suggested that
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global coniferous forests currently produce more wood than the amount that people can
harvest, but this gap is expected to narrow down in the future. However, the results also
suggested that wood extraction may surpass forest re-growth by the middle of the next
century, even though most coniferous forests are located in high altitudes and having the
ability of accelerated stem growth associated with the joint effect of climate change and
elevated carbon dioxide concentration in the atmosphere.

Meng et al. (2005) monitored the terrestrial net primary productivity or NPP of China
using the BIOME-BGC model based on remote sensing. They used the process-based model
BIOME-BGC which is based on the FOREST-BGC model, to simulate the spatial patterns
of GPP and NPP over the entire terrestrial land of China. The model was run at ten-day time
steps by using 1.0 km Advanced Very High Resolution Radiometer (AVHRR) data of 10-
day composite from NOAA satellite series which had been processed on accurate geometric
correction, radiance calibration, atmospheric correction and cloud masking, as well as the
daily meteorological data from more than 300 weather stations. The differences of the NPP
between the various land covers were examined and compared. The results indicated that in
1999, the total NPP of the terrestrial land of China was 1.65x10° g C/m? with an average of
17445 g C/m?. The highest NPP was in the deciduous conifer forests, deciduous broadleaf
forests, sparse woods and farmland with average NPP of 346.66 g C/m°, 318.77 g C/m?,
309.20 g C/m?, and 300.47 g C/m°, respectively, and the lowest was in glaciers, desert and
gravel area with average NPP of 12.65 g C/m? 14.51 g C/m% and 16.73 g Cm?,
respectively.

Tatarinov and Cienciala (2006) presented the results of a sensitivity analysis and an
adaptation of the BIOME-BGC process model which was thereafter applied to manage the
forest ecosystems in Central-European conditions. Their study described a more specific
model adaption for classically managed forest ecosystems, mimicking the thinning and
felling regimes in even-age forests of four major tree species (beech, oak, pine and spruce),
from which a detailed sensitivity analysis was conducted. They specifically analyzed the
effects of site and ecophysiological parameters on the modeled state variables (carbon pools
in biomass, litter and soil, and net primary production (NPP)). Results of their analysis
revealed a high sensitivity of all tested variables to the following site parameters: total
precipitation, rooting depth, sand fraction (for sandy soils only), ambient CO,, and nitrogen
input parameters. Similarly, the tested variables were highly sensitive to the following
ecophysiological parameters: leaf and fine root C:N ratio, new stem C to new leaf C ratio,
new fine root C to new leaf C ratio, specific leaf area, maximum stomatal conductance, fire
mortality and fraction of N in Rubisco (specifically for deciduous species). Moreover, the
results also indicated that the whole plant mortality had high effect on carbon pools but with
minimal effect on NPP.

24



2.5 Characteristics of SPOT VEGETATION (SPOT-VGT)

The SPOT (System Probatoire d’Observation de la Terra) series is a land-observing
satellite which was launched by the Center National d’Etudes Spatiales. The satellite orbits
the earth on the sun-synchronous sub-recurrent orbit at an altitude of 832 km in 10.3
minutes. It has an orbit inclination of 98.7 degrees and a recurrent frequency of 26 days.

Since the first launching of the satellite in 1986, five satellites have been launched so
far. The VEGETATION sensor with a spatial resolution of 1.0 km and a swath of 2000 km
for the extensive vegetation observation was added to the fourth satellite as well as to the
fifth.

Table 2.3 Specifications of the VEGETATION Sensor

Band Wavelength Type Spatial Swath
(um) resolution
1 0.430-0.470 Blue
2 0.610-0.680 Red 1.15 km 2,250 km
3 0.790-0.890 NIR
4 1.580-1.750 SWIR

The same spot is observed once to several times a day in order to observe two types of
data, namely: primary product (P) which provides the raw data and synthesis product (S)
which is capable of synthetically processing after corrections are applied such as
atmospheric correction. The S10 product was produced by synthesizing the data for ten
days. Therefore, the observed data for one year comprised 36 units of information for the
S10 data.

The VGT-S10 (ten-day synthesis) products are composite (maximum-value) products.
All the segments during this period are compared in order to select the ‘best’ ground
reflectance values. These products provide the data from all spectral bands, the NDVI, and
the auxiliary image acquisition parameter data. The continental S10-composite data
products (spectral band data, data quality layer, and NDVI) are downloaded through the
GIMMS group from Vito, Belgium. The individual composite NDVI data for each period
are extracted from the S10-HDF file and post-processed. The post-processing steps include
a re-projection from the native global Mercator projection to other projections, continental
and regional sub-setting, and the incorporation of flags for bad data, clouds, and land mask.
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2.6 Data Assimilation

ECMWF (2002) defined data assimilation as a technique used in analyzing the observed
information which had been accumulated into the model by taking advantage of the
consistent constraints with the laws of time evolution and physical properties.

Data assimilation is a combination of information from observations and models of
particular physical system in order to get the best possible estimate of the state of such
system (Swinbank et al. 2004). The technique has wide applications across a range of earth
sciences, with its major application being in operational weather forecasts. Others include
oceanography, atmospheric chemistry, climate studies, and hydrology. Data assimilation for
the Earth system is a comprehensive survey of both the theory of data assimilation and its
application in a range of earth system sciences. Data assimilation is a key technique in
analyzing the remote sensing observations and thus, is particularly useful for those intending
to examine the wealth of measurements from recent research satellites.

2.6.1 The need for optimization

Optimization is the process of adjusting the inputs or characteristics of a device,
mathematical process or experiment to find the minimum or maximum output or result.
While the mathematical approach of root finding requires searching for the zeros of a
function, optimization requires finding the zeros of its derivatives. By definition, finding the
root gives the global minimum of a function which is not the case in optimization. Some
difficulties could be encountered in determining the root if a given minimum is the best
(globaly minimum or a sub-optical (local) minimum. Usually, finding the root of some non-
linear functions is especially difficult, so that linearization of the various sub-components of
the problem is sometimes used. However, in this process the complexity of the problem
could be discarded and thus could lead to some collateral impacts on the accuracy of the
solution (Yann 2006). The flowchart of the optimization is shown below:

(unknown) (known or unknown) {known/observed)

Figure 2.5. Basic problem requiring optimization (Yann 2006)

2.6.2 Ecological model and data assimilation

There are inherent limitations in the measurement and modeling of the ecosystem
carbon dynamics. Some measurements are usually patchy in space and discontinuous in
time, and modeling of carbon dynamics is always built on a set of principles coupled with
assumptions and imperfectly defined parameters. Advanced data assimilation techniques
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based in statistics or optimization theory can mitigate such limitations through the
combination of a series of measurements with dynamic models.

Data assimilation techniques have been proven as vital tools to develop quantitatively
realistic ecosystem models, by improving their accuracy, efficiency and prognostic ability.
These techniques fix the unknown parameters in the governing equations and save time in
finding the parameter sets that can better simulate the data. The models’ structures can also
be refined based on the correlation between the parameters by using the error covariance
matrices (Tziperman and Thacker 1989; Matear 1995). Some models with data assimilation
routines developed or still in the process of development include SipNET,
TREES,ORCHIDEE, BETHY, TRIFFID, ED, Biome-BGC, LoTEC, SiB3.

Lawson et al. (1995) applied the data assimilation technique to a predator-prey model,
based on the so-called adjoint method but allowing the computer code for the adjoint to be
constructed directly from the model computer code. This technique is straightforward and
reduces the chance of introducing errors in the construction of the adjoint code. The
implementation of the technique is demonstrated by applying it to a simple predator-prey
model in a model-fitting mode. A series of identical twin numerical experiments were used
to show that this data assimilation approach can successfully recover the model parameters
as well as the initial conditions. However, easy recovery of the required values is dependent
on the form of the model equations as well as on the type and amount of the available data.
Additional numerical experiments showed that sufficient coefficient and parameter
recoveries could also be possible even when the assimilated data contain significant random
noise. Thus, for biological systems that can be described by ecosystem models, the adjoint
method represents a powerful approach for estimating the values for little-known biological
parameters such as initial conditions, growth rates, and mortality rates.

Matear (1995) developed a simulated annealing optimization algorithm to optimize the
parameters of ecosystem models. The optimization was used to directly determine the model
parameters required to reproduce the observed data. The optimization routine was
formulated in a general manner and modified easily to include additional information on
both the desired model output and the model parameters. From the optimization routine, the
error analysis of the optimal parameters was produced from the error-covariance matrix
which gave both the sensitivity of the model to each model parameter and the correlation
coefficients between all pairs of model parameters. In addition, the optimization analysis
provided a means of assessing the necessary model complexity required to model the
available data. He demonstrated the technique where the optimal parameters of three
different ecosystem model configurations were determined from nitrate, phytoplankton,
meso-zooplankton and net phytoplankton productivity measurements at Station P. The error
analysis of the optimal parameters at Station P indicated that the data are able to resolve up
to 10 independent model parameters. This is always less than the number of unknown model
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parameters, indicating that the optimal solutions are not unique. Thus, the simple nitrate-
phosphate-zooplankton ecosystem model was successful in reproducing the observations.
This study also justified the use of a more complicated model at Station P but required
additional data to constrain the optimization routine. Although there was evidence supporting
the importance of the microbial loop at Station P without additional ammonium and bacteria
measurements, a more complicated model that includes such processes could not be
validated.

Spitz et al. (1998) focused on the feasibility assessment of a data assimilation technique
with sparse time series observations such as from the Bermuda Atlantic Time-Series Study
(BATS), to estimate the poorly known parameters for the annual cycle of a nitrogen budget
model in the upper ocean mixed-layer. They carried out two groups of data assimilation
experiments: first, the twin experiments using model-generated observations were run to
determine if the frequency of the data collected from BATS was sufficient to estimate all the
model parameters; and secondly, a data assimilation of the BATS data from 1988 to 1993
was attempted. Specifically, the pelagic ecosystem model for this study was based on
Fasham et al. (1990) model that was previously tried in their study.

This experiment further showed that some of the model parameters could not be
independently estimated. This conclusion leads to a simplification of the model and a
redefinition of its parameters. Based on the success of the twin experiment in estimating the
model parameters, an attempt was made to assimilate actual observations from BATS.
Assimilation of the real data led to the conclusion that even though the frequency and types
of observations are adequate to estimate the model parameters, the considered model is not
appropriate for the annual cycle of the BATS ecosystem.

Vallino (2000) examined the use of data assimilation and mesocosm experiments to
facilitate the development of food web models. The components of the data assimilation
include the construction of measurement models, the adjoint technique to obtain gradient
information on the objective function, the use of parameter constraints, incorporation of
discrete measurements, and assessment of the observability of the parameters. He also
examined the effectiveness of classic and contemporary optimization routines used in data
assimilation. The standard compartment-type food web model was employed with emphasis
on organic matter production and consumption. The mesocosm experiments which were
designed to examine the interaction of inorganic nitrogen with organic matter provided the
data used to constrain the model. Although he was not able to obtain the reasonable fit
between the mesocosm data and the food web model, he observed that the model lacked
robustness to be applicable in trophic gradients, such as those occurring in coastal
environments. The robustness problem could be due to the inherent structural problems that
render the model extremely sensitive to the parameter values. Furthermore, parameters
governing actual ecosystems were not constant, but rather varied as a function of
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environmental conditions and species abundance, which increased the sensitivity problem.
He concluded by briefly discussing possible improvements of the food web models and the
need for rigorous comparison between models and data (a modeling workbench) so that the
performance of the competing models could be assessed. Such a workbench could facilitate
the systematic improvements in the prognostic marine food web models.

Kuroda and Kishi (2004) applied a data assimilation technique to determine the
biological parameters in the PICES (North Pacific Marine Science Organization) prototype
lower trophic level model (NEMURO). The North Pacific Ecosystem Model for
Understanding Regional Oceanography (NEMURO) has about 80 biological parameters and
11 initial values. They used a sensitivity analysis to choose eight parameters which had the
most impact on the relevant simulated values. These parameters were selected as control
variables for the data assimilation. The model output, using the optimum parameter values
determined by the assimilation, conform to the data better than those obtained from the first
guessed parameter values.

They also observed that ecosystem models with more compartments would require
finding out more biological parameters since almost all of the values depend on
measurements and laboratory experiments. In analyzing or improving the model, they had
trouble deciding on which parameters to focus on. Their method was effective because it is
unbiased and it was not necessary to change all the parameters. This assimilation used only
the control variables that were expected to strongly affect the model output, and still it
yielded more than just the optimum values of the control variables. Their results also
revealed what parameter values were misestimated which should be changed.

Cossarini et al. (2004) applied the data assimilation techniques to an ecosystem model
of the Venice lagoon to obtain reliable and coherent estimations of the chlorophyll and
nutrient fields, improving the knowledge on spatial and temporal evolution of the trophic
state. They compared the results obtained by simple techniques such as the Direct Insertion
and Optimal Interpolation, and more complex, state of art technique such as the application
of the Error Subspace Statistical Estimation scheme on the Extend Kalman Filter.

Chen et al. (2008) improved the state-parameter analysis of ecosystem models using data
assimilation. They introduced the smoothed ensemble Kalman filter (SEnKF) to estimate
simultaneously the state variables and parameters of a forest carbon flux partition model. The
SEnKF method substantially and significantly improved the flux estimates of a flux partition
model and dramatically reduced uncertainties that stemmed from parameters and driving
forces. Simultaneous parameter estimation can use near real-time observations to improve
the predictive ability of dynamic models.
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2.7 Genetic Algorithm

The theoretical considerations on Genetic Algorithms, parameter estimation by inverse
modeling and system integration for regional analysis are discussed in this section. Genetic
Algorithm (GA) is an artificial genetic system based on the processes of natural selection and
natural genetics. GA involves three operators, namely: reproduction, crossover, mutation. A
simplified GA cycle is shown in Fig. 2.6

/ population \

Figure 2.6 GA cycle

2.7.1 Overview of Genetic Algorithms

Genetic algorithms are general purpose-search algorithms inspired by Charles Darwin's
principle of “survival of the fittest’ to solve complex optimization problems (Holland 1975;
Goldberg 1989). A population of competing solutions evolves over time to converge into an
optimal solution, which could be represented by a chromosome consisting of several genes.
Genetic algorithms are search algorithms based on the mechanics of natural selection and
natural genetics by combining ‘survival of the fittest’ among a string of structures with a
structured yet randomized information exchange to form a search algorithm with some of the
innovative flair of human search. Genetic Algorithms (GAs) are adaptive heuristic search
algorithm premised on the evolutionary ideas of natural selection and genetic. The basic
concept of GAs was designed to simulate the processes in the natural system necessary for
evolution, specifically those that follow the principles first laid down by Charles Darwin on
‘survival of the fittest’. As such, GAs represent the intelligent exploitations of a random
search within a defined search space to solve a problem.

There are numerous variations of Gas but the GA presented here is simple as outlined
by Goldberg (1989). As an example, GA was applied to find an optimal set of input variables
for the prediction of the presence or absence of benthic macro-invertebrate taxa in un-
navigable Flemish watercourses. The chromosomes consisted of 17 genes, each representing
an input variable provide with a binary coding. This means that a particular variable was
either selected (represented by ‘I°) or not (represented by ‘0°). Each chromosome of a
particular generation is allocated a piece of the roulette wheel, according to their fitness for
the prediction of benthic macro-invertebrates. By spinning the roulette wheel, a chromosome
is selected for reproduction. In this manner, chromosomes with high fitness have higher



chances of being selected for the next generation. This implies that an input variable subset
which results in a high performance has a higher probability to be selected. Moreover,
crossover is set with a probability of 60% while mutation occurs at a probability of 3%. This
low setting of mutation could avoid getting trapped in local optima during the search. The
initial population consisted of 20 chromosomes that were evolved over minimal 40
generations were the parameters set after the preliminary experiments.

GAs are different from other more normal optimization and search procedures in four
ways where the GAs work with code (Goldberg 1989): (1) GA works by coding the
parameter set (string) but not with the parameters themselves; (2) GA searches from a
population of points not from a single point; (3) GA uses objective function information not
derivatives or other auxiliary knowledge; and (4) GA uses probabilistic transition rules not
deterministic rules.

First pioneered by John Holland in the 60s, GAs have been widely studied,
experimented and applied in many fields especially in the engineering world. Not only does
GAs provide an alternative method to solving problems, it consistently outperforms other
traditional methods in most of the problem links. Many of the real world problems involved
finding optimal parameters, which might prove difficult for traditional methods but ideal for
GAs. However, because of their outstanding performance in optimization, GAs had been
wrongly regarded as function optimizer. In fact, there are many ways to view GAs. Perhaps
most users resort to the GAs looking for problem solvers but this could be just a restrictive
view (De Jong 1993).

GAs were introduced as computational analogy of the adaptive systems, and modeled
loosely on the principles of evolution via natural selection, employing a population of
individuals that undergo selection in the presence of variation-inducing operators such as
mutation and recombination (crossover). A fitness function is used to evaluate the
individuals, but reproductive success varies with fitness. The genetic programming works
like a flow as shown in Figure 2.7 (Natthaphob 2006).

The most common type of genetic algorithm works like in the evolution of man where a
population is created with a group of individuals created randomly. The individuals in the
population are then evaluated, where the evaluation function is provided by a programmer
who gives the individuals with a score based on how well they perform their given tasks.
Two individuals are then selected based on their fitness, the higher the fitness, the higher is
the chance of being selected. These individuals then “reproduce” to create one or more
offspring, after which the offspring are mutated randomly. This continues until a suitable
solution is found or a certain number of generations are produced depending on the needs of
the programmer. Based on natural selection after an initial population is randomly generated,
the algorithm evolves through three operators, namely:



- selection which equates to survival of the fittest;
- crossover which represents mating between individuals; and
- mutation which introduces random modifications.
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Figure 2.7 Genetic programming tasks (Natthaphob 2006)

2.7.1.1 Selection Approaches

Agents are selected that will make it to the crossover phase. While those that are not
selected will die and therefore, their genes will not be passed on to the agents in the next
generation. The selection process is based on the probability that agents evaluated with
higher Y values will most likely be selected for the next phase. Those with low values will
probably not. The key point is that this phase has an element of randomness just like the
survival of organisms in nature.



The probability for selection is based on the agent’s Y value relative to the rest of the
population (survival of the fittest). Selection begins by determining an agent’s relative fitness
by dividing its Y value by the sum of all the Y values of the agents in the population. Then a
random number generator is used to select the agents for the crossover phase. The chance of
an agent being chosen during each spin of the random number generator is equal to the
agent’s relative fitness. The number of agents selected is equal to the population size, it is
therefore necessary to keep the size constant for every generation. Some agents will be
selected more than once in which case multiple copies of such agent would be present in the
set used in the crossover operation.

Many methods are used to select the best chromosomes, such as the roulette wheel
selection, Boltzman selection, tournament selection, rank selection, steady state selection,
among others. Some of them are described in details as follows:

Roulette wheel selection: In roulette wheel selection, individuals are given the
probability of being selected directly proportionate to their fitness. Two individuals are then
chosen randomly based on such probabilities and allowed to produce offspring. Imagine a
roulette wheel where all chromosomes in the population are placed and everyone has its
place accordingly based on its fitness function, as shown in the picture below.

@ Chrorrosame 1
® Chrorrosome 2
JChrorrosome 3
3 Chrorrosome 4

Figure 2.8 Roulette wheel selection process

A marble is then thrown into the pie and the chromosome is selected. Chromosome with
bigger fitness will have the chance of being selected a number of times.

Ranking Schemes: The previous selection will have problems when the difference of the
fitness is big. For example, if the best chromosome fitness is 90% of the roulette wheel then
the other chromosomes will have very few chances of being selected. In rank selection, the
population is ranked first and then every chromosome receives fitness from such ranking.
The worst will have fitness 1, second worst 2, etc. and the best will have fitness N (number
of chromosomes in the population).

The following picture shows how the situation varies after changing the fitness to order
number, after which all the chromosomes have the chance of being selected. But this
method can lead to slower convergence, because the best chromosomes would not be much
different from the others.
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Figure 2.10 Situation after ranking (graph of order numbers)

Tournament selections: Goldberg and Deb (1990) compared the various selection
schemes and indicated a preference for the tournament selection. In tournament selection, a
group of individuals are chosen at random from the population and the individual with the
highest fitness is selected for inclusion in the reproduction process. The procedure is
repeated until the appropriate number of individuals is selected for the new generation. The
approach has been originally developed for groups of two individuals for the so-called binary
tournament selection however larger groups may lead to greater diversity and a smoother
progression to the solution.

2.7.1.2  Crossover techniques

Crossover is the process of combining the genes of one agent with those of another to
create offspring that inherit the traits of both parents (Goldberg 1989). A crossover rate is the
odds of an agent being selected for the crossover operation. The agents that are not selected
will not have their genes changed before proceeding to the mutation phase. Those that are
chosen will be paired with a mate, which is another agent which has also been selected for
the crossover. From each pair, two offspring will be created that will replace their parents.
To determine which genes are inherited from the father and which genes will come from the
mother, a random number between one and the total number of genes minus one will be
created. For the first offspring, the genes numbered between one and the random number
will be inherited from the father. The genes numbered between the random number plus one
and the maximum number of genes will come from the mother. The genes for the second
offspring will be inherited just like those of the first offspring except that the genes that came
from the father in the first offspring will come from the mother and those inherited from the
mother will come from the father.



For example, the father and mother agents are chosen, each having 22 genes. Number
15 is created randomly and denotes the split position of genes to be inherited (Al Lab 2006).

Split position +

l
Father’s genes: ~ 011011000001011 | 1010111
Mother’s genes: ~ 100110100111010 | 0001101

l
Offspring A’s genes: 011011000001011 | 0001101
- left side from father, right from mother
Offspring B’s genes: 100110100111010| 1010111

Many crossover techniques exist for organisms which use different data structures
(Eshelman 1991), which include the following:

One point crossover. A crossover point on the parent organism string is selected. All

data beyond that point in the organism string is swapped between the two parent organisms.
The resulting organisms are the children:

Parents:

crossover paint

Chidren:

Two point crossover: Two point crossover calls for two points to be selected on the
parent organism strings. Everything between the two points is swapped between the parent
organisms, rendering two child organisms:

{

Parents.

|

i
§cmssover points

Chidren:

|

Cut and splice: Another crossover variant, the “cut and splice” approach, results in a
change in length of the children strings. The reason for this difference is that each parent
string has a separate choice of crossover point.

Parents:

Chédren:

|

An important aspect of crossover (in binary coding) to multivariate problems is that it
occurs only at gene boundaries because each gene consists of alleles or bits. Crossover may
split the genes, which may cause either a gain or loss to a GA. This is not the case for real



coded GA where the gene comprises a single allele and is itself the parameter value (Whitely
1989; Goldberg 1989; Michalewicz 1996)

2.7.1.3  Mutation

After the selection and crossover, there is a new population full of individuals. Some are
directly copied while the others have been produced by crossover. In order to ensure that the
individuals are not all exactly the same, only a small chance of mutation is allowed. The loop
through all the alleles of all the individuals and if that allele is selected for mutation, either it
is changed by a small amount or replacing it with a new value.

Just as in nature, some agents will have random mutations occurring in their genes. The
mutation rate specifies the chance that a given gene in an agent will be mutated. If a gene is
selected for mutation then its value will be changed. In the case of bit representation, the
gene will simply be flipped, that is, a one is changed to a zero or a zero is changed to a one.

2.7.1.4 Niching

The niching operator assures certain diversity in a population, allowing not only the
fittest to be selected for reproduction but also the less-fit individuals. In the previous
discussion, it was emphasized that population diversity and selective pressure have to be
balanced in each generation in order not to attain premature convergence with suboptimal
solution. Niching is an advanced GA operator that promotes population diversity through a
sharing scheme.

2.7.1.5 Elitism

Elitism is a method, which copies first the best chromosome (or a few best
chromosomes) to a new population. When creating a new population by crossover and
mutation, there is a big chance that the best chromosome is lost. The rest is done in a
classical way. Elitism can very rapidly increase the performance of GA, because it prevents
losing the best found solution.

2.7.1.6 Representation Schemes

Binary coding. In binary coding, a chromosome is represented by a string of binary
bits that can encode integers, real numbers, or anything else appropriate to a problem.
Binary strings are easy to operate and within any gene, binary representations can be
mapped to values in a range feasible for the variables represented. Following the operation
of reproduction (selection, crossover and mutation), the fitness of a particular chromosome
is evaluated after the binary values are decoded back into their original form. However, the
standard binary coding of variables permits large gaps in the variable values between



generations, which can lead to difficulty in arriving at a good solution (Goldberg 1989;
Wardlaw and Sharif 1999).

Read coding (Floating point). Real coded chromosomes have been used with success.
In a real coded GA, individual genes of a chromosome are initially the values allocated
randomly within the feasible limits of the variable represented. With a sufficiently large
population of chromosomes, adequate representation would be achieved. There is a
significant advantage in not wasting computer time on decoding the objective function of
an evaluation, although a more careful approach to mutation is required. Nevertheless, in
real coding there is no discrete decision of the variable space (Haupt and Haupt 1998;
Wardlaw and Sharif 1999). Table 2.4 shows the distinction of the representative coding
from the above discussion (after Goldberg 1989).

Table 2.4 Comparison of binary and real-coded genes

Real coded Binary coded
0.0 0000
1.0 0001
2.0 0010
3.0 0011
4.0 0100
5.0 0101
6.0 0110
7.0 o1n
8.0 1000
9.0 1001
10.0 1010
11.0 1011
12.0 1100
13.0 1101
14.0 1110
15.0 1111

Genetic algorithms are very effective way of quickly finding a reasonable solution to a
complex problem. Granting that GAs are not instantaneous or even close, they could perform
an excellent job of searching through a large and complex search space. Genetic algorithms
are most effective in a search space for which little is known, for they produce solutions that
solve certain problems in ways that may never have even been considered. They can also



produce solutions that only work within the test environment and could flounder, once these
are used in the real world. Put simply: “genetic algorithms could be used for everything that
could not be easily done with another algorithm.”

2.7.2 Parameters of GA

This section discussed some basic recommendations for deciding to implement genetic
algorithms. Considering that these recommendations are very general, most study would
probably want to experiment with their own GA for specific problem, because there is still
no general theory which could describe the parameters of GA for any problem.

The recommendations are results of some empirical studies of GAs, which have been
often performed only on binary encoding.

» Crossover rate

Crossover rate generally should be high, about 80%-95%. (However some results have

shown that for some problems the crossover rate of about 60% could be the best.)

= Mutation rate

On the other hand, mutation rate should be very low. The best rates reported are about

0.5%-1%.

* Population size

It is surprising that very big population size usually does not improve the performance

of GA (in terms of speed in finding solution). Good population size is about 20-30,

however sometimes sizes between 50 and 100 are often reported as the best. Some

research results also showed that the best population size depends on the encoding or on

the size of the encoded string. This means that, if a chromosome has 32 bits the

population should be 32, but this is surely two times more than the best population size

for chromosome with 16 bits.

= Selection

The basic roulette wheel selection can be used, but sometimes the rank selection could

be better. There are also some more sophisticated methods which could change the

parameters of selection during a GA run. Basically, they behave like simulated

annealing, but surely elitism should be used.

* Fncoding

Encoding depends on the problem and also on the size for instance of the problem.

» Crossover and mutation type

Operations largely depend on the encoding and on the problem.

2.7.3 Applications of GA

Genetic algorithms have been used for difficult problems (such as NP-hard problems),
for machine learning and also for evolving simple programs. They have also been used in art
specifically for evolving pictures and music.



The advantage of GAs is in their parallelism. GA is travelling in a search space with
more individuals (and with genotype rather than phenotype) so they are less likely to get
stuck in local extremes like some other methods.

GAs would be also easy to implement because once a certain GA is available, a new
chromosome (just one object) could be written to solve another problem. Using the same
encoding, all what is needed is to change the fitness function. However, choosing the
encoding and fitness functions could also be difficult.

A disadvantage of GAs is in their computational time as they can be slower than some
other methods. But with today’s computer capabilities, this is no longer a big problem.

To get an idea about the problems solved by GA, the following is a short list of some
GA applications:

* Nonlinear dynamical systems - predicting, data analysis

» Designing neural networks, both architecture and weights
= Robot trajectory

* Evolving LISP programs (genetic programming)

= Strategy planning

* Finding shape of protein molecules

* TSP and sequence scheduling

* Functions for creating images

2.8 Conclusion

Chapter Il reviews the fundamentals of the problems and hypothesis stated in Chapter 1.
The challenge of deriving the accurate input parameters for the effective application of
simulation models in the field could be overcome by using data assimilation technique. Data
assimilation is a key technique in the analysis of remote sensing observations. GA is an
advance data assimilation method that could be applied in this study. The details on the
development of the methodologies will be discussed in Chapter I11.
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CHAPTER III

RESEARCH METHODOLOGY

This chapter described over all methodology and materials that been used to completed
the study. It consists of four sections; over all methods, materials, the optimization algorithm
base on a genetic algorithm and simulation model.

3.1 Overall Methodology
Pre-processing of remotely sensed data

SPOT S10 scenes of 2004-2007 were georeferenced by identified upper-lower of left
and right geographic of image from identification information. The SPOT s10 data were
pre-processed to remove all residua cloud contaminations, consisted of a Min-Max filtering
applied to remove the atmospheric noise fully described in Sawada, 2002. After geometric
correction, The SPOT S10 original data was converted to NDVI and LAI respectively as
explained in section 3.2

Calibration phase

An indicator of a model’s complexity may be the number of parameters that are used in
the model to characterize various ecosystem processes or to represent different
environmental properties. Determining the appropriate values for these parameters requires
great diligence: White et al. (2000) presented a 40-page referenced source data to calculate a
default set of ecophysiological parameters for Biome-BGC (supplied with the distribution of
the BGC model). However, such default parameters are intended for general guidance only.
For a model as complex as Biome-BGC, small uncertainties in the parameters may lead to
the generation of a wide range of variability in the subsequent simulations. For particular
applications, therefore, model parameters should be calibrated against site-specific
measurements to ensure the quality and accuracy of the results of the experiment.

Before the start of the data assimilation, the sensitivity of the parameters was assessed in
order to define the most applicable parameters to be optimized which have been set as
unknown parameters. The overall methodology of this study therefore involves the
development of data assimilation technique for BIOME-BGC to find the optimized
ecophysiological parameters of the Teak forest. Basically, the reference data used to compare
with the model output should be obtained from satellite. Thus, LAI from satellite (SPOT-
LAI) was used as reference, and for this study these were considered as the observed data.

The unknown data for the simulation were the ecophysiological parameters for deciduous

forest type based on Waring and Running (1998). The initial values were generated from the
minimum and maximum values of the unknown parameters. GA is an optimizer that could
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match the observed with the simulated data by using the fitness function explained in
Equation (3), until the difference of the simulated and observed data is minimized.
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After the set of unknown parameters was obtained, such parameters were fed to the
BIOME-BGC model along with the weather and site data to simulate the NPP. The
resulting NPP data were compared with the direct field observations and with the MODIS
NPP. The framework of study is shown in Figure 3.1. One limitation of the NPP validation
was the inadequate and incomplete 4 year-referenced data not only from the field but also
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from the MODIS satellite data. Furthermore, the field data available were for year the
period from 2004 to 2005 comprising the DBH and height data. The figure below also
demonstrates the method for the calculation of NPP in field site and MODIS data, which
were available only for the year 2004, 2006 and 2007, because the data for 2005 was
incomplete. The annual NPP field data available were for year the period from 2004 to
2007.

3.2 Materials

3.2.1 Model input data
The three major groups of parameters required for the model included:

- site parameters,
- meteorological data, and
- ecophysiological characteristics of specific type of forest.

Site Parameters

The key site parameters consisting of latitude and longitude, site elevation, and soil
parameter data were used for the initialization of the data file. Land Development
Department (1973) indicated that the soil type in the study site is Loamy Paleustults.
Typically, this type of soil has 32, 18, 50% proportion of sand, silt and clay, respectively,
and was used as the soil parameter for the model. This type of soil is well drained, with
medium to low organic matter and phosphorus contents as well as low potassium content.
It is for these reasons that such type of soil is considered as low-fertile soil. The parameters
for this type of soil are shown in Table 3.1

Table 3.1 Site data.

Parameter Value Reference

Site and soil

Elevation (m) 380 GPS, Ground observation

Latitude {°) 18.25 GPS, Ground observation

Albedo (%) 10.6 Pinker et.al (1980)

Soil depth (m) 1.5 Ground observation

Sand:silt:clay ratio 32:18:50 Land Development Department (1973)
Nitrogen deposition 0.0001 Ground observation

(kg N m year)

Nitrogen fixation 0.0004 Ground observation

(kg N m™ year™)

Moreover, the scenario parameters for initialization of the data include the length of
simulation period, ambient CO; concentration (constant or variable), nitrogen deposition,
among others.
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Meteorological Data

BIOME-BGC determines the daily carbon and water fluxes using meteorological
parameters such as precipitation, humidity, daily maximum and minimum air temperatures,
mean daily air temperature, vapor pressure deficit (VPD) and incident solar radiation.
Precipitation, humidity and daily maximum and minimum air temperature data were
obtained from the observations at the flux tower, whereas the other parameters were
obtained from MT-CLIM model which is built-in the BIOME-BGC. The measured daily
maximum and minimum air temperatures were averaged using MT-CLIM to estimate the
mean daily air temperature (Ta). VPD was estimated from the mean daily dew point, which
is assumed to be equal to the minimum daily air temperatdre. The MT-CLIM model also
simulates average daily incident solar radiation based on meteorological data observed at
the field, as described by White et al. (2000). The meteorological inputs for BIOME-BGC
are shown in Figure 3.2.
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Figure 3.2 Seasonal trend meteorological input data from the year 2004-2007

Ecophysiological Characteristics

BIOME-BGC requires a static description of the ecophysiological characteristics for the
type of vegetation considered in the study. A total of 43 ecophysiological parameters were
defined in every biome group i.e. evergreen broadleaf forest (EBF), deciduous broadleaf
forest (DBF) and etc. The default ecophysiological characteristics of DBF were used for
the simulation as initial values. For coupling BIOME-BGC and GA, the 12 DBF
parameters which affected the LAl and NPP were selected for the assimilation process

3.2.2  Satellite data

3.2.2.1 Derivation of LAI image from SPOT VEGETATION

The SPOT-VEGETATION S10 product was used in the assimilation of the remotely-
sensed vegetation index time series. S10 product is 10 days composite of Normalized
Difference Vegetation index (NDVI) with 1.0 km spatial resolution. The data used in this
study covered the whole study period from 2004 to 2007. The spot images used in a pre-
processed NDVI format were provided free of charge by the Flemish Institute for
Technological Research (VITO) of Belgium. The pre-processing steps applied comprise
the radiometric calibration of the original channels, their geometric registration and an
atmospheric correction accounting for molecular and aerosol scattering, water vapor, ozone
and other gas absorption (Maisongrande et al., 2004). Furthermore, the Min-Max filter was
applied to remove the atmospheric noise (Sawada, 2002), while 1.0 km pixel resolution of
the data from the Flux Tower (Figure 1) was used for the analysis, considering that the
extent of the homogenous teak plantation is large enough to accommodate 1.0 km pixel.

The SPOT S10 NDVI Data which stored the NDVI data as digital data (DN), were then
restored to floating point NDVI using Equation (1) below based on the VEGETATION
Users Guide (2007):

NDVI = (0.004* DN) — 0.1 G.1)
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Figure 3.3 SPOT-VGT, before (left) and after (right) pre-processed subset and converted to
NDVI value

For more accurate conversion of SPOT S10 NDVI to LAI data, Equation (2) which has
been obtained after comparison the NDVI satellite data with LAI field observations (R* =
0.84), was applied in the study. Considering that the output of BIOME-BGC gives the
absolute level of LAI, and the subsequent assimilation process compares Satellite-LAI with
Simulated-LAI, the conversion of SPOT NDVI to absolute level of LAI was necessary. The
formula for converting LAI from SPOT (NDVI) to LAl is indicated in Equation (2):

LAI =10(NDVI)-2.18 @)

After applying Equation (2), the series of LAI values after calibration were considered
as reference inputs in the assimilation process. The LAI values which were retrieved by
SPOT and denoted as observed data were also used in the assimilation.

L'Q_ SPOT LA| —&— Field LA

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136
10 day composite

Figure 3.4 Seasonal variations in the relative LA of sample trees, SPOT satellite LAI
and Field LAI from 2004-2007
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3.2.2.2 Derivation of NPP from MODIS

The referenced NPP data in this study which were derived from MODIS17A or the
MODIS NPP were used to evaluate the simulated NPP from BIOME-BGC-GA. The
MODIS NPP/GPP algorithm described in Running et al. (2004) and Heinsch et al. (2003),
is based on the original logic of Monteith (1977), NPP is linearly related to the amount of
absorbed Photosynthetically Active Radiation (PAR) during the growing period. The
MODIS NPP/GPP data used in the study were the 8-day-composite data during the study
period 2004-2007 at 1.0 km pixel resolution. The NPP values with the corresponding
pixels within the location of the flux tower were determined according to the geographical
location of the flux tower. In addition, the radiant correction and geometric correction were
produced according the MODIS Swath Reprojection Tool (MRTSwath).

S #1 Layer (Band Math (b170,0001):M0D1 7422004, .
File Overlay Enhance Tools Window

s

Figure 3.5 MODIS NPP on Mae Moh site

3.2.3 NPP from field biomass measurement

In addition to the MODIS NPP, which was used as reference data, the NPP from field
observations were also used to validate the simulated NPP from BIOME-BGC-GA. It
should be noted that in Thailand, studies about NPP scenario are limited due to various
reasons which could include limited time as such studies could be time consuming,
inadequate grants or scholars for the study, etc. In addition, NPP data is not available for
Teak forest in the Mae Moh site. Therefore, we used field biomass measurements for
estimating the NPP. The Teak-biomass-estimation equation finalized by Viriyabuncha et.al
(2003) was employed to evaluate the total biomass (Wt). The growth data of teak trees
aged 25-93 years old, were used to obtain the value of Wt in Equation (3)
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Wt =0.0166(DBH* * Height)"*** (R*=0.99) (3.4)
; where Wt is Total biomass (ton/ha), DBH is diameter at breast (cm) and Height
(m)

We converted the units of the following NPP estimates from dry weight of biomass
to carbon by a ratio 0.475 which is the carbon content (C) proportion in biomass
following the report of Raich et al. (1991).

NPP = 0475 AWt (4)

; where NPP is Net Primary Production (kgC/m?%/yr) and AW s change of biomass

Figure 3.6 Diameter at breast height (DBH) measurement or at 1.30 m (left) Spiegel
relascope was used to measure the tree height

3.3 Development of data assimilation method

The identification of proper ecophysiological parameters of BIOME-BGC model for
tropical forests is still rare because previous studies have focused on temperate forests.
This study has proposed a data assimilation scheme using genetic algorithm (GA) as an
optimizer. This technique finds out some of the ecophysiological parameters which are set
to be ‘unknown parameters’. Modeled LAI is simulated by BIOME-BGC using unknown
parameters proposed by GA and this LAI is then compared with observed SPOT-LAI. The
difference between simulated and observed LAI is evaluated through an evaluation
function called fitness function which is explained in Equation (4.1) in section 4.1. GA
will change the unknown parameters and run the model again until it finds a maximum fit
between the observed and simulated LAI. Through this method, it becomes possible to
identify the proper BIOME-BGC model parameters which give accurate LAI as observed
in field over large areas.
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3.4 Implementation of the BIOME-BGC-GA model to simulate NPP

The BIOME-BGC simulates daily NPP and calculates LAI for coarsely defined biomes
at areas ranging from 1 m’ to the entire globe by using prescribed site conditions,
meteorology, and parameter values. The model operates with a daily time step which
means that each flux is estimated for a one-day period and weather is the most important
control on vegetation processes. Leaf area index (LAI, m? leaf area per m* ground area)
controls canopy radiation absorption, water interception, photosynthesis, and litter inputs
to detrital pools. NPP is partitioned into the leaves, roots and stems as a function of
dynamical allocation patterns, considering eventual limitations due to availability of and
competition for nitrogen. NPP was calculated in terms of gas exchange, as a difference
between GPP and autotrophic respiration (Ra). The BIOME-BGC method for NPP
estimation is vital key to understanding the results of this study. This estimation results
from the interactions of numerous environmental controls simulated by the model (as it
was mentioned earlier, BIOME-BGC computed NPP as the difference between GPP and
autotrophic respiration). Consequently, climate, nutrient availability, and vegetation type
influence NPP through controls on both photosynthesis and respiration processes. In
BIOME-BGC, the gross photosynthesis limited by climate and nutrients was calculated as:

GPP = f (T, VPD, SW, SRAD, CO2, LAI, LEAFN),

where T was the air temperature, VPD was the vapor pressure deficit, SW was the soil
water content, SRAD was the solar radiation at the top of canopy, CO2 was the carbon
dioxide concentration in the atmosphere, LAl was the leaf area index, and LEAFN was the
nitrogen concentration of leaves. Air temperature, leaf, and root nitrogen contents
controlled autotrophic respiration:

Ra= f(T, LEAFN, ROOTN),

where ROOTN was the nitrogen concentration of roots. Thus, BIOME-BGC was able to
capture effects of'a number of abiotic (temperature, vapor pressure deficit, soil water, solar
radiation, and CO2 concentration) and biotic (leaf area index, leaf, and root nitrogen
contents) control on NPP.

The BIOME-BGC model version 4.1.1 was used. It requires meteorological input data
such as daily minimum and maximum temperature, incident solar radiation, vapor pressure
deficit and precipitation. Furthermore, aspect, elevation, nitrogen deposition and fixation,
and physical soil properties are needed to calculate daily canopy interception, evaporation
and transpiration; soil evaporation, outflow, water potential and water content; LAI;
stomatal conductance and assimilation of sunlit and shaded canopy fractions; growth and
maintenance respiration; GPP and NPP; allocation; litter-fall and decomposition;
mineralization and leaching.
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Ecosystem simulation models need initial values of state variables to assess the
physiology, biochemistry, structure and allocation patterns of vegetation functional types
or biomes. Within the self-initialization process or spin up run, the development of soil and
plant carbon as well as the soil and plant nitrogen pools are modelled until the annual
production, respiration, decomposition, etc. are at a steady state. Soil carbon, including
organic carbon within and outside living structures, was chosen to stop a spin up run since
it is the last among the carbon pools to reach a steady state within an undisturbed forest
ecosystem. The input needed to run this procedure are daily climate records for a given site
and the leaf carbon pool size which is set to 0.001 kg m™ (White et al., 2000).

The self-initialization process or spin up run can be considered as the development of
natural vegetation within an undisturbed forest ecosystem. In this context, it is important to
consider that these stands were heavily managed over the past 600 years (Giide, 1960).
Harvesting, grazing, litter ranking and planting of trees have affected the existing forest
vegetation which may have resulted in a loss of nutrients and carbon, particularly within
the soil and litter layer.

3.4.1 Model data sources: site, soil and meteorological parameters

BIOME-BGC uses daily maximum and minimum air temperatures, humidity, incident
solar radiation and precipitation to determine daily carbon and water fluxes. Average daily
incident shortwave radiation (Qi) was simulated using MT-CLIM logic described by white
et al. (2000) base on meteorological data observed at the field. Average daily net solar
radiation (Qn) was estimated using a prescribed, constant albedo for vegetation. Qn was
attenuated through the vegetation canopy using Beer's formulation and a prescribed
extinction coefficient modulated by LAI to derive the amount of solar radiation transmitted
through the canopy (Qt). The amount of solar radiation absorbed by the canopy (Qa) was
estimated as the difference between Qi and Qt. Photosynthetic photon flux density (PPFD)
was estimated based on the assumption that photosynthetically active radiation represents
approximately 50% of Qa (Running and Coughlan 1988)

Mean daily air temperature (Ta) was estimated as the average of the measured daily
maximum and minimum air temperatures. Minimum daily air temperature was assumed
equal to the mean daily dew point and was used to estimate the mean daily vapor pressure
deficit (VPD). Daily soil temperatures at a 30 cm soil depth (Tsoil) were estimated using
an 11 day running average of Ta (Zheng et al. 1993). Soil water potential (PSI) was
estimated from soil water content, soil depth and texture information following Cosby et
al. (1984). Ta, VPD, PPFD and PSI were used to estimate canopy stomatal conductance
(gc) and GPP following Farquhar and von Caemmerer (1980), respectively. Ta and Tsoil
were used to estimate Rm (maintenance respiration) while Tsoil and PSI were used to
estimate Rh (heterotrophic respiration) (Running and Coughlan 1988).
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3.4.2 Model data sources: plant ecophysiological Characteristic

Biome-BGC requires a static description of the ecophysiological characteristics of the
vegetation which is Teak (Tectona grandis Linn. F.) in the study area, then deciduous
broadleaf group (DBF) was selected for this simulation. The general ecophysiological
parameterization defined by White et al. (2000) was used, except the dates of leaf onset
and offset which was particularly specified for this case.

The information on for the above-mentioned species was not available, the
ecophysiological parameters for default values for deciduous broadleaved forests (DBF)
were used based on White et al. (2000) (Table 3.2). The range of parameter values reported
by White et al. (2000) was also used here as limits for specific parameters. After develop
the program for BIOME-BGC-GA linkage. The optimized parameters values were applied
for specific teak parameters. The final parameter sets applied for the studied specie is
presented section 4.4,

3.5 Concluding Remarks

The methodologies developed in this chapter were implemented to explore some solution
to the problems states in Chapter 1. The BIOME-BGC-GA linkage was applied to simulate
net primary production (NPP) in tropical deciduous forest via unknown parameter setting
which currently not includes complete parameter setting in the version of the model. The
results of these applications are present and discussed in Chapter IV. The Program codes are
all written in Visual C.
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CHAPTER 1V

REMOTE SESING DATA ASSIMILATION USING BIOME-BGC

This chapter, the results are addressed in 2 parts. First, the development of data
assimilation technique for BIOME-BGC using remote sensing data was explained and GA
performance was discussed which obtained from program development of BIOME-BGC-
GA. Second, the optimized ecophysiological parameters of a deciduous broadleaf forest
(Teak forest) from BIOME-BGC-GA were explained by evaluation of the calibrated
model.

4.1 Development of Data Assimilation Technique
4.1.1 Selection of unknown parameters

As a rule in data assimilation for estimating parameter values, the balance between the
number of control variables and quantity of data used to constrain them, is very important.
Since this study did not have enough data to treat all the 43 ecophysiological parameters as
control variables, the effects of the ecophysiological parameters were assessed based on a
set of key output variables and were selected to be constrained for the data assimilation
development. The key output variables included in the sensitivity analysis to select the
unknown parameters, were the LAI and NPP.

The sensitivity analysis was focused on the effect of the ecophysiological parameters
which were developed as species and location specific, and used to determine the BIOME-
BGC. Other parameters such as site and climate from field-based measurements we also
used exactly as observed.

Sensitivity is the effect of input parameter x on the output variable y, and is calculated
as the ratio of the change of the output variable to the change of the input parameter
(Ay/Ax), expressed in percentage. A positive sensitivity ratio means the output variable
increases with increasing input parameter value and a negative sensitivity ratio implies that
the output variable decreases with increasing input parameter value. In order to select the
suitable parameters for the assimilation process, the parameters were ranked in terms of
their effect on the modeled variable depending on the absolute value of the sensitivity
(IAy/Ax| ratio. The parameters were assigned the following three categories:

parameters with a strong effect, |Ay/Ax| is larger than 0.2,
parameters with a medium effect, |Ay/Ax] is between 0.1 and 0.2
parameters with low effect, |Ay/Ax| is less than 0.1.

The values of the ecophysiological parameters with the certain degrees of sensitivity
with respect to the LAl and NPP are shown in Table 4.1. For this study, only the
parameters with strong and medium effects on the output variables were considered.
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Table 4.1 Sensitivity of Leaf area index (LAI) and net primary production (NPP) to

single ecophysiological parameters (The bottom index indicates the ranking of the

sensitivity (0.1-0.2: index 1, medium sensitivity; above 0.2: index 2, high sensitivity).

Index Effect (% of valiable change to % of
Parameter Under study Default parameter change)
Value Maximum LAI NPP KgC/m2/yr
P6 Transfer growth period as fraction of growing season 0.2 -0.03 -0.07
P7 Litterfall as fraction of growing season 0.2 -0.05 -0.02
P8 Annual leaf and fine root turnover fraction 1 -0.01 0.00
P9 Annual live wood turnover fraction 0.7 0.01 0.02
P10 Annual whole-plant mortality fraction 0.005 -0.01 -0.01
PL1 Annual fire mortality fraction 0.0025 -0.01 0.00
P12 New fine root C : new leaf C 1 -0.14, 0.06
P13 Newstem C : new leaf C 2.2 -0.22, -0.06
P14 New live wood C : new total wood C 0.1 -0.01 -0.04
P15 New croot C : new stem C 0.23 -0.05 -0.01
P16 Current growth proportion 0.5 0.37, 0.04
P17 C:Nofleaves 24 -0.24, -0.03
P18 C:N of leaf litter, after retranslocation 49 -0.01 0.00
P19 C:N of fine roots 42 0.01 0.09
P20 C:Noflive wood 50 0.18; 0.37,
P2} C:N of dead wood 442 0.00 0.00
P22 Leaf litter labile proportion 0.468 -0.05 -0.05
P23 Leaflitter cellulose proportion 0.528 -0.05 -0.05
P24 Leaf litter lignin proportion 0.204 -0.05 -0.05
P25 Fine root labile proportion 0.36 0.01 0.01
P26 Fine root cellulose proportion 0.54 0.01 0.01
P27 Fine root lignin proportion 03 0.01 0.01
P28 Dead wood cellulose proportion 0.912 0.00 0
P29 Dead wood lignin proportion 0.288 0.00 0
P30 Canopy water interception coefficient 0.0492 0.00 0
P31 Canopy light extinction coefficient 0.7 -0.30, -0.75,
P32 All-sided to projected leaf area ratio 2 0.00 0.00
P33 Canopy average specitic leaf area (projected area basis) 30 0.92, -0.17,
P34 Ratio of shaded SLA:sunlit SLA 2 0.06 0.23,
P35 Fraction of leaf N in Rubisco 0.08 0.28, 0.81,
P36 Maximum stomatal conductance (projected area basis) 0.005 -0.04 -0.11
P37 Cuticular conductance (projected area basis) 0.00001 0.00 0.04
P38 Boundary layer conductance (projected area basis) 0.01 -0.02 -0.05
P39 Leaf water potential: start of conductance reduction -0.6 0.00 0.03
P40 Leaf water potential: complete conductance reduction -23 0.03 0.32,
P41 Vapor pressure deficit: start of conductance reduction 930 -0.02 -0.03
P42 Vapor pressure deficit: complete conductance reduction 4100 -0.01 -0.02

4.1.2 Model development (BIOME-BGC-GA linkage)

Genetic Algorithm was coupled with the BIOME-BGC to estimate the LAI

using

unknown parameters. The core of the interaction program between GA and BIOME-BGC
is a C program that handles the optimizétion. The information of GA chromosomes was
passed to the BIOME-BGC by a static file that inputs the 43 ecophysiological parameters.
Of these 43 parameters, 12 were allowed to vary (Table 4.2) assuming independent prior

uniform distributions across feasible ranges (upper and lower boundaries) of the

parameters. The upper and lower boundaries were made available for the model which
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randomizes the optimized parameter between these ranges. Each parameter range has no
strong information about the effective parameter values in Tectona grandis species.
Therefore for this study, literatures that indicated some upper and lower parameter values
of certain species were referred to for the possible substitution.

Table 4.2 Definition of the BIOME-BGC input parameters in the chromosome.

No. Index Parameters DBF Lower Upper Reference
(unit) Boundary Boundary

| P4 Yearday to start new growth (ONDAY) yday 0 364 Day of year

2 PS Yearday to end litterfall (OFFDAY) yday ' 0 364 Day of year

3 P12 New fine root C : new leaf C ratio 0.1 5 Chiesi et al., 2007

4 P13 New stem C : new leaf C ratio 0.1 5 Lamberty et al.,

5 P16 Current growth proportion prop 0 1 2005

6 P17 C:N of leaves kgC kgN 20 90 Mitchell et al.,

7 P20 C:N of live wood kgC_kgN 20 90 (unpublished)

8 P31 Canopy light extinction coefficient DIM 0 1

9 P33 Canopy average specific leaf area ™ keC 0.5 40

10 P34 Ratio of shaded SLA:sunlit SLA DIM 0 5

11 P35 Fraction of leaf N in Rubisco DIM 0 1

12 P40 Leaf water potential: complete conductance ~ MPa -4 -0.9

reduction

The fitness function, which is the difference between the simulated and observed LAI
was used as the main basis for the evaluation of unknown input parameters for future
generations, where the fittest set of input parameters survives while the weak ones fade
away. The spatial distributions of SPOT-LAI and BIOME-BGC-LAI were therefore used
as the search criteria. The fitness function for the modeling is expressed as follows:

1

Fitness = 5

Z (LA]SI’()T,I - LA]BI()ME—B(;(,',I )2

i=1

where N is number of LAI-SPOT satellite during the year.

The major function of the genetic algorithm program is to increase the generation
variable and execute the assimilation process until the number of generations would equal
to the variable maximum number of generations (maxgen) setup on BIOME-BGC-GA.
The best input parameters should have survived and would be obtained when the
assimilation stops after reaching the maxgen. The core of such interaction program is
explained in Figure 4.1
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Figure 4.1 Interaction between BIOME-BGC and GA (Note: This technique would give
the set of parameters that can explain the pattern and the absolute level of observation
where the difference of the simulated and observed parameters is evaluated through a
fitness function, for which the evaluation is repeated until GA reaches a set of parameters
which gives the maximum fitness)

4.1.3 Determination of GA parameters

The determination of GA parameter has been carried out by various researchers. Goldberg
(1989) found that good performance of the GA can be achieved using a high crossover
probability and low mutation probability. Wardlaw and Sharif (1999) and Suiadee (2006)
carried out sensitivity analysis of various parameters of GA. Wardlaw and Sharif considered
crossover probabilities from 0.5 to 0.95 and recommended a crossover probability of 0.7-
0.75 for real coded GA. They also recommended a mutation probability equivalent to 1
genome per chromosome such as a probability of 0.028. Suiadee found a crossover
probability 0.8 as the best for his study of reservoir rule curve optimization and a mutation
probability of 0.08.

GA parameters may affect the speed of convergence of results. To find the best values of
the GA parameters determination testing of four different GA parameters is carried out,
namely, population size, probability of crossover, mutation probability and number of
generation.

Crossover Probability

This study Population size of 100 and a Pmutation = 0.09 were assumed and then
investigates the fitness value for six different crossover probabilities: 0.3, 0.5, 0.7, and 0.9, as
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shown in Figure 4.2. The results show that highest fitness occurs for probability of crossover
0.7.
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Figure 4.2 Effected of type of crossover on fitness values

Mutation Probability

Mutation probability decides the exploration in the non-visited domain through random
walk. A higher value of mutation probability (e.g. larger than 50%) will result in a more
explorative or random algorithm while a zero value of mutation probability will result in a
chance of converging to local optima. The value of mutation probability is therefore kept
considerably lower (less than 10%) than crossover probability (more than 65%) to avoid
fully random search, and avoiding premature convergence. For simple problem, with a
couple of decision variables, a mutation probability of 1% provides good results.
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Figure 4.3 Effected of type of mutation on fitness values

The crossover probability on 0.3, 0.5, 0.7 and 0.9 were selected to test the sensitivity of
mutation. The study explores the sensitivity of fitness for five mutation probabilities
ranging from 0.03 to 0.09 with a step of 0.2. The maximum fitness achieved is with
mutation probability of 0.09 as shown in figure 4.3
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Population size

The effect of population size to the performance of GA was examined using the
probability of crossover and mutation values in the previous analyses. Population sizes of 10
to 100 were used in this analysis. The population size was categorized into small (10-30),
medium (40-60) and large (70-100). Population size should normally be selected based on
number of genes in the string. More the genes (decision variables) more should be
population size to ascertain good representation of the decision variables in the population.
On the other hand large population takes longer computation time. Table 4.3 shows the best
population sizes to the crossover schemes. Population of 100 size were selected in this study
for more best fitness value and Figure 4.4 shows that the performance of GA improves with
increasing population size.

Table 4.3 Best population size for the GA problem.

Population size Best population
Small (10-30) 10

Medium (40-60) 50

Large (70-100) 100
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Figure 4.4 GA performances with small, medium, and large population size at 0.7 crossover
and 0.09 mutation

4.2 The model calibration

The results of the model calibration could be explained in two parts. The first part
shows the estimation of the parameters from assimilation compared with results of other
studies, and second part is the improvement of the simulated data in the assimilation
process through LAI outputs.

It is well known that the availability of accurate input parameters bridges the gap
between model development and application in the field. In this study, the accuracy or
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improvement of the optimized parameter was evaluated through the results of the
simulated LAI by using the optimized parameter and default parameter, and then observed
against the satellite data which was obtained using a statistical method. The Root Mean
Square Error (RMSE) is one of the most common statistics that measures the average error
of a model. The lower the RMSE, the better is the performance of a model. The linear
regression, R? measures the random error and the correspondence between the simulated
and observed (satellite data). The higher correlation indicates the higher efficiency of the
model.

4.2.1 Assimilation of Parameter Estimation

Initially, the 12 parameters were estimated through optimization of BIOME-BGC-GA
for the year 2004. Out of the 12 parameters, the 2 phenological parameters of ONDAY and
OFFDAY (P4 and PS5), i.e. the start and falling date of leaves are also highly dependent on
the seasonal change in the precipitation. This is normal characteristic of DBF species in
tropical monsoons. The P4 and P5 then were calibrated for each year on 2004-2007
following their meteorological input data. The other 10 unknowns were calibrated only for
the initial year 2004 and set to be constants value for 2005 to 2007.

The parameters P4 and PS5, 91 DOY (April 1) and 360 DOY (December 25) on 2004, as
obtained by BIOME-BGC-GA were compared with field data. On field data, the leaves is
starting out around the second week of April (98-105 DOY) and falling down on the third
week of December (345-355 DOY) (Table 3). The result shows good agreement with field
value with 7-14 days different. On the other hands, the parameters P4 and PS5 obtained by
default parameters (model phenology of BIOME-BGC) showed early date of P4 (40, 46,
44 and 48 DOY) and P5 (363 DOY). Default phenology parameters showed big different
compared with field data, especially in P4 (different 58-65 days).

For other years, P4 of the year 2005-2007 BIOME-BGC-GA set up on 83 DOY (March
23), 76 DOY (March 16) and 93 DOY (3 April), respectively. The P5 of 2005-2007,
BIOME-BGC-GA set up on 361, 360 and 363 DOY respectively. P4 and PS5 of 2005-2007
did not compared with the field data because of unavailable data on field.

Table 4.4 Start (ONDAY) and end (OFFDAY) of growing season

Year P4 (ONDAY) PS5 (OFFDAY)
DOY DOY

Field 98-105 345-355
2004 Optimized 91 360
Default ) 40 363
Optimized 83 361

20051 pepaut 46 363
Optimized 76 360
2006 Default 44 363
Optimized 93 363
20071 befaule 48 363
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The estimates of other 10 unknown parameters from the assimilation can also be
considered to have similar accuracy as there is no way to estimate them in field. Further
comparison with data on other tropical broadleaf forests is desirable but impossible
because of unavailability of any data. However it was found that data on broadleaf forests
in temperate zones are widely available [12,18,38,39] and an attempt has been made for a
result comparison as shown in Table 4.5.

Table 4.5 Simulation of ecophysiological parameters by forest species on DBF (Tectona
grandis (studied), Populas, Quercus cerris and Canadian DBF).

STUDY Quercus  Canadian
Index Keyword Unit Default RESYLT Populas cerris DBF
91 Tectona grandis [22] [42] [43]
P12 New fine root C : new leaf C Ratio 1 0.6 1.2 1.2 1.5
P13 New stem C @ new leaf C Ratio 22 4.3 - 22 2.0
Ple Current growth proportion Prop 0.5 0.5 - 0.5 -
P17 C:N of leaves kgC kgN 24 27 25 25 19.8
P20 C:N of live wood kgC_kgN 50 51 - 48 92
P31 Canopy light extinction DIM 0.7 0.9 - 0.5 0.5
coefticient
P33 Canopy average specific leaf m2_kgC 30 28 - 32 38.7
arca
P34 Ratio of shaded SLA:sunlit DIM 2 3 - 2 2
SLA
P3s Fraction of leaf N in Rubisco DIM 0.08 0.09 0.03 0.03 0.14
P40 Leaf water potential: complete MPa -23 -1 - 22 -2.3

conductance reduction

* The sign (-) in table 4 means the study used default data or did not mention about that

4.2.2 Improvement of Simulated Data in Assimilation Process

After the GA process was completed for all data from the year 2004, the best 12
ecophysiological parameters were obtained, which were then fed to the BIOME-BGC
model to obtain the simulated LAI. The results showed that the BIOME-BGC-GA
simulated LAl appeared to match well with the satellite LAI for the DBF vegetation types
in Tectona grandis species. It showed a promising fit with the base values in the wet
season period from the 11® to the 36™ image as shown in Figure 4.3. The results showed
that the BIOME-BGC-GA simulated LAI matched well with the satellite LAI for the DBF
vegetation types in Tectona grandis species. It showed a promising fit with the base values
in the wet season period from the 1 April 2004 (91 DOY) to 25 Dec 2004 (360 DOY)
images as shown in Figure 4.5. The result showed that the accuracy of the estimate LAl
can be enhanced by improving the accuracy of the model parameters.

Thus, the unified assimilation operation of BIOME-BGC and GA was used to obtain the
optimally estimated model parameters. The result showed that the accuracy of the estimate
can be enhanced by improving the accuracy of the model parameters. The output simulated
LAT obtained from the default values for DBF of the BIOME-BGC model were compared
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with the satellite LAI, and the coefficient of determination (R2= 0.57, RMSE= 1.40

m2/m2) was obtained.
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Figure 4.5 The calibration results of the BIOME-BGC-GA model (2004).

Similarly, the output LAI obtained from the GA optimized parameters for DBF of the
BIOME-BGC model were also compared with the satellite LAI. This time a much
improved coefficient of determination (R*=0.78, RMSE= 0.53 m2/m2) was obtained. The
result of the improved LAI model output from the optimized parameters showed
appropriateness for application in the optimization of the ecophysiological values for the
Tectona grandis species. The graphs of the regression analysis for these two scenarios can
be compared, as shown in Figure 4.6.
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BIOME-BGC-GA Calibrated Parameters

Simulated LAl (m2/m2)

R?=0.78
RMSE = 0.53 m2/m2
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Satellite LAl (m2/m2)

Figure 4.6 Use of default parameters for the model run (top) and use of the
optimized parameter for the model run (bottom)

The comparison of the seasonal variations of the simulated and satellite LAI for four
consecutive years (2004-2007) is shown in Figure 4. The timing of leaf out and leaf fall
were considerably different between 4 year periods. ONDAY parameter before calibration
shows an earlier leaf starting date than observed and shorter leaf fall periods than observed.
During the dry season period such as from the 1 January 2004 to 21 March 2004, however,
some discrepancies could be observed and the simulated LAI is somewhat lower than the
observed satellite values during that period. Although this was under-predicted, it is
acceptable for daily LAI estimation. Such discrepancies may due to the fact that understory
of forest species (i.e. Azadirachta indica, Xylia xylocarpa, Vitex peduncularis etc.) present

in the study area (as show in the figure 4) and moreover the local species push LAI up in
rainy season on RS data.

—o0— Observed (SPQT)
| == Calibrated

1 Oct 05
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10ct 07

Figure 4.7 LAI simulated by the BIOME-BGC model with calibrated parameter
(solid back lines; ‘Calibrated”) and with default parameter (soft lines;

‘Default’). The blue lines (‘Observed’) show the corresponding observed by
SPOT satellite.
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Figure 4.8 shows simulated LAI, before and after calibration, compared with
observations. The graphs show that a significant relationship existed between the simulated
and measured LAI (R* = 0.86, RMSE = 0.67 m?/m?) during those years which appears
better than the default parameters (R* = 0.64, RMSE = 1.12 m*m?).
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Figure 4.8 Inter-annual variation of LAI from 2004-2007: Model simulated LAI
before calibration (left) compared with model simulated LAI after calibration

(right)

4.3 Concluding Remarks

This chapter describes the results of the development data assimilation technique for
BIOME-BGC using remote sensing (first objective) data. The determination of the GA
parameters revealed important aspects for fixing the value of the GA parameters. The
power of GA has been explored in testing the hypothesis postulated in Chapter 1.

Following second objective, finalized modified parameters were obtained for BIOME-
BGC model for the study site at Mae Moh for teak plantation. The first two of ten
ecophysiological parameters, P4 and P5 or the start and ending leaves in DBF type have
evolved to acclimate to the seasonal dry period by minimizing their water use when
compared with the rainy pattern in Table 3. The study showed leaf-out around the date 91
(April) of year and leaf-fall around the date 356 (December) of year (Table 4.4) used to
specify in BIOME-BGC model. Some species are early and delayed for leaf out and leaf-
fall which require to specify in the model as in the Poplar in northern Italy identify P4 was
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78 day of year and PS5 was 315 day of year (Migliavacca et, al., 2009) and Quercus cerris
in Mediterranean forest identify P4 was 100 day of year and P5 was 300 day of year
(Chiesia et,al., 2007). Other modified parameters are appropriate for apply for teak when
seeing the pattern of LAI model output compared with LAI satellite.

The comparisons of simulated LAI obtained through optimized parameters from
BIOME-BGC-GA show good agreement with satellite LAI at this study site. Our model
can be used to quantify seasonal LAI dynamics of teak in tropical areas. At Mae Moh site,
leaves usually remain on trees during a 6-7 month period (May to October), but LAIs are
higher than 4 m2/m2 only during 2-3 months of the year. Processes such as photosynthesis,
gas exchange or rainfall interception are also affected during the growing season by the
change in functional properties of leaves.
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CHAPTER V
NET PRIMARY PRODUCTION ESTIMATION

5.1 Simulation daily NPP

The BIOME-BGC model was validated daily using MODIS NPP. As shown in Figure
5.1, results of the comparison between the modeled NPP from optimized parameters
(below figure) and the MODIS NPP, revealed an acceptable RMSE at 0.001 kgC/m*/d
which is better than the model NPP from default parameters (top figure) with RMSE at
0.002 kgC/m*d. The improved results denote that the identification of the correct
parameters was reliable.
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Figure 5.1 Correlation between the model NPP and MODIS NPP.

The Modeled NPP resulting from the use of the optimized parameters (Figure 5.2),
illustrated the negative NPP value (-0.001 kgC/m*/d) between January to beginning of
April between the year 2004 and 2006-2007. The negative NPP was caused by the period
of the vegetation’s onset and offset (P4 and P5) on the model which was particularly
specific for this site. The negative NPP indicates that plant respiration is greater than the
uptake of carbon by plants during a day when vegetation is stressed by drought conditions,
high VPD or low temperatures (cool dry). The BIOME-BGC estimated that the highest
daily NPP occurred during the rainy period with the peak occuring in August-September.
The highest teak NPP ranged from 0.003 kgC/m?/d to 0.004 kgC/m%/d.



The MOIDS presented the positive value of NPP on the same period (0.004-0.005
kgC/m?/d). Such value was still not largely different from the value of the BIOME-BGC.
Therefore, their values followed the same trend. Moreover, there was also good agreement
or increased trend of the NPP estimating the peak during rainy seasons. It should be noted
however that due to the lack of complete data on the MODIS NPP in 2005, the data for that

year was not evaluated.
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Figure 5.2 Comparison between the NPP derived from this model and NPP
derived from MODIS, and Calibrated NPP with meteorological parameters.

5.2 Simulation annual NPP

The effect of correct ecophysiological parameters on the determination of the annual
NPP budget is reported in Table 6 where the yearly NPP estimated with the field measured
NPP and modeled NPP. The estimated NPP from modeled BIOM-BGC-GA of the four-
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year evaluation period were 764.1, 752.7, 806.0 and 739.0 gC/mz/y, respectively. The
modeled NPP of the 36-39 year-old trees in Mae Moh with default parameters is higher
than the measured NPP (641.3-706.0 gC/m?/y). Sensible overestimations of the yearly NPP
(16.3% for the year 2004, 6.8% for the year 2005, 13.5% for the year 2006 and 5.24% for
the year 2007) were then compared with the measure data. The yearly NPP estimated using
the BIOME-BGC-GA with optimized ecophysiological parameters showed good accuracy
with overestimate 4.2%, 8.4%, 4.9% and 4.7% for 2004, 2005, 2006 and 2007 respectively.

Table 5.1 Annual NPP measured by field and simulated by BIOME-BGC with calibrated
parameters and default parameters

Year NPPrieig NPPjjivrated parameters NPPpetautt-parameters
gC/m/yr gC/m/yr gC/m/yr
2004 733.0 764.1 (+4.2%) 853.0 (+16.3%)
2005 696.0 752.7 (+8.4%) 743.0 (+6.8%)
2006 768.6 806.0 (+4.9%) 872.0 (+13.5%)
2007 706.0 739.0 (+4.7%) 742.8 (+5.24%)

The good agreement of result between modeled and observed NPP both at daily and yearly
can underscore that the proposed approach may be useful in modeling the NPP of teak
species

65



CHAPTER VI
CONCLUSTIONS AND RECOMMENDATIONS

6.1 Conclusions

It is well known that the availability of accurate input parameters bridges the gap between
model development and application in the field. In this paper, a modeling study conducted at
site level represented the first step towards the analysis of the carbon budget of DBF of teak
at a large scale, and development of the BIOME-BGC coupling the GA.

From this research, a set of relevant ecophysiological parameters which are well suited for
the application of BIOME-BGC-GA for teak (DBF) plantations is also provided. The results
indicated that the accuracy of the optimized model simulations is improved. The linear
regression analysis between observed and simulated data showed an increase in the
coefficient of determination (from 0.57 to 0.81) and a decrease in RMSE (from 1.14 t0 0.71
m*/m?) between optimized value and default value.

As a validation exercise, the accuracy of the optimized model was evaluated using the
NPP satellite data collected during 2004 to 2007 (data in 2005 was not available), achieving
a good improvement in the NPP estimation with respect to the results obtained by the
BIOME-BGC-GA using the default literature parameterization. The modeled NPP with the
optimized and original parameters explained an improved amount of variance of the satellite
NPP (R® from 0.19 to 0.64) and the RMSE decreased from 0.002 kgC/m%d to 0.001
keC/m*/d. This improvement in the accuracy of the model underscores the fact that the main
effect introduced by the optimized parameters had reduced the bias with the reduction of the
systematic underestimation of the model.

Coupling of the GA with BIOME-BGC model is successfully carried out. The suitable
GA parameter can solve the optimized problem in the study. This finding has a significant
implication to large-scale problem. Finally, this research was concluded that using BIOME-
BGC-GA to develop the ecophysiological parameters is crucial for NPP simulation playing a
significant role in forest carbon study and forest management. This is suitable for various
applications such as forest management and NPP monitoring. Therefore, a reliable data
assimilation technique can help in obtaining the reliable model parameters to improve the
estimates of LAl and NPP. This paper therefore presents a better way of monitoring the NPP
via reduced cost laboratory experiments using the GA-based ecological model, which is the
BIOME-BGC. |

Despite the study did not calibrated parameters in local species which mix in the area.
For future study can study parameters in various species in the area for more accuracy on
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NPP estimation. BIOME-BGC-GA can applicable for optimized parameters in other species
by study on pixel by pixel.

6.2 Recommendations

The following are recommendations for future studies:

(n The implementation of the methodology on natural deciduous forest in tropical
area (multi species). Finding ecophysiological parameters in other species of
tropical deciduous forest.

) The implementation of the data assimilation methodology for NPP estimation in
regional or whole of country scale by study on pixel by pixel.

3) The inclusion of the sensitive parameter on site parameters (i.e. percentage of
sand, silt, clay) as unknown parameter in data assimilation method. It is useful
for NPP estimation on large scale that we did not know or unavailable about that
data.
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APPENDICS
Appendix A: Simple genetic algorithm implementation

/***************************************************************/

/* This is a simple genetic algorithm implementation where the */
/* evaluation function takes positive values only and the ~ */
/* fitness of an individual is the same as the value of the */
/* objective function */
il
/***************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <unistd.h>
#include <sys/time.h>

#include "gaBGC _Util.h"

/****************************/

/*UNSTABLE*/

#define NVARS 43 /f for number of unknows

#define POPSIZE 10 /* population size */

#define MAXGENS 100 /* max. number of generations */

#define LAI_NUM 36 // number of LAI values to compare in each file
#define LAI_PERIOD 10 / number of satellite reading cycle period in days
#define DAYSINYEAR 365 // according to 365 days in a year

#define DAY_ERR_NUM 1 // according to the number of unrecorded sat LAI in day_err array
#define RAND_NUM 12 // according to the number of random variables
#define PXOVER 0.7 /* probability of crossover */

#define PMUTATION 0.09 /* probability of mutation */
int generation; /* current generation number */

int cur_best; /* best individual */

FILE *galog; /* an output file */

int seed = 0;

intday_err[] = {39}; // line index in of unrecored sat LA in satLAI data file
int arr_rand[} = {4.5,12,13,16,17,20,31,33,34,35.40}; // random variables array

struct genotype /* genotype (GT), a member of the population */

s
t

char unitfNVARS][30];

int digitfNVARS];

double gene[NVARS]; /* a string of variables */

double fitness; /* GT's fitness */

double upper[NVARS]; /* GT's variables upper bound */
double lower[NVARS]; /* GT's variables lower bound */
double rfitness; /* relative fitness */

double cfitness; /* cumulative fitness */

1.
I

struct genotype constpopulation[1]; /* constant variables population */
struct genotype population[POPSIZE+1]; /* population */
struct genotype newpopulation[POPSIZE+1]; /* new population */
/* replaces the */
/* old generation */
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/* Declaration of procedures used by this genetic algorithm */
double randval(double, double, int);

void initialize(void);

void evaluate(void);

void keep_the best(void);
void elitist(void);

void selecta(void);

void crossover(void);

void Xover(int, int);

void swap(double *, double *);
void mutate(void);

void report(void);

/***************************************************************/

/* Initialization function: Initializes the values of genes  */

/* within the variables bounds. It also initializes (to zero) */

/* all fitness values for each member of the population. It */

/* reads upper and lower bounds of each variable from the  */
/* input file (gadata.txt). It randomly generates values ~ */

/* between these bounds for each gene of each genotype in the */
/* population. The format of the input file (gadata.txt) is  */

/* varl_lower_bound varl_upper_bound */

/* var2_lower_bound var2_upper_bound */
/***************************************************************/

void initialize(void)

!
1

FILE *infile;

inti,j, dig;

double tval, Ibound, ubound;
char var_name[30];

char unit{30];

clearAll();

if ((infile = fopen("dbt_unknown.txt","r"))==NULL)

f

t
fprintf{galog, "\nCannot open dbf unknown file!\n");
exit(1);

}
/* Initialize the variables within the bounds */

for (i=0;i<NVARS;i++)
f
t

fscanf(infile, "%s",&var_name);
fscanf{infile, "%s",&unit);
fscanf{infile, "%d",&dig);
fscanf(infile, "%l!f" &tval);
fscanf(infile, "%lf",&lbound);
fscan{(infile, "%lt",&ubound);

tor(j=0;j<POPSIZE;j++)

[

3
strepy(population[jl.unit[i], unit);

population[j].digit[i]=dig;
population[j].fitness=0;
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population(j].rfitness=0;
population[j].ctitness=0;
population[j].lower[i]=lbound;
population([j].upper[i]=ubound,;

strepy(constpopulation[0].unit[i], unit);
constpopulation[0].digit[i}=dig;
constpopulation[0].fitness=0;
constpopulation[0].rfitness=0;
constpopulation{0].cfitness=0;
constpopulation[0].lower[i}=Ibound;
constpopulation[0].upper[i]=ubound;

if{isRandom(i, RAND NUM, arr_rand)==1)
]
1

population[j].gene[i]=randval(lbound, ubound, dig);

//printf("RANDOM var %d, pop %d, val %Ifin", i, j, population[j].gene[i])
1

]
else
populationfj].gene[i]=tval;
1
)

1
)

fclose(infile);
t
I
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/* Random value generator: Generates a value within bounds */
AR R s sk R K RO R R ek sk o

double randval(double low, double high, int decimal)

§
3

srand((unsigned)time(NULL)+seed);
seed = (seed+1)%1000;
Mprintf("seed: %d\n", seed);
double val;
val=((double)(rand()%1000)/1000.0)* (high-low)+low;

return(roundNumber(decimal, val));

)
s

/*************************************************************/

/* Evaluation function: this takes a user defined function. */

/* Each time this is changed, the code has to be recompiled. */

/* The current function is: x[1]°2-x[1]*x[2]+x][3] */
/*************************************************************/

void evaluate(void)

f

t
FILE *{p;
float dayoutLAI[LAI_NUM],satLAI[LAI NUM];
int i, j;

printf("evalutate\n");

/1'1) For each popsize, create dbf.epc and bak log file
for(i=0;i<POPSIZE;i++)

f
t

printf{("[****%d, Y%d*****\n" generation, i);

createDBF _file(i,generation,NVARS,population{i].gene,population[i].digit);

/1 2) run BGC model
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char strpath1[256];

getCurrPath(strpath1);

//streat(strpath1, "/bgc411.exe MaeMoh_spinup.ini");

strcat(strpath1, "/bged411.exe MaeMoh_spinup.ini > bgclog_history/bgclog");
createFileName(strpath1, generation, " ");

createFileName(strpathl, i, ".txt");

/fprintf("Run BGC model %d_%d: %s\n", generation, i, strpath1);
system(strpath1);

/fprintf("Run BGC model %d_%d: %s\n", generation, i, strpath1);

/'3) convert dayout file and save into history
Hprintf("***START FILE CONVERSION***\n");
convertDayout(i, generation);

// read dayout file and store into dayoutLAI array
Mprintf("***START READING DAYOUT FILE***\n");
readDayout(LAI_PERIOD, LAI_ NUM, DAYSINYEAR, dayoutLAI);
/ftestFloat(LAI_NUM, dayoutLAl);

// read satL.Al file and store into satL Al array
/fprintf("***START READING SATLAI FILE***\n");
readSatLAI(LAT_NUM, satLAl);

/ftestFloat(LAI_NUM, satLAI);

tor(j=0; j<NVARS; j++) printf("*%!f\n", population[i].gene[j]);
/1 4) calculate fitness using dayoutL. Al and satLAl
/fprintf("***START CALCULATING FITNESS***\n");
populationi].fitness = getFitness(LAI_NUM, DAY_ERR_NUM, day_err, dayoutL Al satLAl):
printf("fitness %0.51f\n", population[i].fitness);
}/end for
}
/**************************************************************/

/* Keep_the_best function: This function keeps track of the */
/* best member of the population. Note that the last entry in */

/* the array Population holds a copy of the best individual, */
y
/**************************************************************/

void keep_the_best()
{
int mem;
inti;
cur_best=0; /* stores the index of the best individual */
//population[POPSIZE].fitness = population[0].fitness;

for (mem=0;mem<POPSIZE;mem++)

f
t

if (population[mem].fitness > population[POPSIZE].fitness)

!

1
cur_best=mem;
population[POPSIZE].fitness=population[mem].fitness;

1
i)

/fprintf("%d Best POP:\t%d\n", generation, cur_best);
/* once the best member of the population is found, copy the genes */
for (i=0;i<NVARS;i++) :

§
3

population[POPSIZE].gene[i]=population[cur_best].gene[i];
/lprintf("\tBest gene:\t%If\n", population[cur_best].gene[i]);
y/lend for

-
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/****************************************************************/

/* Elitist function: The best member of the previous generation */
/* is stored as the last in the array. If the best member of */

/* the current generation is worse then the best member of the */
/* previous generation, the latter one would replace the worst */

/* member in the new population. */
/****************************************************************/

void elitist()
{
inti;
double best, worst; /* best and worst fitness values */

int best_mem, worst_mem; /* indexes of the best and worst member */

best=population[0].fitness;

worst=population[0].fitness;

for(i=0;i<POPSIZE-1;i++)

{
if(population[i].fitness>population[i+1].fitness)
f
t

if(population[i].fitness>=best)

best=population[i].fitness;
best_mem=i;

}

if(population[i+1].fitness<=worst)

f

1
worst=population[i+1].fitness;
worst_mem=i+1;

}
}
else
{
if(population[i].fitness<=worst)
{
worst=population[i].fitness;
worst_mem=i;
!

if(population[i+1].fitness>=best)

best=population[i+1].fitness;
best mem=i+1;

—

}

/* If best individual from the new populationis better than */
/* the best individual from the previous population, then */
/* copy the best from the new population; else replace the */
/* worst individual from the current population with the */
/* best one from the previous generation */

it (best>=population[POPSIZE].fitness)

{
for(i=0;i<NVARS;i++)
population[POPSIZE].gene[i]=population]{best_mem].gene[i];
population[POPSIZE].fitness=population[best_mem].fitness;
v
1]
else
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for(i=0;i<NVARS;i++)
population{worst_mem].gene[i]=population[POPSIZE].gene[i];
population[worst_mem].fitness=population[POPSIZE].fitness;

—
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/* Selection function: standard proportional selection for */
/* maximization problems incorporating elitist model - makes */

/* sure that the best member survives. */
/*************************************************************/

void selecta(void)

{
int mem, i, j, k;
double sum=0.;
double p;

/* tind total fitness of the population */

for (mem=0;mem<POPSIZE;mem++)

f
t

}

sum+=populationfmem].fitness;

/* calculate relative fitness */

for(mem=0;mem<POPSIZE;mem-++)

§
1

population[mem].rfitness=population[mem].fitness/sum;

]
s

population[0].cfitness=population[0].rfitness;

/* Calculate cumulative fitness */

for(mem=1;mem<POPSIZE;mem++)

!
t

population[mem].cfitness=population{mem-1].cfitness+population[mem].rfitness;
%
b

/* finally select survivors using cumulative fitness. */

for(i=0:i<POPSIZE;i++)

§

3
srand((unsigned)time(NULL)+seed);
seed = (seed+1)%1000;
/lprintf("seed: %d\n", seed);
p=rand()%1000/1000.0;
/lprintf("Selecta P: %lf | %lf\n", p, population][0].cfitness);
if(p>population[0].cfitness)

newpopulation{i]=population[0];

else

f
3

for(j=0;j<POPSIZE;j++)

|

1
Hprintf("\t%lf | %elf\n", p, population(j].cfitness);
if(p<=population[j].cfitness && p>population[j+1].cfitness)
{ .

/lprintf("\tSelected %d %lf >= %lf\n", j+1, p,
population[j].cfitness);
/printf("\t\t&& %lf < %lf\n", p, population[j+1].cfitness);
newpopulation[i]=population[j+1];
Viend if
}//end for
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v
]
/* Once a new population is created, copy it back */

for(i=0;i<POPSIZE;i++)
population[i]=newpopulation[i];

//printf("\tSelecta POP\n");
/for(i=0;i<POPSIZE;i++)
/7for(j=0; j<NVARS;j++) printf("\t\t[%d,%d] %If\n", i, j, population[i].gene[j]);

1
J

/**************************************************************/

/* Crossover selection: selects two parents that take part in */

/* the crossover. Implements a single point crossover. */
/**************************************************************/

void crossover(void)

s
X

int i, mem, one;
int first=0; /* Count of the numbers of members chosen */
double x;

for(mem=0;mem<POPSIZE;mem-++)
{
srand((unsignedytime(NULL)+seed);
seed = (seed+1)%1000;
/printf("seed: %d\n", seed);
x=rand()%1000/1000.0;
/lprintf("Crossover x: %lf | %lf\n", x, PXOVER);
if(x<PXOVER)
f
1
++first;
if(first%2==0)
{
Xover(one,mem),
Hprintf("\t\tXOver: %d,%d\n", one, mem);

else
one=mem;

-

t
s

/**************************************************************/

/* Crossover: performs crossover of the two selected parents. */
/**************************************************************/

void Xover(int one, int two)

{
1

int i;
int point; /* crossover point */

/* select crossover point */

if(NVARS>1)
i
)
if(NVARS==2)
point=1;
else{
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srand((unsigned)time(NULL)+seed);
seed = (seed+1)%1000;
Hprintf("seed: %d\n", seed);
point=(rand()%(NVARS-1))}+1;
}
for(i=0;i<point;i++)
swap(&population[one].gene[i], &population[two].gene[i]);

—

)
s

/***************************************************************/

/* Swap: A swap proceudre that helps in swapping two variables */
/***************************************************************/

void swap(double *x, double *y)

{

double temp;

temp=*x;
*x=y
*y=temp;

)
]

/**************************************************************/

/* Mutation: random uniform mutation. A variable selected for */
/* mutation is replaced by a random value between lower and  */

/* upper bounds of this variable. */
AR A sk ko ok sk e kool R R R R oK R R kK ok ok R ok ok ek

void mutate(void)

s
3

int i,j, dig;

double Ibound, hbound, x;
for(i=0;i<POPSIZE:i++)
§

t

for(j=0;j<NVARS;j++)

srand((unsigned)time(NULL)+seed);

seed = (seed+1)%1000;

/printf("seed: %d\n", seed);
x=rand()%1000/1000.0;

//printf("Mutate x: %l | %!f\n", x, PMUTATION);

if(x<PMUTATION)

§
§

/* Find the bounds on the variable to be mutated */
if(isRandom(j, RAND NUM, arr_rand)==1)
f
1
/printf("\t\tMutate POP: %d\t%lf\n", i,
population[i].gene[RANDVARY);
Ibound=constpopulation[0].lower[j];
hbound=constpopulation[0].upper[j];
dig = population[i].digit[j];
population[i}.gene[j]=randval(!bound,hbound, dig);
Hprintf("\t\t\tNew Val: %If < %!f > %If\n\n",
constpopulation[0].lower[RANDVAR], population[i].gene[RANDVAR],
constpopulation[0].upper[RANDVARY]);
Yend if
V/end if
}//end for
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}//end for

1
f
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/* Report function: reports progress of the simulation. Data */

/* dumped into the output file are separated by commas */
/**************************************************************/

void report(void)

f
t

inti;

double best_val; /* best population fitness */

double avg; /* avg population fitness */

double stddev; /* std. deviation of population fitness */
double sum_square; /* sum of square for std. calc */ -
double square_sum; /* square of sum for std. calc */

double sum; /* total population fitness */

sum=0.0;

sum_square=0.0;

for(i=0;i<POPSIZE;i++)

§
3

sum+=population[i].fitness;
sum_square+=population[i].fitness*population[i].fitness;

]
s

avg=sum/(double)POPSIZE;
square_sum=avg*avg*(double)POPSIZE;
stddev=sqrt((sum_square-square_sum)/(POPSIZE-1));
best_val=population[POPSIZE].fitness;

fprintf(galog, "\n%35d\t%If\t%I %I fin\n", generation, best_val, avg, stddev);

>

1
s

/**************************************************************/

/* Main function: Each generation involves selecting the best */

/* members, performing crossover & mutation and then */

/* evaluating the resulting population, until the terminating */

/* condition is satisfied. */
/**************************************************************/

int main(void)
{
int i;
if((galog=fopen("galog.txt","w"))==NULL)
s
t
exit(1);

}

generation=0;

printf("GAreal is starting...\n");

fprintf(galog, "\n generation best average standard \n");
fprinif(galog, " number value fitness deviation \n");

fprintf(galog, "\ngen\tbest_val\tavg\tstddevin\n™);

initialize();
evaluate();
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keep the best();
printf("POP fitness %0.51f\n", population[POPSIZE].fitness);
while(generation<MAXGENS)

1
3

generation++;
selecta();
crossover();
mutate();
report();
evaluate();
elitist();

printf("POP fitness %0.51f\n", population[POPSIZE] fitness);

1
)

fprintf(galog,"\n\n Simulation completed\n");
fprintf(galog,"\n Best member: \n");

for(i=0;i<NVARS;i++)
{

v
s

fprintf(galog,"\n\n Best fitness = %3.3f\n\n",population[POPSIZE].fitness);
fclose(galog);

printf("Simulation completed\n"),

fprintf(galog,"\n var(%d) = %3.3f"i,population[POPSIZE].gene[i]);

return 0;
}
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