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ABSTRACT

Tropical rain forests (TRF) now cover only 6% of the Earth’s terrestrial surface yet they
maintain a large proportion of the world’s biotic diversity. In fact, our understanding,
monitoring, conservation and management of TRF are greatly hindered by a lack of
spatially and temporally extensive information of tree composition, species richness and
forest structure mainly due to prohibitive costs and inaccessibility. The emergence of the
sophisticated technology, Remote Sensing makes it feasible to achieve the reliable and
updating information either in the landscape or individual scales. Individual tree crown
classification is one of the challenging tasks especially in the TRF. In this research, not
only concentrate on the spectral reflectance derived from RS image, but the texture
features obtained by running Gray Level Co-occurrence Matrix (GLCM) are deemed.
Support Vector Machine Classifier based on the concept of machine learning was
evaluated for tree crown detection and delineation into tree genus and species. At this
point, the high spatial resolution image, QuickBird, was utilized. Subsequently, the kernel
functions, parameter configurations as well as texture features that returning the best
performance were evaluated. Also, the minimum spatial resolution of image to serve the
research targets was examined. As the results of thesis experiments, non-tree crown were
effectively eliminated from the image to avoid misclassification and reduce some noises.
By taking the advantages of Laplaciane filtering, edge boundary of each tree crown can be
possible detected. Subsequently lower edge threshold filtering play the significant role to
segment the combined crown into an individual shape. However, it’s accepted that the
large continuous crowns were impossible to disconnect without the changes of crown
shapes.

SVM source code, namely SVMIight that is available on the Internet, is the powerful
learning machine. When applying SVM model to the live dataset, linear kernel provides
the best performance when considering the precision rate and error assessment. Linear
kernel with the penalty parameter (C=100) give the accuracy rate at 60.63 %. The number
of support vectors and their status determined by the SVM learning algorithm influence to
the precision and error rate of models when applying to the unseen data. After included the
texture feature, the overall performance of SVM algorithm were lightly adjusted. The
combination of four spectral bands and argument second moment texture returns the best
probability score with accuracy 70.67% and kappa coefficient 0.44. Variance, second
moment and correlation texture were ranked the best in the linear kernel. While
homogeneity, correlation and contrast give the sound performance for polynomial kernel.
On the other hand, mean, contrast and variance were interested. However, the integration
of spectral and groups of the best texture cannot improve the classification accuracy.
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CHAPTERI1

INTRODUCTION
1.1 Background

The degradation of forest is the critical issue in region and global. Tropical rain forests
(TRF) now cover only 6% of the Earth’s terrestrial surface yet they maintain a large
proportion of the world’s biotic diversity (Thomas et al. 2004). TRF biodiversity is
imperiled by wide-spread deforestation, logging and landscape-scale. At individual crown
to landscape scales, tropical trees have the dominant role in maintaining the rich biota
because they define the horizontal and vertical substrate, moisture and climate. In fact, our
understanding, monitoring, conservation and management of TRF are greatly hindered by
a lack of spatially and temporally extensive information of tree composition, species
richness and structure. Mainly due to prohibitive costs and inaccessibility, most available
data comes from relatively small field plots (Clark et al. 2005). In order to evaluate and
monitor the condition, properties and trend of changes, the reliable and updated tree
attributes must be periodically acquired usually consisting of forest type, estimation of
forest stand parameters (stem biomass, density of trees, basal density and mean height),
canopy properties (average canopy diameter, canopy coverage area, canopy closure
density) and other relevant tree attributes. In addition, the diversity and distribution of tree
species is the meaningful information for the diversity assessment. In the last a few
decades, such information is usually obtained through field surveying investigation, which
is labor intensive, costly, low frequency and low accuracy (Wu and Zhang 2004).

In the tropical rain forest, the capabilities of identifying and mapping are the limited
conjunction with the slope complex landscape type reducing the accessibility of the area.
Instead mapping tree species by intensive field sampling, another advance technique
should be concerned. Remote Sensing, which concerns the reflectance value of the objects
varying in the wavelength of the spectrum is adopted as the high potential technique to
derive the land surface information. In parallel with a requirement of adaptation are
ongoing advancements in remote sensing technology and associated interpretation tools
that provide new opportunities to meet the information demands of forest and resource
management. With growing requirements of information, remotely sensed data become
increasingly valuable sources of information for assisting forest management decisions. In
remote sensing task, there are several processes to achieve the meaningful information;
radiometric correction, geometric correction, image enhancement, image filtering, image
transformation and the most important step namely image classification. It’s the process of
converting remotely sensed data to information products which concern the difference in
the interaction of electromagnetic radiation in different wavelength and various objects.
Because satellite image is recorded in the digital formats, therefore, digital image
processing is essential for data analysis. Hence, digital number (DN) or spectral data plays
the significant role for clustering similar pixels into a unique datasets based on the
statistical characteristics of DN value.

Forest management regimes are also becoming more flexible due to the new knowledge,
and can be possible to integrate with the advance technologies in forest science. Various
applications can be widely done. For instance, tree species identification (Meyer et
al.1996; Key et al.2001; Gougeon 1995a), forest type classification (Bliss et al. 1980), tree
counting (Lowel 1998, Moe 1998), estimation of tree spatial distribution (Uuttera et al.



1998) and canopy structure determination for damage assessment (Dralle and Rudemo
1996; Kasischke et al. 1997). In the remote sensing domain, spatial, spectral, radiometric
and temporal resolutions are the attributes often used in defining image classification
approach (Hall 2003). So, to segment genus or species of tree, the suitable spatial
resolution for image classification approach must be determined. In addition, the
environment of information needed to extract play the main role to define the image
classification. In order to identify tree species, the high spatial resolution image that comes
with the fine spatial resolution smaller than the interest objects must be available
(Woodcock and Strahler 1987). Concomitantly, the development of high potential
algorithms for image processing must be constructed.

1.2 Statement of Problems

In any remote sensing application, the choices of spatial resolution of the sensing device
are the fundamental factors requiring consideration of the environment being studied and
the types of information requirements (Woodcock and Strahler 1987). High spatial
resolution remotely sensed data offers the potential to improve the accuracy of forest
inventory attributes. The availability of high spatial resolution with the pixel size less than
one meter enlarges the possibilities to obtain more details of forest inventory information.
The advantage is that individual trees are often visible, especially when the forest is mature
and not too dense. However, analysis of high resolution imagery poses a number of
challenges that require specific image interpretation procedures. How to extract
information from the high spatial resolution images and how to implement the appropriate
algorithm for forest inventory analysis are the key issues in the studies of tree species
identification.

Broadly, image classification algorithms vary both in the concepts and methods depending
on the objectives, forest types, tree species, location, temporal and spatial resolution of
input image (Fournier and Maily 2003). In the forestry studies, identification of vegetation
focused on the examination of the chlorophyll absorption feature is even more complex.
Unfortunately, the spectral signatures are similar in each tree species, time period and
environmental conditions and vary over a wide range of spatial frequencies from m to km
(Gemmel 1998). Likewise surface reflectance differs from another due to the stage of
growth and the light conditions when the images are taken (Franz and Gebhardt 1991).
Moreover, the influence of crown structure on reflectance generally occurs at different
scales within the crown, ranging from individual leaves and stems, to internal crown
structure and the interaction of light between the neighbouring crowns. In dense forest,
neighbouring trees will shade and obscure the edges of their co-neighbours, resulting in
characteristically darker image values at tree boundaries (Li and Strahler 1992). The
combined effects of illumination angle, view angle,. tree geometry and bidirectional
reflectance cause large variation in pixel intensity at different positions within the crown
resulting in a non-uniform crown reflectance profile (Leckie et al. 1992). In particular,
simple per-pixel spectral classifiers commonly applied to low spatial resolution data are
not suitable due to the spectrally heterogeneous nature of the data (Townshend and Justice
1981; Woodcock and Strahler 1987; Dikshit 1996). Therefore, only reflectance value (DN)
cannot be used to discriminate various vegetation types or tree species in the nature
condition. In fact, it is unfeasible to derive the exactly surface reflectance because of the
atmospheric errors such as the aerosol density, pressure, temperature etc. (Lin 2001).
Misclassification results are always found in the methods that group the DN value
regardless the spatial pattern or texture feature. Texture describes the spatial relationship



among neighboring pixels within a pre-defined window area (Chan and Laporte 2003). For
our eye-brain vision, the spatial properties of context, texture data are almost certainly
more significant in the discrimination of objects than the spectral property of color
(Warner et al. 1998). Fortunately, the accuracy of land cover or vegetation type
classification may be increased through the combination of spectral and texture data
(Berberoglu et al., 2000; De Jong et al.2001). Texture analysis offers interesting
possibilities to characterize the structural heterogeneity of classes. Extraction of texture
features from the satellite image provides a complementary source of data for those
applications in which the spectral information is not sufficient for identification or
classification of spectrally heterogeneous landscape units.

Indeed, not only the texture feature, but also the classification approach must be concerned
to achieve the best performances. The conventional classifiers such as K-Means,
Maximum Likelihood or Minimum Distance return the poor performance when working
directly to the multi-spectral image because of the high dimensionality of the image data.
Therefore, more sophisticated machine learning classifiers should be considered such as
Decision Tree, Neural Network or Support Vector Machine (SVM) etc. Especially, SVM
method can avoid such problem (Cristianini and Taylor 2000). SVM technique is the hot
topic in the current research, being used in a variety of research to solve a multitude of
different learning and classification problems (S. Chapman 2004) such as land cover
classification, forest fire detection (Lafarge and Descombes 2004) leaf area index
estimation (Durbha and King 2007) handwriting recognition (Bahlmann and Haasdonk,
2002), speech recognition (Ma and Randolph, 2001) protein sequence transitions (Zien and
Ratsch 2000) and so on. Moreover, the applications of SVM in remote sensing field of
study are rather scarce compared to the other methods particularly in the tree attribute
extraction (Huang and Davis 2000). Hence, the investigations of the effectiveness and
limitations of SVM for detecting the tree crown boundaries and delineating them into
species by concerning the integration of spectral and spatial data are the challenging tasks.

1.3 Research Problems

(1) Which textures can improve the accuracy of tree crown classification by applying
SVM algorithm?

(2) How does the boundary of individual tree crowns in the tropical rain forest can be
segmented and delineated into tree genus and species?

(3) What is the minimum spatial resolution for tree genus and species identification
in the dense forest?

1.4 Research Objectives

The main objectives of this thesis are:

(1) To apply SVMs classifier for individual tree crown detection and delineation into
genus and species from the high spatial resolution image.

(2) To evaluate the SVMs kernel functions that returning the best performance when
classifying satellite image to the tree genus and species in the intense tree crowns.

(3) To explore the texture features possible to improve the classification capacities of
SVMs.

(4) To decide the minimum spatial resolution of satellite image for an individual tree
crown detection and delineation in the tropical rain forest.



1.5 Scope and Limitation

The optimum goals of this algorithm are to segment the spatial extent of tree crowns in the
tropical rain forest by utilizing the combination of spectral and spatial data, and classify
them to the tree genus and species. QuickBird imagery is the main source of spectral data.
In contrast, texture features are directly extracted from the panchromatic image by GLCM
algorithm with the constant window size 3 x 3. SVM technique is applied to be the main
classifier. Free source code of SVM in C code is already available turns into the main
algorithm in this research. To meet the objectives, source code must be modified to match
the image processing requirements. Image file must be transformed to the text file. Tree
crown delineations are done by SVM classifier with the different kernel configurations and
functions. Spatially, Hala-Bala, the southernmost of wildlife sanctuary in Thailand is
defined as the study site with the total areas of 0.5 sq.km. Only the most dominant tree
genus in our study area is investigated namely “shorea”, the member of Dipterocarpaceae
family. The conceptual of research can be summarized following.

For the first scenario, an analysis is focused on the application of SVM for tree genus
classification exploiting only the spectral data (Blue Green Red and Near-Infrared).
Classifications are performed with the three types of kernel function and the different
parameters (C, y, d). Subsequently, the comparisons of three kernel performances are
conducted. The goals of this scenario are to find the appropriate kernels and the best value
of parameters for tree crown delineation. In the second scenario, spectral data and eight
texture features computed by GLCM are incorporated one by one into the SVM algorithm
to explore the possibility to improve the genus classification. The best parameter values
from the first experiment are determined for four types of kernel function. Afterward,
texture feature which take the first, second and third ranking of accuracy performance are
integrated with the four dimensions of spectral data. So, seven bands of image become the
input data for the further analysis. The target of this scenario is to find the best texture that
can improve the potential of SVM.

In the last scenario, the minimum of spatial resolution that possibly returns the sound
performances for genus classification is investigated. To do so, up-scaling and down-
scaling methods are applied. The original of spatial resolution is degraded from 0.6 m to
1.2 m and 1.8 m respectively. Similarly in each resolution level, three of the optimal
textures from the second experiment and four spectral bands are integrated and then SVM
classification is performed. In this case, only the best parameter configuration for each
kernel type from the second steps is applied. The minimum of spatial resolution suitable
for tree crown analysis is obtained concerning to the accuracy of image classification. At
the end, applicability and limitations of SVM algorithm for tree crown detection and
delineation in the tropical rain forest are discussed.

1.6 Expected outputs

(1) Modified SVM algorithm for image classification.

(2) Texture features that can improve the capacities of SVM classifier in each of
kernel function.

(3) The prototype of tree genus classification in the tropical rain forest which is
possible to be adapted to another genus or other sites.

(4) Minimum of spatial resolution of satellite image for tree crown delineation

(5) Map of shorea genus and species members in the study area



1.7 Study Area

Under the control of Department of National Park, Wildlife and Plant Conservation, the
Hala-Bala wildlife sanctuary is selected to examine the tree crown classification algorithm
based on Support Vector Machine. This forest is legally divided into two separated forests,
Hala and Bala, which are respectively situated in the Yala and Narathiwat province at the
southernmost part of Thailand (latitude 5¢ 37'- 6° 14’ North and longitude 101> 8' — 101°
52' East) shown in figure 1.1. Combining both parts and the northern forest area of
Malaysia namely Balum forest, this region is considered as the third ranking of the tropical
rain forest of the world with the total area about 300 sq. km. (BIOTEC 2006). But this
research is focused only on the east side, Bala forest.

Average annual rainfall in this area is about 2,098 mm and average temperature is
approximately 28 °C. Most areas are the steep mountain with the elevation ranging from
100 to 945 m. Furthermore, this area is the upstream of three main rivers. All biome are
covered with the diversity of dominant flora and fauna species ranging from the ground to
the top within the specific ecological system.

M

" mass

Figure 1.1 Map of the study area: Bala Forest, Narathiwat Province

As being tropical rainforest, this sanctuary is called as Indo-Malaysian Rainforest as it has
many rare tree species differenting from the other ecosystems that are important to eco-
biodiversity of Thailand. More than 600 tree species already were found in the Bala forest
and plant database was implemented (BIOTEC 2006).



Figure 1.2 Terrain surface of the study plot (Yellow frame) for machine training

When concerning the elevation, tree community can be separated into two types: Lower
Mountain Rain Forest (1200-1400 m) and Tropical Rain Forest (40-1200 m) (Niyomtam
2000). At the upper canopy and canopy level, Dipterocarpaceae is the most dominant tree
family, and covers 50 % of entire canopy. In Thailand, 8 genera and 62 species belonging
to the Dipterocarpaceae can be found. But, 7 genera and 43 species were already explored
in this area (Poopath 2007). Therefore, it can be concluded that this area has the most
various species of Dipterocarpaceae. Furthermore, 16 of 43 species are classified as a new
record of Thailand. In this study, Shorea is promoted when considering the most dispersal
genus. According to the research of Poopath, 14 species of shorea can be explored in the
Hala-Bala forest. All of them can be classified into 2 groups. In the low land (<600 msl),
Shorea leprosura, Shorea assamica, Shorea parvifolia and Shorea faguetiana are
dominant. In contrast, Parashorea stelata, Shorea gratissima and Shorea curtiii are
outstanding in the high land (600-1000 msl). Remarkably, Shorea genus usually can be
found in the ridge of a mountain and steep slope area.

Figure 1.3 Shorea species (black circle), the dominant stand tree in the study area



SPECIES

Shorea curtisii Shorea Gratissima

Figure 1.4 Example of 0.6 m spatial resolution QuickBird imagery in the study site
overlaid with the individual tree crown vectors

For the diversity of fauna, four rare species can be found. According to the report of the
Royal Department of Forestry, 217 species of bird, 114 species of mammal, 30 species of
reptile and 23 species of amphibian are explored. All of information above can guarantee
that this biome is one of the most abundant zones of the world. Figure 1.5 depicts the
example of tree crown that is covered by the continuous layer. Due to the limitation of time
and cost, only 0.5 sq. km. (~ 312 rai) was defined as the study site for making the training
data and 0.09 sq. km. (~55.30 rai) for validating model to unseen data.

e

Figure 1.5 Study site covered by tree crown layers



CHAPTER 11
LITERATURE REVIEW
2.1 Tree crown in the tropical rain forest

The term “forest canopy” or “tree crown” connotes the uppermost level of forest or outer
layer of trees leaves (Richards 1954). On the other word, the forest canopy describes the
area above the forest floor where the tree crowns meet to form an interactive web of life.
Moreover, forest canopy is now considered as a structural complex and critical ecosystem
of the forest, and is defined as “the combination of all foliage, twigs, fine branches, their
attending flora and fauna” (Parker 1995). When concerning the functions, many critical
canopy functions including interception of rainfall, absorption of light, uptake of gases,
and provision of wildlife habitat. Also the forest canopy also acts as a buffer between the
soil and the atmosphere to prevent soil moisture. Besides, more than 90% of
photosynthesis occurs at tree crown level. The presence and structure of canopy exert a
major influence on the temperature, vapor concentration, and radiation regime in the plant
environment. Hence, canopy structure can therefore be important in determining the
physical environment of other organisms within the plant community. The recent
development of canopy access systems has lead to many new discoveries about the
complexity and importance of canopies.

Tropical forest is found near the equator (within 23.5° latitude) where the temperature
varies little from approximately 23°C. Tropical rain forest is used here to refer to those
ecosystems where trees form a continuous canopy over the soil surface (Golley 1983). The
canopy of a rainforest is typically 10m in thick, 10-20 m in width, and intercepts around
95% of sunlight. Rain forest canopy usually is categorized into three levels depicted in
figure 1. This includes a high level that averages 50 — 60 m above ground, a middle level
from 20 to 40 m and lower level from 5 to 15 m. For more details, lower level is composed
of small seedlings, ferns, bamboo and the litter-strewn ground level in deep shade and
fairly open. Middle canopy is the most continuous, with its broad leaves blocking much of
the light and creating a darkened forest floor. In contrast, the upper level is not continuous
but features tall trees whose high crowns rise above the middle canopy. (Christopherson
1994).

60m (200 ft) |
. High-level

40m (130 ft)
Middle-level
., canopy
! (heaviest of
the three)
£9 20m (85 H)
- 15m (50 i)
., Lower-level
! canopy
—~ 5m (15 ft)

Figure 2.1 Forest composition (Courtesy of Encyclopedia Britannice, Inc.)



With respect to the information needed for forest management, the complete and accurate
descriptions of a canopy would require the specification of the position, size and
orientation of each element of surface in the canopy. Also canopy properties are generally
described statistically as appropriate space or time averages. In addition, canopy varies on
spatial scales ranging from millimeters to kilometers, and on time scales ranging from
milliseconds to decades (Campbell and Norman 1989). Structural characteristics of forest
canopies help us better understand the co-evolution among its inhabitants. Forest canopy
structure is defined differently according to the objectives and spatio-temporal scales
adopted. In order to address the data requirements and management objectives in forest,
the vertical and horizontal structures are described, in inventories, by variables meaningful
to the management unit. For example, horizontal structure is described with continuous or
categorical variables such as species composition, spatial distribution of trees, stands,
crown cover, height class, etc. On the other hand, the vertical structure is often referred to
as the social hierarchy of the overstorey composed of, starting from the top of the canopy,
dominance, inter-mediate and suppressed trees (Fournier et al. 2003).

2.2 Remote Sensing Technology

2.2.1 Definition and Concept

So, what exactly is remote sensing? For the purpose of this research, we will use the
following “Remote Sensing is defined as the science and art of acquiring information by
which the characteristics of objects of interest can be identified, measured or analyzed
without direct contact (Lillesand and Kiefer 2000). Electromagnetic radiation which is
reflected or emitted from an object is the usual sources of remote sensing data. In other
word, remote sensing is the measurement of electromagnetic radiation that is emitted or
reflected from the earth surface. The reflected electromagnetic waves may be emitted by
sun (visible and infrared remote sensing) or by artificial sources (radar). A device to detect
the electromagnetic radiation is called a remote sensor. A vehicle to carry the sensor is
called a platform. Aircrafts or satellites are used as platforms. The object characteristics
can be determined using reflectance or emitted electromagnetic radiation. This concept is
illustrated in figure 2.
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Figure 2.2 Data Collection by Remote Sensing (Lillesand and Kiefer, 2000)



2.2.2 Spectral reflectance

Electromagnetic radiation coming from an object is being measured and translated into
information about the object or into processes related to the object. We restrict ourselves to
the use of electromagnetic radiation as a characteristic of numerous physical processes. All
materials with a temperature above have the power to emit electromagnetic energy.
Objects on or near the earth’s surface are able to reflect or scatter incident electromagnetic
radiation emitted by a source, which may be artificial, e.g., flash light, laser or microwave
radiation, or natural, such as the sun. Wavelength regions of electromagnetic radiation
have different names ranging from Yray, X-ray, ultraviolet (UV), visible light, infrared (IR)
to radio wave. The shorter the wavelength is, the more the electro-magnetic radiation is
characterized as particle motion with more linearity and directivity. In the visible, near-
infrared (NIR) and middle-infrared (MIR) part of the electromagnetic spectrum, we are
measuring solar radiation reflected by objects at the earth’s surface. In the thermal-infrared
(TIR) part, particularly in the atmospheric window at about 10 um, we are measuring
emitted radiation by objects at earth’s surface, this radiation is originating from the sun. In
the microwave part of the spectrum, both reflection of solar light and emission occur at
very low energy rates. As a result, radiation mostly is transmitted to the earth’s surface by
an antenna on board the remote sensing system and, subsequently we measure the amount
of radiation that is reflected (backscattered) towards the same antenna. Figure 2.3 displays
the electromagnetic spectrum and spectral signature of some surface objects.
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Figure 2.3 Electromagnetic spectrum diagram and spectral signature (Culvenor 2000)

2.2.3 Spectral reflectance of vegetation

Because of the difference in the interaction of electromagnetic radiation of different
wavelengths with targets, the various wavelength bands have different information
contents. Leaf-scale reflectance spectra are controlled by leaf bio-chemical properties and
leaf morphology (Asner 1998; Grant 1987; Roberts et al. 2004) Visible and infrared region
of spectrum is broadly applied for vegetation detection or classification. The most
important wavelength is red and near infrared as their unique characteristics. In general,
the reflectance of vegetation in the visible red band (0.6-0.7 um) is lower and that in the
near infrared region (0.7-1.1 um) is higher. Far less is known about the behavior of an
entire tree canopy with respect to reflectance, light absorbance and photosynthesis.
Photosynthesis is based on conversion of radiation absorbed in blue and red parts of
electromagnetic spectrum to energy. Three features of leaves have an important effect on
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the reflectance properties of leaves: pigmentation, physiological structure and water
content.

The major bottleneck of tree crown classification is how to measure the surface reflectance
from satellite imagery. Usually the reflectance value obtain from the satellite is top of
atmospheric (TOA) reflectance. In fact amount of RED and NIR radiation reflected from a
tree canopy reaching a satellite sensor varies with solar irradiance, atmospheric conditions,
canopy background, canopy structure, forest type and tree species. So, atmospheric
correction must be performed to remove the effect of aerosol scattering, water vapor and
other atmospheric gases. From the surface reflectance, various vegetation indices can be
calculated such as normalized differential vegetation index (NDVI), Simple Ratio Index
(RI), Enhance Vegetation Index (EVI) and so forth. In fact, VIs spectral variability among
species is low due to the strong absorption by chlorophyll (Cochrane 2000; Poorter et al.
1995)

2.2.4 Algorithms for image classification

Digital image classification is the process of making quantitative decisions from image
data based on the radiometric value or digital value (DN), or grouping the homogeneous
pixels into the classes intended to represent the different physical objects or types (Rees
2001). Typically, the digital image classification procedures are categorized as
unsupervised and supervised classification (Lillesand and Kiefer 1994). The former
approach is used to cluster pixels into a datasets based only on the statistical characteristics
of DN value presented in the image pixels without any user-defined training classes.
ISODATA and K-Means method is the examples of the first approach mostly available in
the commercial software. In contrast, for the latter, spectral signatures are obtained from
the specified locations (ground visit) by users and then become the training data set for
classifying all pixels in the scene. The methods that are available in the frame of
supervised classification consist of two groups: parametric and non-parametric. The first
one is, for example, Maximum Likelihood, Minimum Distance, Parallelepiped. Most of
them are relied only on the properties of image pixels. The examples of non-parametric
approach are the algorithms based on the concept of machine learning such as Artificial
Neural Network (ANN), Support Vector Machine (SVM) etc.

2.2.5 High Spatial Resolution

Emergence of high spatial resolution image changes the difficult task in remote sensing to
simple mission. High resolution remotely sensed data offers the potential to improve the
accuracy of traditional forest inventory attributes while retrieving important information
relating to the structural diversity of forests. Moreover it can be applied in various fields
such as urban management, agriculture monitoring or damage assessment. In addition this
information provides the opportunities to monitor tree attributes at an individual tree crown
level. Each tree crown consists of several pixels. The size of spatial resolution of the
imagery is higher than the size of the crown in the scene. IKONOS and QuickBird are the
examples of the fine spatial resolution of satellite imagery. IKONOS provides multi-
spectral bands with 4 m and panchromatic with 1 m. QB offers the largest swath width and
highest resolution of any currently available or planned commercial satellite 2.44 m for
four multi-spectral bands and 0.6 m for gray scale image. As such data becomes more
widely accessible the potential exists for quantitative spatial forest assessment to be
economically applied over broad areas at the individual tree scale. However, analysis of
high resolution imagery poses a number of challenges that require specific image
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interpretation procedures. The most important specifications of QB are illustrated in table
2.1.

Table 2.1 Specifications of QuickBird satellite

Features Descriptions

Orbit Altitude 450 km

Sensor Resolution at nadir Panchromatic: 0.60 cm (nadir) to 72 cm
(25°0oft-nadir)
Multi-spectral: 2.44 m (nadir) to 2.88 m
(25°off-nadir)

Panchromatic Bandwidth 445 - 900 nm

Multi-spectral Bandwidth Blue 450 — 520 nm
Green 520 - 600 nm
Red 630 - 690 nm
Near-infrared 760 - 900 nm

Metric Accuracy 23-meter circular and 17-meter linear error
(without ground control)

Revisit Frequency 1 to 3.5 days depending on latitude

Nominal Swath Width 16.5 km at nadir

Single Area Size 16.5 km x 16.5 km

Source: Digital Globe.

2.2.6 Laplacian Edge Detector

Image edges are the most important information for image segmentation and the
foundation of image texture. Edge detection treats the localization of significant variations
of a gray level image and the identification of physical and geometrical properties of
objects of the scene (Argialas 2004). Most recent edge detectors are autonomous and
multi-scale and include three main processing steps: smoothing, differentiation and
labeling. In general, edge detection algorithms are available in convolution filter. This
produces output images in which the brightness value at a given pixel is a function of some
weighted average of the brightness of the surrounding pixels. The examples of edge
detector are Sobel, Laplacian, Directional, Gaussian, Roberts etc.

The Laplacian edge detector generates sharp edge definition of an image. A second
derivative edge enhancement filter that operates without regard to edge direction.
Laplacian filtering emphasizes maximum values within the image by using a kernel with a
high central value typically surrounded by negative weights in the north-south and east-
west directions and zero values at the kernel corners. This filter can be used to highlight
edges having both positive and negative brightness slopes. The two Laplacian filters have
different weight arrangements as display below:

Figure 2.4 Three commonly used discrete approximations to the Laplacian filter, where
sum of all the weights = 0
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The Laplacian L(x,y) of an image with pixel intensity values I(x,y) is given by:

2 2

L(x,y)= %x_f + %{—
Using one of these kernels, the Laplacian can be calculated using standard convolution
methods. Convolution provides a way of multiplying together two arrays of numbers,
generally of different sizes, but of the same dimension, to produce a third array of numbers
of the same dimensionality. The convolution is performed by sliding the kernel over the
image, generally starting at the top left corner, so as to move the kernel through all the
positions where the kernel fits entirely within the boundaries of the image.

In 112 I3 T14 Its | §T3

I21 122 123 I24 Izs 126

Ki2 Ki2 Ki3
Is1 I32 Is3 I34 Iss I36

K21 K2 | K23
T41 142 143 144 I4s T46

Is1 Is2 Is3 Is4 Iss Is6

Figure 2.5 example small image (left) and kernel (right) to illustrate convolution. The
labels within each grid square are used to identify each square.

2.3 Tree crown delineation Algorithm

Recently, a variety of algorithms exist for the purpose of tree crown identification and
delineation. An automated approach to tree delineation may facilitate the implementation
of efficient, consistent and reliable tree scale inventories across the whole landscape
(Culvenor 2002). To achieve the sound results, the assumptions implicit in automated tree
crown delineation should be considered prior to done an automated tree crown delineation.
A fundamental assumption inherent in crown delineation algorithms is that the centre of a
crown is brighter than the edge of the crown, or more particularly, the boundary between
crowns. The assumption is somewhat intuitive, but can also be explained theoretically
(Culvenor, 2003). In general, full individual tree crown delineation are image processing
algorithms either following valleys of shade between tree crowns in an intensity image or

following edges created by gradient operator and analyzing their curvature (Gougeon,
1995b).
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Figure 2.6 The procees of tree crown delineation (Gougeon)

Figure 2.6 represents the process of tree crown classification (a) Example of tree crown,
(b) the results from tree crown extraction and (c) a three-dimensional view of image
showing the brighter tree crowns as mountains. Techniques for finding tree locations and
crown dimensions are based on finding local maxima and then finding the edge of the
crown (Pinz 1991; Uuttera et al. 1998). Such approaches can lead to stem counts, species
classifications and crown area estimations. Tree crown algorithms may be broadly
categorized as either “bottom-up”, “top-down” or “template matching” algorithm
(Culvenor 2003). The first group focuses on the valleys of shadow between trees as a
means of isolating crown boundaries. “Valley-following” method developed by Gougeon
is the example of this group. The algorithm exploits the bands of shadow that often occur
between trees in dense forest. These bands of shadow are termed “valleys” meaning
“radiometric valleys”. For the second group, it involves initially estimating the location of
tree crowns from radiometric maxima, and subsequently locating the boundary using the
characteristic decrease in brightness from the centre of a crown to its edge. Multiple scale
edge segments, Threshold-based spatial clustering, Double-aspect method and Vision
expert system are the instant of the second group. For the final, the algorithms are based on
the use of pre-defined a three-dimensional templates of tree crowns defined by geometric
and radiometric parameters. Moreover, another sophisticated algorithms are available such
as Tree Identification and Delineation Algorithm: TIDA (Culvenor 2001), Tree speices
classification based on support vector machine (Kulikova et al. 2007), Algortihm using the
point of maximum rate of change in the transect data (Pouliot et al 2002), algorithm based
on colour information, the shape of the segmented tree crowns (Erikson 2003b), ANN
application for tree crown classification (Kanellopoulos et al. 1992). The following aspects
must be considered to select the appropriated algorithm to meet the required objectives:
spatial and spectral characteristics as well as view angle, sun angle and atmospheric
effects.

2.4 Texture Analysis by Grey Level Co-Occurrence Matrix

Although a precise definition of image texture is rather difficult to formulate, it can be
loosely defined as structure in the spatial variation of the pixel values (Tso and Mather
2001). Texture data is a statistical feature used mainly for image segmentation and region
characterization. (Chan and Laporte 2003) summarized that texture or pattern of data
describes the spatial relationship among neighboring pixels within a pre-defined window
area. Presumably the image is characterized by a small number of various pixel-
neighborhoods that differ according to specific texture measures (Christoulas and Tsagaris
2007). The classification of the central pixel in this neighbourhood is reassigned to
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whichever image class is most strongly represented in the neighbourhood. In general,
texture features can be derived by means of the first order measures (standard deviation,
variance, mean), second and third order measures (co-occurrence matrix, geo-statistical
measures or variogram) concluded in table 2.2. Four categories of texture segmentation can
be defined: (1) Statistical methods: Gray level co-occurrence matrix (Chellappa and
Chatterjee 1985; Khotanzad and Kashyap 1987), Run Length Matrix (X. Tang 1998;
Galloway 1975) (2) Structural method: Different Shapes of Structuring Elements (Carlucci
1972) (3) model-based methods: Autoregressive Model (Sukissian 1994), Markov random
fields (G. Cuozzo et al., 2004), Fractal model (Medioni and Yasumoto 1984) and (4)
transform-based method: 2D Fast Fourier Transform (P. DULYAKARN et. al. 2000),
Gabor (Clausi 2005; R. Porter and N. Canagarajah 1997), Wavelet Transforms (Chang and
kuo 1992; Hill et. al. 2000; Z. Lscan et al. 2006). In recent times, all of them are applied to
decrease errors of image classification algorithms.

Table 2.2 texture analysis techniques used in remote sensing

Texture measures
in remote sensing

Advantages Disadvantages

1. First order statistics

: Standard deviation,
Variance, Mean

e Simple to calculate
o Indicates local
variance

e No directionality
e No distance function
e Sensitive to noise

2. Second order statistics by
co-occurrence matrix

: Contrast, Angular second
moment, Correlation,
Entropy, Dissimilarity,
Homogeneity, Sum average,
Sum variance, Sum entropy,
Difference variance,
Difference entropy

¢ Describe relation
between different
pixels

e Sensitive to
directionality

e Insensitive to noise

® Does not over-
emphasis field
boundaries

e Computationally
intensive

e Similarity among the
statistics derived from
co-occurrence matrix

3. Geostatistics

: Variogram, Correlogram,
Covariance function, General
relative variogram,
Rodogram, madogram,
Pairwise relative variogram

e Provides different
scene measures

¢ Insensitive to noise

¢ Robust

e Mathematically simple

e Requires mean be
weakly stationary
e Easy to interpret

e Computationally
intensive

e Large data set required
to fit a variogram model

¢ One unusual DN value
causes misquantification
of all surrounding pixels

Source: S. Berbeoglu 2000

One of the commonest approaches to the quantification of image texture is through the use
of grey-level co-occurrence matrix (GLCM), also know as the grey-tone spatial
dependency matrix (W. G. Rees 2001). The fundamental concept of GLCM is that the
texture information contained in an image is defined by the adjacency relationships that the
grey tones in an image have to one another. In other word, it is assumed that the texture
information is specified by values pjj within the GLCM. A GLCM is a matrix where each

cell i, j contains the number of times a point having intensity i occurs in a position j located
at an angle £ and a distance d. Values of pjj can be calculated for any feasible direction and
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distance d. Only the first quadrant of that neighbourhood needs to be explored. Generally,
only four directions corresponding to angle of 0° (Horizontal), 45° (Right diagonal), 90°
(Vertical) and 135° (Left diagonal) are used (Tso and Mather, 2001). The GLCM of an
image is an estimation of the second-order joint probability, P(i,j) of the intensity values of
two pixels (i and j), a distance apart along a given direction 6. This joint probability takes
the form of a square array P with row and column dimensions equal to the number of
discrete gray levels (intensities) in the image being examined. If an intensity image are
entirely flat (i.e. contained no texture), the resulting GLCM would be completely diagonal.
As the image texture increases (i.e. as the local pixel intensity variations increase), the off-
diagonal values in the GLCM become larger.

0

0 ( The cooccurrence matrix
0 , for dx=1, dy=0

0

2

Figure 2.7 The Gray Level Co-occurrence Matrix process

GLCM texture considers the relation between two pixels at a time, called the reference and
the neighbouring pixel. In the illustration of figure 2.7, the neighbouring pixel is chosen to
be the one to the east of each reference pixel. This can also be expressed as a (1, 0)
relation: 1 pixel in the x direction, 0 pixels in the y direction. Each pixel within the window
becomes the reference pixel in turn, starting in the upper left corner and proceeding to the
lower right. Pixels along the right edge have no right hand neighbour, so they are not used
for this count. The top left cell represents the number of times the combination of 0, 0 (i, j)
occurs. Texture measurement usually require the window size (neighbour), direction of
offset (0), offset distance (d), channel to run (the number of bands) and measure to use
(texture feature). The GLCM described here is used for a series of texture calculations.
Each of order is described below: (1) First order texture measures are statistics calculated
from the original image values, like variance, and do not consider pixel relationships. (2)
Second order means they consider the relationship between groups of two pixels in the
original image. (3) Third and higher order textures (considering the relationships among
three or more pixels) are theoretically possible but not implemented due to calculation time
and interpretation difficulty.
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Figure 2.8 The processes of texture extraction by GLCM

Obviously, a GLCM cannot be computed directly from a color image but from a grayscale
one, so a modification is needed to be able to process that kind of images. There are three
ways for doing this: convert the color image to monochrome, process each RGB band
separately and use cross-co-occurrence matrices (Muniz and Corrales, 2006). From a co-
occurrence matrix, a number of second order statistics can be computed. Textural features
can be extracted only from GLCM. At the origin, Haralick et al. (1973) defined 14 texture
features that are derived from the GLCM among which six angular second moment,
contrast, variance, homogeneity, correlation and entropy are considered to be the most
relevant for remote sensing imagery analysis. Some of the commonest are described in
table 2.3.

The texture parameter associated with a particular pixel is calculated from the pixel values
in a “window” of the image center on that pixel, and this has the effects of degrading the
spatial resolution. The moving window size of the GLCM is a key parameter in texture
analysis. Choosing the appropriate window size is not straightforward: if it is too small, too
few pixels will be available to give a statistically meaningful measure of texture, whereas
if it is too large, the resolution of the “texture image” will be unnecessarily degraded. If the
pixel values in the image are drawn from a set of N integer (e.g. N = 256 for 8-bit data),
the GLCM is an N x N square matrix P. GLCM can be used as a powerful tool for texture
analysis, classification, segmentation, and synthesis. The disadvantage of GLCM is that
they contain only the co-occurrence information between two pixels, and thus cannot
capture the spatial relationship between three or more pixels in the image (Rees 2001).
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Table 2.3 Descriptions of texture features

Texture Feature Descriptions Equation

Angular second moment Measure for uniformity. ASM is 0 z P(i)*

(ASM) for a constant image, ranging 0-1
Contrast (sum of squares Measure contrast using weights Z(,‘ - )2 P(if)
variance) (CON) related to the distance from the iJ

GLCM diagonal. Measuring
weights increase exponentially (0,
1, 4,9, etc.) as one moves away
from the diagonal. Contrast is 0 for
a constant image ,usually ranging

0-(Ng)?

Correlation (COR) Measure the linear dependency of Z iiP(f) - e,
grey levels on those of .
neighbouring pixels. 0 is 0,0,
uncorrelated, 1 is perfectly
correlated.

Dissimilarity (DIS) Measure weight which increase = o
linearly (0, 1, 2, 3 etc.) ZPU li—j

i,j=0

Entropy (ENT) Measure the level of spatial z P(if)log P(if)
disorder of gray levels in the 7
GLCM. Low value for smooth
image. The maximum value of
ENT is 0.5 Range: > 0

Z

Homogeneity (HOM) Return a value that measures the
closeness of the distribution of
elements in the GLCM to the .
GLCM diagonal. Homogeneity
weights values by the inverse of
the Contrast weight, with weights
decreasing exponentially away
from the diagonal 1 for a diagonal
GLCM ranging 0-1

(p,,
—ol+({—

\.
I

Mean (MEA) Measures the mean of the i
probability values from the Hi= Z i(p.;)
GLCM. It measures how many /0
times that reference value occurs Wj = Z j(pi,

in a specific combination with a i,j=0
neighbour pixel.
Variance (VAR) measure of the dispersion of the Z(, - 1)’ P(if)

values around the mean of %
combinations of reference and
neighbor pixels in the GLCM

Source: Haralick 1973
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2.5 Integration of spectral and textural information

In some cases, only the spectral data is not sufficient for identification or classification of
spectrally heterogeneous landscape units from others due to the atmospheric errors such as
the aerosol density, pressure and temperature etc. (Lin 2001). To obtain the more detail of
related information from satellite image, spatial or textural information must be considered
to include to the classification procedure. There is assumption that the combination of
texture methods and spectral information can improve the results of classification. High
spatial resolution embodied in IKONOS and QuickBird images provides a unique ability to
incorporate small-scale textural information in the classification process. Small-scale
spatial variability would help discriminate those canopy types that were hard to distinguish
from spectral information alone.

2.6 Support Vector Machine

2.6.1 SVM Concept

Support Vector Machine (SVM) is the novel machine learning that be used as the
hypothesis space of linear functions in a high dimensional feature space to classify the
pattern of dataset based on statistical learning theory (Cristianini and Taylor 2000). In the
other word, SVM is a set of supervised learning methods of classification and regression to
find the maximum separation hyper-plane (Margin) in the high dimension space (such as
satellite imagery) between classes using a set of observations called the “training data”
usually represented as input/output pairs (Vapik 1995).

2.6.2 SVM Procedures

SVM performs classification by constructing an N-dimensional hyper-plane that optimally
separates the dataset into two categories, the positive and the negative sides within the high
dimension space usually known as “optimal separating hyper-plane”. In the parlance of
SVM literature, a predictor variable is called an “attribute”, and a transformed attribute that
is used to define the hyper-plane is called a “feature”. The task of choosing the most
suitable representation is known as “feature selection”. A set of features that describes one
case (i.e., a row of predictor values) is called a “vector”. So the goal of SVM modeling is
to find the linearly optimal hyper-plane that separates clusters of vector in such a way that
cases with one category of the target variable are on one side of the plane and cases with
the other category are on the other size of the plane. The vectors closest to the optimal
hyper-plane are the “support vectors” (See figure 2.9). An assumption is made that the
larger the margin or distance between these parallel hyper-planes, the better the
generalization error of the classifier will be (Vapnik 1995).

However, in practice, the data is often not linearly separable. In order to enhance the
feasibility of linear separation, one may transform the input space via a non-linear mapping
into a higher dimensional dot product feature space. This transformation is done by using a
kernel function. The kernel function plays a major role in locating complex decision
boundaries between classes. This separation of the input and feature space allows a variety
of kernels to be employed (Chapman 2004).
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Figure 2.10 The SVM algorithm process (DTREG)

Below, a general overview of SVMs for a binary classification problem (2 classes) is
briefly explained by referring to the tutorial of Burges, 1998.

Given a set of labeled training examples {xj, yj} withi=1, 2, 3, ..., N where x; € RM (m:
the dimension of input space), and y; €{-1, 1} (y: class label. Suppose that the training
data is linearly separable, there exists a weight vector “w” and a bias “b” such that the
inequalities
W.xj+b>1wheny;=1, €9)
W.xj+b<1wheny;=-1, 2)

are valid for all elements of the training set. As such, we can rewrite these inequalities in
the form:

VitW.x;+b)>1withi=1,2,3,...,N. 3)
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Eq. (11) comes down to find two parallel boundaries,

B2 H* Bl

Bl: W.xj+b=1, “)
B2: W.xj+b=-1, %)

2
[Iwl

at the opposite side of the “optimal separating hyper-plane”,
H*: W.x+b=0, 6)

with margin width between the two boundaries equal to 2 / ||w]|. Thus one can find the pair
of boundaries which gives the maximum margin by:

minimizing;:
1.w? )
2

subject to:
yi(W.xj+b)>1 8

This constrained optimization problem can be solved using the characteristics of the
Lagrange multipliers (o) by

maximizing:
W@ = Do -1 D 00yiyjxiX; ©)
i 2 t J
subject to:
o;>0withi=1,2,3,...,Nand 2 ojy;=0 (10)
The weight vector could be stated as follows: A
W= oy (11)

The decision function f(x) can be written as
f(x)=sgn (W .x +b)=sgn[Y_ aiyj (x. xj) + b] (12)

Where sgn is a sign function. In practice, the input data will often not be linearly separable.
However, one can still implement a linear model by introducing a higher dimensional
feature space to which an input vector is mapped via a non-linear transformation:

O: X->X (13)

Xj > @ (xj) (14)
Where X is the input space, ® is the non-linear transformation and ® (x;) represents the
value of x; mapped into the higher dimensional feature space X’.
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Therefore Equation (9) can be transformed to

minimizing:

W@ =y - 12 Dajajyiyi@(x) Ox) (15)
subject to: 7 s

;>0 withi=1,2,3,...,Nand ) ajy;=0 (16)

By mapping the input space to the higher dimensional feature space, the problem of high
dimensionality and implementation complexity occurs. One can introduce the concept of
inner product kernels. Consequently, there is no more need to know the exact value of
®(xj), only the dot inner product is considered which facilitates the implementation. Input
data are displayed in the form of “dot product” of two vectors to be easily integrated into
the support vector machine.

Input space Feature

Figure 2.11 Data transformation to higher dimension space (Chapman 2004)

According to above picture, there are two predictor variables (attribute). If we plot the data
point using the value of one predictor on the X-axis and the other on the Y-axis, SVM
analysis attempts to find a 1-dimensional hyper-plane (i.e. a line) that separates the cases
based on their target categories. In this case, we add a third predictor variable, then, we can
use its value for a third dimension and plot the points in a 3-dimensional cube. Points in a
3-dimensional cube can be separated by a 2-dimensional plane.

Kernel function:
K(xj, X)) = (x). D)) (17)
Therefore the decision function becomes
F(x) = sgn[ D oiyi O(x). D(.xj) +b] = sgn[zi ajyj k(x.xj) +b] (18)

For resolving this decision function, several types of kernel functions are available as given
in table 2.4.
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Table 2.4 Overview of the different kernel functions

Kernel Function Mathematical Form*
Linear Kernel K(x, xj) = (x.x7)
Polynomial Kernel of degree d K(x, X)) = (yx. x; + 0d, y> 0
Radial Basis Function K(x, x;) = exp(-y ||lx-x;/|2), y> 0
Sigmoid Kernel withr € N K(x, xj) = tanh (yx. xj + 1)
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Figure 2.12 Examples of kernel function for separating classes (Kecman 2004)

It is possible to extend linear separable ideas to handle non-separable data. In this case, the
margin will become very small and it will be impossible to separate the data without any
misclassification. To solve this problem, we relax the constraints (9) (10) by introducing
positive slack variables (€;) (Cortes et al. 1995)

Equations (9) (10) become

W.xj+b>1-g wheny;=1, (19)
W.xj+b<1+¢g wheny;=-1, (20)
With g > 0.
Equations (27) (28) can be rewritten as
Yi(W.xj+b)>1-€ with1=1,2,3,....N. (1)

The goal of the optimization process is to find the hyper-plane that maximizes the margin
and minimizes the probability of misclassification:

minimize
1.w2+C Zei ‘ (22)
subject to 2 :
yiW.xj+b)>1-¢ (23)

with C, the cost, the penalty parameter for the error term. The larger C, the higher the
penalty to errors.

Adapting equation (23) to the non-separable case, one receives the following optimization
problem:
maximizing
2 1le
; 2
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W)= aj - o] yiyjk(xi,xj) 24
subject to
0<oij<Cwith]=1,2,3,...,Nand D ajyj = 25)

2.6.3 Model selection for SVM

In training a support vector machine, we need to select an appropriate kernel and set a
value to the margin parameter C. The accuracy of SVM models depend on the selecting
suitable parameter values. Thus to develop the optimal classifier, we need to determine the
optimal kernel parameter and the optimal value of C (margin) called model selection (Abe
2005). The kernel function converts non-linear boundaries in the original data space into
linear ones in the high-dimensional feature space. In general, kernels that widely used in
SVM can be categorized into four types (table 2.4). Furthermore, there are other
sophisticated kernels such as kernel principal component analysis, the kernel Mahalanobis
distance etc.

However, RBF is a reasonable first choice adopted as the default kernel function in
commercial software like ENVI. The RBF kernel non-linearly maps samples into a higher
dimensional space, so it can handle nonlinear relationships between target categories and
predictor attributes (P. H. Sherrod 2003-2007). However, there are some situations where
the RBF kernel is not suitable. In particular, when the number of features is very large, one
may just use the linear kernel (Hsu et al. 2004). Before SVM can be implemented, several
parameters have to be optimized to construct the first-class classifier. The RBF kernel
needs two parameters to be set; C and vy, with C the penalty parameter for the error tern and
v as the kernel parameter. Both parameters play a crucial role in the performance of SVM.
Beforehand it is impossible to know which combination of (C, y) will result in the highest
performance when validating the trained SVM to unseen data. Some kinds of parameter
selection procedure have to be done.

(Hsu and Chang et al. 2004) proposed a “grid search” on C and y and a “v-fold cross
validation” on the training data. The goal of this procedure is to identify the optimal C and
Y, so that the classifier can accurately predict unseen data. A common way to accomplish
this is 2-fold cross-validation, where the training set is divided into two parts of which one
is unseen in training the classifier. This performance better reflects the capabilities of the
classifier in validating unknown data. More generally, in a v-fold cross-validation, the
training data is split into v subsets of equal size. Iteratively, one part is left out for
validation, while the other remaining (v-1) parts are used for training. Finally, each case in
the training set is predicted once. The cross-validation performance will better reflect the
true performance as when validating the classifier to unseen data, while the validation set
stays untouched.

In order to identify which parameter pair performs best, one can repeat this procedure with
several pairs of (C,y). As such it is possible to calculate a cross-validated evaluation
measure for every parameter pair. In the end, it is possible to select these parameters based
on the best cross-validation performance. A grid search on C and v is performed on the
training set using a v-fold cross-validation. The grid search is realized by evaluating
exponential sequences of C and y (i.e. C= 2'5, 2'3, - 213 Y = 23, 21, . 2'15). All
combinations of (C,y) are tried and two pairs of parameters are restrained: (1) the one with
the best cross-validated accuracy (2) the one with the biggest cross-validated area under
the receiver operating curve. Two samples of sufficient size are randomly selected; the
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training set is used to estimate the model with the most cross-validated accuracy, while the
test set is used to validate the model.

2.6.4 Advantages and Disadvantages

Today the full classes of SVM are used extensively in a variety of complex fields not only
for pattern classification, however, SVMs are primarily applied for classification
regression and density estimation problems (Chapman 2004). The advantages and
disadvantages of this technique can be summarized following:

(1) SVMs have an additional advantage to other vector space separation techniques
as the probability of making an error is dependent upon support vectors rather than the full
dimensionality of the initial feature space (Chapman 2004).

(2) SVMs are considered as a good approach because of its high generalization
performance without the need to add a priori knowledge, even when the dimension of the
input space is very high (O. Chapelle, P. Haffner 1999).

(3) The optimization method of a support vector machine is quadratic

programming, which is a well-studied and understood mathematical programming
technique (Sebald, Bucklew 2000)

Here, the disadvantages of this technique also briefly explained below

(1) Long training time: Because training of a support vector machine is done by
solving the associated dual problem, the number of variable is equal to the number of
training data (Abe 2005).

2.7 Relevant Researchs

Segmentation of tree crowns in the high spatial resolution images to an individual tree
species has been an ongoing research field for several years. Various techniques already
were applied. Related researches are summarized. Template matching, valley following,
local maximum filtering, edge detection, spatial clustering and machine learning are
utilized by the many algorithms. The combinations of all techniques give the results rather
good for tree crown detection (Brandtberg & Walter 1998; culvenor 2002; Erikson 2003a;
Erikson 2003b; Gouge 1995; Pinz 1989; Pollock 1996 and Pouliot et al. 2002). In contrast,
classification of tree crowns into genus or species, less research has been done. Crown
delineation is based on the colour information as well as the shape of the segmented tree
crowns extracted from the colour infrared aerial images with pixel size corresponding to 3
— 10 cm. The overall classification result is about 71 %. (Erikson 2003). Other methods are
utilized for classifying image pixels into species class including fuzzy sets classification
(Brandtberg 2002; F. Hajek 2006), spectral signatures (Gougeon et al. 1998), double-
aspect technique (Walsworth and King 1999b), template matching designed base on
species characteristics (Larsen et al. 1998; Pollock 1996), the individual tree crown
algorithm (ITC) based on the valley following approach (Leckie et al., 2005; Clark et al.
2005), algorithm utilized the k-nearest neighbour classification (Groesz an Kstdalen,
2007). Airborne laser range scanning is also applied to classify tree species (Orka et al.
2007). In the research of (Kulikova et al 2007), Support Vector Machine was employed for
tree species classification by the integration of radiometry, texture and crown shapes. Tree
crown shapes can improve classification performance. Signature Generation Process where
for every crown extracted, a class of signatures is created from the multi-spectral data of
initial image.
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CHAPTER 111
MATERIALS AND RESEARCH METHODOLOGY
3.1 Materials and equipments

3.1.1 Materials
(1) Satellite Image Data

- QuickBird satellite image is very high resolution so the visual interpretation of
tree crown can be carried out. Panchromatic mode with 0.6 m and multi-spectral mode
with 2.4 m. stored in 16 bit unsign integer were obtained over the study site. The image
was recorded on 9™ January 2008 GMT 04.00.42 with the maximum sun elevation 56.1°,
maximum sun azimuth 146.1°, 14° off nadir angle and cloud cover 0.056%.

e
sl

Figure 3.1 QuickBird Imagery with four spectral bands

(2) Ancillary data
- ESRI vector layer consisting of wildlife sanctuary boundary, line transect.
- Contour line with interval 20 m, scale 1:50000.
- Descriptions of tree species in the study area.

(3) Field data

- Approximately 100 sampling points (shorea) along the survey routes within the
study site were collected by field visit. Several information and geo-coordinates were
recorded by the handheld GPS. The spatial accuracy of GPS varies from 4 m to 10 m.

- Relevant information is noticed (altitude, crown diameter, crown shape)

- Specimens consisting of leaf, flower and fruit were collected from the field for
further species identification by taxonomists.

- Pictures of specimen and stand tree.
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3.1.2 Equipments

- Notebook computer (Linux and window operating system)

- Handheld GPS (Garmin 60CSx)

- Tape Rule

- Digital Camera

- Compass

- Aluminum tag with the number (0101, 0201, 0301, 0102, 0102, ...), the first two
digits represent species name and the last two digits represent the number of tree.

- Equipments for specimen collecting

- Microsoft visual C++

- ENVI version 4.3

- ERDAS version 9.1

- ArcGIS version 9.0

- ArcView version 3.3

3.2 Methodology

This sub-chapter describes the research methodology beginning with the data collection,
data preparation and image classification including three main scenarios. Subsequently
accuracy assessment, ground truth and tree genus map creation are performed. The overall
methodologies can be summarized in the figure 3.2. The details for each step are deeply
explained below.

3.2.1 Data Collection
(1) Field data collection
The field data was collected by visiting sites in the field, describing various parameters and
determining the coordinates with GPS. The field surveys were done two times. All samples
tree locations were provided for training and test SVM classifier as well as for accuracy
assessment. The processes of data collection were displayes in figure 3.3. Three items of
field data were discussed following.

- Tree location
The spatial locations of 10 species of shorea and 1 species of parashorea become the
reference data for region of interest (ROI) selection. Pairs of x-y coordinates were recorded
by handheld GPS receiver. At the same time, the altitude was also kept. The “id” for each
point was determined by the aluminum tags with the specific codes. By concerning the
accessibility and spatial distribution, the sampling points were selected along the survey
routes in examined plot with the total areas of 0.5 sq. km. The details of field data
collection were summarized in table 3.1.

- Tree descriptions
In addition, descriptions of tree species consisting of crown diameter, diameter at breast
height (DBH), bark color, tree height were gathered. Table 3.2 gives the general
information of each species.

- Tree specimens
If some tree species cannot be identified at the field, tree specimens must be kept. With the
assistance of the local monkey (Macaca nemestrina), the specimens of leaf, flower and
fruit were easily collected. Subsequently, all specimens were identified into tree genus or
species by taxonomists. Some tree species pictures are illustrated in the figure 3.4.
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Tree Locations

.

e
Assistance i
Figure 3.3 Processes of data collection
Table 3.1 List of information requirements from field site
Item Source
1 UTM X handheld GPS
2 UTMY handheld GPS
3 Precision of the coordinates Estimated by GPS
4 Surface altitude handheld GPS
5 Species name Forest taxonomists
6 Crown diameter Measured by Tape rule
7 Diameter at breast height (DBH) Measured by Tape rule

Table 3.2 Tree species descriptions (Poopath 2007)

Species name Elevation  Distribution Leaf shedding Code
Shorea guiso 40-600 m Widely Annual GUI
Shorea ochrophloia* ~ 150 m Rarely Annual OCH
Shorea faguetiana 40-600 m Widely Annual FAG
Shorea longisperma ~300 m Rarely Annual LON
Shorea assamica 50-600 m Widely Annual ASS
Shorea bracteolata* 40-150 m Rarely Annual BRA
Shorea gratissima 700-1200 m Widely Annual GRA
Shorea pauciflora* 200-600 m Rarely Annual PAU
Shorea macroptera ~ 550 m Rarely Annual MAC
Shorea singawang 200-600 m Rarely Annual SIN
Shorea leprosura 40-1000 m Widely Annual LI
Shorea curtisii 250-1000 m Widely Annual CUR
Shroea ovata 500-900 m Rarely Annual OVA
Shorea parvifolia ~ 700 m Widely Annual PAR
Parashorea stelata 250-1000 m Widely Annual STE

* New Record of Thailand
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Mostly, members of shorea genus are categorized as the moderate or big tree. So, it can be
possibly to detect from the top of view. Tree crown usually is circle shape and cylinder
(Poopath 2007). Nineteen species of shorea are found in Thailand. But, fourteen species
are explored by Poopath in this area.

Shorea guiso Shorea gratissima

Figure 3.4 Examples of tree species, member of shorea (Poopath 2007)

However, some rare species can not be found in the study plot. Therefore, only 9 of 14
species becomes the training areas including guiso, ochrophloia, faguetiana, longisperma,
assamica, bracteolate, leprosura, curtisii and parvifolia. Moreover, there is one species
identified as a member of another genus that almost similar to shorea, namely parashorea
stelata. Approximately 70 % of stelata concerning its crown shape, leat shape and size are
similar to that of shorea members. So, this species must be included in the study.

3.2.2 Data Preparation

3.2.2.1 Image pre-processing

(1) Creation of training data

All X-Y coordinates collected from the field were plotted on the satellite image, and vector
layers were constructed. In addition, the relevant field-work information such as tree
height, DBH, crown diameter, family name, species name etc. were inputted in the layer
attribute.

(2) Atmospheric Correction

Due to the effects of aerosol, water content, gases, digital number (DN) in remotely sensed
data was considered as the reflectance at Top of Atmospheric level (TOA). So,
atmospheric correction must be done to achieve the reflectance value at the surface.
QuickBird satellite images level 2A which some data preprocessing were made are
recorded in unsigned 16 bit integer. DN values were converted to radiance based on the
gain and offset value. Afterward, physical model MODTRAN available in ENVI software

is the main process. The average water content was approximately 3.41511 gm/cmz. Four
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bands and one band of multi-spectral and panchromatic image respectively were obtained
based on the surface reflectance.

(3) Geometric Correction

Geometric corrections without the use of ground control points were performed in image
level 2A by Digital Globe. However, to achieve the higher accuracy, the image must be re-
rectified by using ground control points (GCP) collected from field visit. At least clearly
five GCPs were utilized to rectify the image. By using the first-order polynomial
transformation, the RMS error was approximately 1.1 m which is equal only 2 pixels.

(4) Subset image

Full size of multi-spectral and panchromatic images were clipped with the boundary of
study site with total 0.5 sq. km. (Upper left: Lat 5° 48" 01" Long 101° 49" 33", Lower right:
Lat 5° 47" 43" Long 101° 50" 017). The subset image consists of 1,477 columns in width
and 933 rows in height approximately 1.4 million pixels. In addition, 0.09 sq.km or 55 rai
were provided for validate model by applying to unseen data (Upper left: Lat 5° 48" 12"
Long 101° 48" 56", Lower right: Lat 5° 48" 3" Long 101° 49" 67).

(5) Pan-sharpening

To improve the spatial resolution of the multi-spectral image, each band was sharpened
with panchromatic image utilizing the transform model in ENVI software. The
combination of the panchromatic image (0.6 m) and multi-spectral images (2.4 m) produce
the higher spatial resolution of multi-spectral. This process is performed to enhance the
spatial and spectral resolution for visualization and interpretation, but still preserves the
original DN value. Usually pan-sharpening procedure consists of two methods: HSV
sharpening and Color Normalized (Brovey). In this study, Brovey technique was adopted
and Cubic Convolution (CC) was defined as the resampling method. Each band of the
color image was multiplied by a ratio of the high resolution data divided by the sum of the
color bands. Four bands of QuickBird (R G B NIR) were sharpened. The details of the
output images were improved more than the original data equally the panchromatic 0.6 m.

The formula for Brovey transformation technique:

DN _fused = DN_bl * DN_pan (26)
DN _bl + DN b2+ DN b3 + DN _b4

.
i o flfl
]

Figure 3.5 Comparison of spatial resolution before (upper) and after (lower) pan-
sharpened transformation in band blue, green, red and nir (left to right)
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3.2.2.2 Non tree crown elimination and segmentation

(1) Non tree-crown Elimination

In order to segment an individual tree crown boundary, it is necessary to detect non-tree
crown and mask out them from satellite image beforehand. In this viewpoint, Remote
sensing techniques were applied. For water area, Normalized Differential Vegetation Index
(NDVI) indicating the ratio of reflectance values in the visible and near-infrared region of
the spectrum becomes the main method to remove pixels that represent water area.
Masking areas were generated over the pixel that NDVI less than zero. For another non
tree-crown region, the training signatures obtained from field visit were constructed
including tree shadow, cloud, crown gap, road, bare land, building, shrub. To do that, edge
detection technique, LAPLACIAN convolution, with 3x3 kernels with a value of 8 for the
center pixel and values of -1 for the north-south, east-west and both diagonal pixels, was
applied to detect the boundary of each segment. Subsequently, supervised classification
algorithm using maximum likelihood decision rules are performed to detect the non tree-
crown pixels. Remaining pixels in this procedure were referred to as a tree-crown image.

Figure 3.6 Training data set for non-tree crown masking procedure: building, road, bare
land, stone, shrub, cloud, tree gap and tree crown (left to right, up to down)

Figure 3.7 Laplacian operator with 3x3 applied to detect the boundary of non tree-
crown. Original image, laplacian kernel and expected output

(2) Individual Tree Crown Segmentation

After obtaining tree crown image, another critical problem for tree genus classification is
the overlap of crown boundaries. These pixels should be mask out to achieve an individual
tree crown boundary earlier. Image segmentation procedure is done to solve the continuous
and large tree crown caused by linking adjacent of pixels. To do forth, the changes of
crown shape, size and texture must be considered. Therefore, tree crown segmentation
must be carried out by lightly altering in the original pixels.
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In this study, delineation of crown boundary by the local minimum brightness filtering was
concentrated. From the borders of the non tree-crown areas and initial lower threshold in
the tree-crown regions, pixels with the lower DN were recognized based on the threshold
value. In this viewpoint, near-infrared band typically used for vegetation analysis was
considered to determine the lower threshold region. Using geographical analogy, the bright
individual tree crowns in an image appear like mountains (high pixel values). The darker
areas surrounding them, the shaded lower branches and understorey, appear like valleys
(low pixel values). In figure 3.8, QuickBird image covering the study plot was illustrated
in 3d perspective view which the spatial information is represented in the x and y
dimensions, while the brightness (DN) of pixels was depicted in the vertical dimension.

Figure 3.8 Tree crown perspective visualization with DN value in the study area

The threshold referred to as the lower threshold was used as a simple threshold throughout
the image. This threshold value was defined to find out the pixels (the darker pixels of
shade between tree crowns) in the remaining tree crown areas of the image. If this
threshold was determined too high, the shaded parts of tree crowns may also get masked
out. In contrast, if setting too low, some separation of crowns within tree clusters may be
hindered (Gougeon 1999). An appropriate threshold value was assigned by checking the
image section which DN can distinguish between tree crowns and shade surrounding areas.
View angle, forest density, species composition, forest type affect to the lower threshold.
However, the upper threshold value, in this case, was not defined because the non-forest
areas already mask out. Subsequently, border pixels from lower threshold filtering were
removed to derive an individual tree crown. However, it does not always fully separate
them from their neighbours especially in the dense tree crown. That should be accepted as
the limitation.
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Figure 3.9 Overviews of non-tree crown elimination and individual crown segmentation

3.2.2.3 Data reduction and VI Calculation

(1) Spatial resolution upscaling

To serve the objectives of this research, original pan-sharped images with spatial
resolution, 0.6 m, were upscaled two and three times respectively by nearest neighbor
resampling method. According to figure 3.10, left image represents tree crown 0.6 m,
while the middle shows resolution 1.2 m and right hand illustrates 1.8 m. The gradient
resolutions of image are evaluated to find out the minimum resolution for tree crown
delineation in the tropical rain forest.

Figure 3.10 Different spatial resolution of multi-spectral image: 0.6, 1.2 and 1.8 m
from left to right

(2) Principle Component Analysis

PCA is a procedure for transforming a set of correlated variables into a new set of
uncorrelated variables. This transformation is a rotation of the original axes to new
orientations that are orthogonal to each other and therefore there is no correlation between
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variables. The result bands were ordered by the amount of variance in the band. The first
component band contains the most information, while the last PCA band contains almost
no information. PCA must be done after masking out non vegetated areas because the
variance in an image can be caused by spectral difference between vegetation and non
vegetation. In this case, four bands of each spatial resolution level become the input for
PCA calculation. But only the first PCA was further utilized in the image classification.

&

Grcleen : Relcd

Figure 3.11 Input bands and output from applying Principle Component Analysis (PCA)

(3) DN Normalization

Scaling data before applying SVM is very important. The main advantages are to avoid
attributes in greater numeric ranges dominate those in smaller numeric ranges and to
prevent the numerical difficulties during the calculation. Because kernel values usually
depend on the inner products of feature vectors. Large attribute values might cause
numerical problems. Therefore, the scaling method must be also applied both to the
spectral and texture data. The following equation was utilized to do that.

(DN -MIN,,, ) * (max—min) 27)

image

(MAX, . — MIN

image image

)+ min

MINjmage : minimum DN of image
MAXimage : maximum DN of image

max : maximum range of new scale
min : minimum range of new scale

4) Vegetation Index extraction

Vegetation Indices (VIs) are combinations of surface reflectance at two or more
wavelengths designed to highlight a particular property of vegetation. Each of the VIs is
designed to accentuate a particular vegetation property. In this study, only normalized
differential vegetation index (NDVI) which is the arithmetic combination of red and near
infrared spectral band values, was concentrated. The following equation is applied

PNI _PRED
PNIR+PRED

NDVI = (28)

The value of this index ranges from —1 to 1. The common range for green vegetation is 0.2
to 0.8.
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Figure 3.12 Overview of data preparation

3.2.3 Texture feature extraction
Gray Level Co-occurrence Matrix (GLCM) was used to derive the texture descriptors.
First, GLCM was created with a square matrix N x N. Second, transpose matrix of GLCM
was constructed to make the matrix symmetric because texture extractions are the best
performed on a symmetrical matrix. In our case we apply co-occurrence measures texture
filter with window size 3 x 3 and shift 1 pixel both in horizontal and vertical direction
which is refers like best from previous experiences for extraction more features of image.
ENVI software has eight different texture features including mean, variance, homogeneity,
contrast, dissimilarity, entropy, second moment, and correlation. Three parameters were
considered in this study. Values of the moving window size, distance d and direction &
were determined. Finally, values of texture data were normalized into the same intervale of

spectral data (0-100).

Co-occurrence Matrix
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Figure 3.13 GLCM with shift window 1, 1 in vertical and horizontal direction
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3.2.4 Integration of spectral and spatial data

After texture features were extracted, they must be integrated with multi-spectral data for
further analysis. At first, the objective of thesis is to evaluate wheather the texture data
when combining with spectral data can return the excellent performances. So, randomly
stack between one texture and four bands of spectral data. Subsequently, only the best
three textures become the candidate for the second investigation. Eventually, image

analysis was separated into three levels with respect to the spatial resolution. Figure below
is the examples of the combination of spectral and texture data. The left picture
homogeneity channel enhances the background shadow with the blue color. Integration of

green and contrast bands display the more details of tree crown (yellow tone). The last one
clearly illustrates tree crown by entropy and homogeneity.

kg 4 T s & n n; o \*“ &
 CYER - FONEE - Rl oy e

Figure 3.14 Examples of the spectral and texture combination image. Red NIR HOM
(RGB), Red Green CON (RGB), NIR ENT HOM (RGB) (left to right)

3.2.5 Generating genus & species Signature

Spectral and textures signatures were acquired to be representatives of genus and species.
The exact locations from GPS were overlaid on the tree crown image. Afterward, the
manual digitizing was carried out on the screen to create ROI files (Region of Interest).
Approximately 60 points were selected for the training and test data.

3.2.6 Image Classification by SVM

Tree genus classification was delineated by free source code in C. SVMIight version 6.0 was
an implementation of Vapnik’s SVM for the problem of pattern recognition based on the
binary classification (-1, +1). SVMIight consists of a learning module (SVM_learn) and
classification module (SVM_classify). With this software, user can determine the parameter
configurations such as learning options, performance estimation, kernel types. To meet the
requirement of software, image input must be converted to ASCII file format. The input file
contains the represents one training example and is of the following format:

<class1> <featurel>:<value> <feature2>:<value>
<class2> <featurel>:<value> <feature2>:<value>

The input feature space comprises maximum seven-dimensional vectors (integration of
spectral and texture data), where each one represented the DNs of the pixels. Initial data

statistics and analysis was necessary to ensure class separability and validity of traiing sites
for classification purpose.
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For example: +1 1:235 2:123 3:24 ----> Positive class
-1 1:34 2:64 3:56 ----> Necgative class
01:4342:643:98  ----> Unseen data

The class value belonging to the target and non-target class and each of the feature number
were separated by a space character. Feature value indicates the number of band. Specially,
feature/value must be ordered by increasing feature number. The value targets were
possible three values: positive (+1), necgative (-1) and unseen data (0). This code is
available from http://download.joachims.or/svm_light/current/.

Figure.3.15 Overall processess for file format conversion

Following issues were performed in SVM source code.

(1) Determination of training and tested dataset

In order to make a decision for classification, it is necessary to know the spectral signature
and texture feature characteristics of the training and test dataset. The number of sample
observations has a direct relationship to the confidence interval of the estimation of
classification accuracy and the estimation of statistical parameters. Then this dataset were
separated into two types, training and test dataset. For genus classification, 6,000 samples
were reserved for training and remaining 4,412 for decision model evaluation. Training

signatures is based on DN values and independent of trainingsite location. So, x and y
coordinate field not includes in the traing dataset.

(2) Mapping input data into the high dimension feature space

Due to the nonlinear decision function, the original data in term of x, y and z values were
transformed into the higher dimensional dot product feature space by the function of ®. In
this case, five and seven dimensions of input data were considered (spectral and texture
features).

(3) Kernel model selection
By mapping the input data to the high-dimensional space, the kernel function converts non-
linear boundaries in the original data space into the linear ones in the high-dimensional
space, which can then be located using an optimization algorithm. Kernel functions have to
be chosen carefully since an inappropriate kernel can lead to poor performance. There is a
kernel function K such that

K(xj, X)) = ©(xi) “P(xj) 29)

(4) Determination of kernel configuration

The accuracy of an SVM model is largely dependent on the selection of kernel parameters.
SVM include C penalty parameter that allows a certain degree of misclassification which is
particularly important for non-separable training sets. The penalty parameter controls the
trade-off between allowing training errors and forcing rigid margins. It creates a soft
margin that permits some misclassifications, such as it allows some training points on the
wrong side of the hyper-plane. Increasing the value of C, increases the cost of
misclassifying points and forces the creation of a more accurate model that may not
generalize well. Usually C and y parameter must be expressed in exponential value such as

C=29.23 . 213:94=23 91 315
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(5) Tested Data

Beforehand it is impossible to know which combination penalty parameter and kernel
parameter will result in the highest performance when validating the trained SVM to
unseen data. Grid search on C, v, d and a v-fold cross-validation on the training data.
Cross-validation was a widely used technique to estimate the generalization error of a
classifier for a limited number of gathered data. The goal of this procedure is to identify
the optimal parameters, so that the classifier can accurately predict unseen data (entire
data). In a v-fold cross-validation, the training data is split into v subsets of equal size.
Iteratively, one part is left out for validation, while the other remaining (v-1) parts are used
for training. Finally, each case in the training set is predicted once. This procedure is
repeated with several pairs of parameter. In the end, it is possible to select these parameters
based on the best cross-validated performance.

(6) Kernel Adjustment

If the test output is not the optimal solution, the selection of the kernel must be adjusted
and the support vector machine may be retrained and retested. For RBF kernel, C and Y can
be adjusted. For polynomial kernel, C, y, r (bias term) and degree (d) can also be
developed. When it is determined that the optimal solution has been identified, the entire
datasets are inputted into the learning machine for processing.

(7) SVM classification through unseen data

After achieving the solution with the optimal separating hyper-plane from test SVM,
unseen data were transferred into the SVM classifier by the kernel that produced the
optimal solution. SVM classification output is the decision values of each pixel for each
class, which are used for probability estimates. The probability values fall in the range of
1- to 1. Subsequently the class segmentation was conducted.

3.2.7 Image processing for tree crown delineation

3.2.7.1 Tree genus classification

The conceptual framework for tree crown classification into tree genus can be divided into
3 scenarios.

(1) The first scenario: Classification based on spectral information

SVM Classifier utilizes only spectral data for tree crown classification with the different
four types of kernel function and different combinations of kernel configuration (C, v, d).
In this concept, only multi-spectral data are examined. The optimal separating hyper-plane
for each kernel will be constructed with the different combination of kernel configuration
(C, v, d). The threshold value for each parameter is determined and increased equally in
next iteration. Subsequently, the comparisons of three kernel performances were
conducted. The goals of this scenario are to find the appropriate kernel and the best
parameter values for tree crown classification into tree genus.
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(2) The second scenario: Classification with spectral and texture information

The combinations of spectral and texture data were the input data. Eight texture features
derived from GLCM method were incorporated in the analysis to explore the possibility to
improve the genus classification capacities by the SVM algorithm. For the first round, one
by one texture selection was done to be integrated with the spectral data. Subsequently,
SVM classification was applied, and the performances were summarized. For the second
round, only texture feature which take the performance ranking of the first, second and
third become the input data for the next SVM classification. Three texture and four spectral
data were combined together and SVM classification was repeated. The best parameter
values from the first scenario were assigned for the kernel functions. The targets for this
scenario are to find the best texture that can improve the classification power of SVM. At
the same time, the capacities of kernel functions were tested.
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Figure 3.16 Overviews of image classification for the first scenario

(3) The third scenario: The minimum spatial resolution for tree crown delineation

To examine the minimum spatial resolution that can support tree crown delineation to
specific genus, the imagery with the different pixel size needs to be compared the
capacities. Upscaling and downscaling are the method to decrease and increase the spatial
resolution. In this concept, the original panchromatic resolution and pan-sharpening
resolution with 0.6m were increased. Two and three times in the pixel size of original
resolution were applied for the whole image. Therefore, the input data in this concept
comprises the three different spatial resolutions of 0.6, 1.2 and 1.8m. Similarly, three of the
optimal textures from previous experiment were integrated with four of multi-spectral
_ bands. SVM classification processes were repeated at three times for each pixel size image.
At the end, the spatial resolution of image that suitable for tree crown analysis in the
tropical rain forest was obtained when concerning an accuracy of image classification. In
this scenario, only the best kernel obtained from the first scenario was applied and the
optimum of parameter value sets were utilized.
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Figure 3.17 Overviews of image classification for the second scenario
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Figure 3.18 Overall processes of the third scenario analysis
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3.2.7.2 Tree species classification

To advance analyze, SVM classification must be done to classify tree crown to species
level. In this situation, only two species that were dispersal in the study site was adopted.
The training data of Shorea leprosura (LEP) and Shorea curtisii (CUR) were provided for
species analysis. In fact, the first examined species usually can be found ranging from 200-
600 msl. While the second generally appears on the higher area (600-1000 msl). Therefore,
DEM available on the study plot should be integrated into the species classification. Only
image with spatial resolution of 0.6 m was evaluated. In this sense, SVM kernel type,
parameter configuration and type of texture features obtained from the third scenario are
repeatedly assigned to SVM species classification. However, if the results from genus
classification were not well or low accuracy score, species classification must be skipped.

The best kernel Species Map
and parameter

value

Figure 3.19 Outline of species classification by SVM classifier

3.2.8 Post classification

(1) Noise reduction

Usually noise must be occurred in the image classification. Noise is defined as the small
pixels completely within the boundary of another class so they can be called “error”. To
generate the smooth image, some techniques of image filtering must be considered. In
general, low pass filtering was designed to create the smooth image. Hence, low pass
filtering with the size of kernel. The new value was calculated for the considering pixel
(center pixel). The commercial software ENVI was utilized to perform this task.

(2) Ground truth

After obtaining the results from SVM classifier, ground check must be conducted. Outputs
were sampled to investigate the accuracy by checking at field sites. In this step, GPS
handheld become the primary navigator.

(3) Accuracy Assessment in term of crown identification

The following examines how well each tree crown was classified to the specific genus or
species. Percentages of correct and incorrect classification are computed. Kappa coefficient
is a scalar statistic that quantifies the agreement between the reference and map classifiers
in a multivariate error matrix. The Kappa coefficient (KHAT) will be applied to evaluate
that how much better in classification compared to one where randomly assigned class
values to each pixel. If the raters are in complete agreement then k = 1.

42



If there is no agreement among the raters (other than what would be expected by chance)
;then k < 0. Values of kappa exceeding 0.6 were considered good (Czaplewski, 1994). The
equation used for this assessment is following:

_ Pr(a)-Pr(e),
1-Pr(e)
or Kappa = (Observed agreement - Chance agreement) / (1 - Chance agreement)

Where Pr(a): the relative observed agreement among raters
Pr(e): the probability that agreement is due to chance

(30)

(4) Output Vectorization

The outputs derived from data analysis session were transformed to vector data set with the
specific ID value. Each one represents tree crown boundary. However, the combined tree
crowns that cannot be separated also were illustrated.
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CHAPTER 1V
RESULTS AND DISCUSSIONS
4.1 Non tree-crown Elimination

Recent progress in RS makes it feasible to extract non-tree crown regions. Laplacian edge
detection is very useful for image segmentation. Supervised classification based on the
maximum likelihood rule can effectively separate non tree-crown from the tree crown
image using training signatures. Masking image was created to be used to eliminate pixels
corresponding to masked zone. Tree crown bitmaps were obtained. The total non tree-
crown areas in the study plot were approximately 64.024 % or 0.318 sq.km. So, it means
that tree crown segments remain only 0.17 sq.km. Figure 4.1 and 4.2 display the results
after running the process to detect non tree crown.

Figure 4.1 Laplacian Edge detection for non tree-crown segmentation. Original
image (Left), output image (middle), edge boundary overlaid on an
original image (Right)

Figure 4.2 RGB image (left), non tree-crown area detection (middle) and masked out
image (right)

4.2 Individual Tree Crown Segmentation

The DN manual checking and histogram frequency distribution were performed on the
near-infrared image. This process was repeated until the low threshold value that can
separate tree crown was obtained. In this experiment, the lowest threshold value assigned
for further segmentation equal 180. Figure 4.3 shows the histogram of DN mean value of
NIR image indicating the initial low DN. With the following threshold, the individual tree
crown was possible to obtain.
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Figure 4.3 Spectral Profile of near-infrared band in one line using to determine the low
threshold value, pointing out at DN 180

The image segmentation based on the lower threshold filtering was rather well to separate
the continuous tree crown particularly for the tiny-merged pitches (figure 4.4). However,
the dense tree crowns can not be split to an individual segment (figure 4.5).

Figure 4.4 Section of output image by the lower threshold filtering. The original image,
individual tree crown image and output after noise filtering (left to right)

Figure 4.5 Section of tree crown that can not be divided by the lower threshold filtering.
The original image, individual tree crown and filtered image (left to right)
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Figure 4.6 indicates the tree crown in the study site. It notices that the some polygons
cannot be divided individually. Therefore, the total number of tree crown in the study site
can not be performed herewith.

$41700

641400

T T T
813000 813300 813600

Figure 4.6 Map of tree crown after segmenting image to an individual tree crown

4.3 Texture Featufe Extraction

After applying GLCM method to the segmented-crown image, various texture features
were acquired. Images below were the sections of 200 x 200 pixels of texture features. The
result images were calculated from panchromatic band using GLCM with kernel 3x3 shift
1, 1 pixel in both directions. Finally, the results were normalized to the same scale 0-100 to
avoid the effects of the data scale. Frequency distribution histogram for each texture data
was compared.
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Figure 4.7 Original panchromatic image and histogram profile
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Figure 4.8 Mean texture and histogram profile

Frequency

D 12 24 36 48 B0 72 84 96 Value
6 18 30 42 54 66678 W

Figure 4.9 Variance texture and histogram profile
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Figure 4.10 Entropy texture and histogram profile
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Figure 4.11 Contrast texture and histogram profile

47



Frequency

300,000

250,000
200,000

150,000

100,000

o 1 1 1 1 1 1 1 1 o
D 6 12 182430 36 42 48 546066 7278 84 90 96 Value

Frequency

60,000
50,000
40,000
30,000
20,000
10,000

0

0 6 121824303642485460667276849096 Value

Frequency

600,000

500,000
400,000

300,000
200,000

100,000 H

D 6 12182430 36 4246 5460 66 72 78 84 0p 96 Yalue

Frequency

||||||||||||||||

0 12 24 36 48 B0 72 84 96 Value
6 18 30 42 54 66 78 90

Figure 4.15 Correlation texture and histogram profile
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4.4 Properties of genus signatures

Total six thousand examples of traing data were determined based the survey data. Due to
the banary classification (-1 and +1), plus 1 label represents the class of target (shorea
genus). In contrast, Minus 1 symbol belong to another tree group. Training signatures then
were classified to two groups: training and test dataset. The conclusion of training, test and
live data were illustrated in table 4.1. Subsequently, the minimum, maximum and mean
values for each member of both classes were explored and summaried in table 4.2.

Table 4.1 Number of samples utilized in SVM classifier

Dataset No. of samples Data Dimensions
Training Class1= 2,000 Class2=4,000 12
Test Class1=1,132 Class2=3,280 12
Unseen 245,760 (480x512) 12

Table 4.2 Statistical values of species signatures in class -1 and +1

Band Stat LEP CUR ASS BRA PAR STE EXC BOR KER ANI
NO.of samples 374 621 224 456 330 182 224 182 270 361

Class +1 +1 +1 +1 +1 +1 -1 -1 -1 -1

Blue min 51.2 512 43.1 462 49.1 540 498 558 50.0 533

max 7377 883 82.1 842 864 772 743 772 733 69.1

mean 62.0 649 663 663 649 649 626 679 633 59.0

Green

min 46.5 435 457 440 439 453 449 497 402 46.0

max 64.1 692 845 749 767 6977 666 7277 66.1 598

mean 540 543 663 61.5 573 57.1 55.0 614 557 51.1
RED

min 450 414 433 426 417 478 443 477 377 475

max 634 765 80.6 755 710 653 706 717 68.1 62.7

mean 53.9 541 63.1 60.1 56.0 58.0 560 627 555 536
NIR

min 321 342 38.7 377 391 383 378 516 39.8 34.6

max 540 63.6 796 735 670 632 599 824 73.6 51.0

mean 443 473 607 59.0 534 517 466 683 585 408
NDVI

min 332 155 345 303 31.8 377 365 61.7 493 185

max 59.7 672 672 769 692 624 590 77.0 820 478

mean 445 499 597 613 588 524 457 713 68.1 359
PCAl

min 46.0 44.1 463 446 452 463 455 56.1 443 442

max 63.0 746 868 78.0 721 695 690 844 757 60.7

mean 534 557 675 651 602 594 553 713 62.7 50.1
Mean

min 233 134 244 29.6 235 314 360 60.1 30.7 15.6

max 62.1 689 816 78.1 676 647 658 827 732 53.1

mean 48.6 453 6577 628 564 549 528 709 61.5 455
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Band Stat LEP CUR ASS BRA PAR STE EXC BOR KER ANI
VAR  min 0.1 0.1 0.3 0.0 0.2 0.1 0.1 0.0 0.1 0.1

max 331 359 546 468 404 289 307 28 223 26.6

mean 5.4 18 bl s o8 003 9114300 1.0 1.8 4.0
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mean 347 Jis . 188 SN0 S0P 87 205 260 252 W2
CON

min 0.1 0.1 0.3 0.0 0.2 0.1 0.2 0.1 0.1 0.0

max 201 3206 411 383 31 B3 234 29 ) 251

mean 4.8 9.4 8.9 4.3 6.6 4.9 A g 1.0 2l 4.5
DIS

min 2.0 o 5.6 1.4 % 2.8 4.0 2.0 a0 1.7

max 404 Sib Lt 537 468 A80 342 155 4L7 .41.0

Haae . 120 215 230 88 1B 136 119. . .K/ 0 115
ENT

min o4 .S593 .763. . %% 833 763 ..66.7 .763 190 . ..649

max 1000 100 100 109 (o8 100 100 180 10 - 100

mean 922 923 986 99 9.5 967 970 959. 976 91.5
ASM

min dadr- Wl odbk e Bhlmsllal c1d1 b1 13.00 000 ki

max 284 358 210 Vs A8 210 259210 185/ 284
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COR

min 873 923 963 BT 0184 955 969 71.7 915 933
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mean 996 999 998 995 998 994 996 989 992 99.7
LEP: Shorea leprosura CUR: Shorea curtisii ASS: Shorea assamica BRA: Shorea bracteolate
PAR: Shorea parvifolia STE: Parashorea stelata EXC: Koompassia excelsa

BOR: Scorodocarpus borneensis KER: Dipterocarpus kerrii ~ ANI: Anisoptera costata
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Figure 4.16 Comparison of test species responding to the DN value
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Figure 4.16 displays the DN curve displaying the minimum, maximum and mean value in
each channel. The representatives of shorea genus, leprosura (1) and curtissi (2), give the
DN profile that a look similar. On the other hand, Dipterocarpus kerriiand (3)
Scorodocarpus borneensis (4) representatives of another genus, have the different curve in
band 8-11. With these dissimilarity made it possible to discriminate them.

4.5 Tree Genus Classification by SVM classifier

4.5.1 The first scenario: Classification based on the spectral information

For the first section of this experiment, only four spectral data were evaluated.
Generalizaion performances of SVM were tested with the three different kernel functions.
The combinations of kernel configuration (C, v, d, r, s) were determined. Available options
that can be setup for SVM code loosely separated into 4 groups: learning, performance
estimations, kernels and output options. (See in appendix)

(1) Model performance estimation based on the soft margin SVM

To generate the optimal hyperplane, training data were transformed to the higher
dimensional feature space via the kernel functions. SVM try to create the hyperplane that
can separate the data with the maximum margin between two classes. The effects of kernel
parameters and the margin parameter on the number of support vectors and Xi a error were
compared following.

e Linear Kernel

The simplest kernel type requires only the marginal parameter (C). To find out the best
parameter value, the linear kernel with the increase of penalty parameter value (C) was
evaluated with the training dataset. A high value of error penalty will force the SVM
training to avoid classification errors. A large value of this parameter will result in a larger
search space for the QP optimizer and also time consumer.

Table 4.3 The effects of the penalty parameter to linear kernel

Penalty value (-C) No.of Total SVs SVs at Xi a error (%)
misclassification upper bound
0.001 1,878 3,966 3,962 32.38
0.01 1,884 3,945 3,940 43.57
0.1 1,887 3,942 3,936 62.37
1.0 1,887 3,943 3,937 65.5
10 1,887 3,941 3,937 65.67
100 2,291 119 28 38.85
1000 4,116 185 20 69.30

: Training: 6,000 samples, rho=1, serch depth=50

Table 4.3 shows the numbers of support vectors and number of misclassification when the
C values of linear kernel were changed. As the C value of increase, the weight of the
(square) sum of slack variables is increased. Penalty value cannot improve the performance
of linear kernel. Thus, the number of SVs decreases. At C = 100, the number of SV was
reduced exponentially. C can reduce estimated o error. It can be summarized that C
parameter has the influence to the efficiency of linear kernel.
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Chart in figure 4.17 indicates the change pattern of number of misclassification and
number of support vector. At penalty value 0.001, it should be considered as the best one
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Figure 4.17 Influence of penalty value to the performance of linear kernel

due the the lowest value in the first field and highest in the second field.

e Polynomial Kernel

The degree of polynomial and marginal parameter were examined. Optionally, vy, r and s
parameter can be also defined for the SVM model. Initially, the penalty value was fixed at
1.0 and 10 repsectively. In each level, polynomial degree were raised from degree 1 to
degree 7. Then, the number of mixclassification, total SVs, Svs at upper bound and

XiAlpha errors for each of model were observed.

Table 4.4 The effects of degree parameter to the polynomial performance C 1

Polynomial No.of Total SVs SVs at Xi a error (%)
Degree (d) misclassification upper bound

1 3,990 789 198 67.72

2 2,000 685 0 34.2

3 2,238 521 0 37.90

4 2,000 1,381 0 33.13

5 6,000 0 0 100

6 6,000 0 0 100

1 6,000 0 0 100

: Training: 6,000 samples, Fixing C = 1.0, y=1, r=1, rho=1, serch depth=50

Table 4.5 The effects of degree parameter to the polynomial performance C 10

Polynomial No.of Total SVs SVs at Xi a error (%)
Degree (d) misclassification upper bound

1 2,838 490 8 56.05

2 3,143 664 0 58.95

3 2.261 540 0 33.51

-+ 3,391 1183 0 48.29

o] 6,000 0 0 100

6 6,000 0 0 100

7 6,000 0 0 100

: Training: 6,000 samples, Fixing C = 10, y=1, r=1, tho=1, serch depth=50
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Figure 4.18 illustrates the changes of polynomial degree influence to the number of
misclassification and number of support vector. When the degree was increased, the
number of misclassification also was reduced until lowest. After that, d cannot improve the
performance. C parameter influences to the degree of polynomial. At degree of 4 and C =1,
the number of misclass is lowest and number of support vector is highest. However, degree
of 3 is the best when C was set at 10. Therefore, polynomial kernel with degree 3 and 4
should be also accepted as the best one. However, Xi a error is lowest in degree 4.
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Figure 4.18 Influence of degree to the performance of polynomial kernel

Polinomial with degree 5-7 return the poor performance without support vector. It can not
classify all training data correctly and estimated Xi a error equal 100%. Therefore, the
maximum degree of kernel is degree 4.

e Radius Basis Function (RBF) kernel

For the last kernel, parameter C and y were required. The various levels of gamma were
investigated. C was fixed at 1.0 and 10 and gamma value was changed from 0.001 to 1000.
When the y value was reduced, the number of misclassification also was redued until equal
zero. The number of SVs was increase continuously. In case of C=1, y=0.1 give the lowest
a error about 28.28%.

Table 4.6 The effects of y parameter to the efficiency of RBF kernel, C 1

Gamma (-y) No.of Total SVs SVs at Xi a error (%)
misclassification upper bound
0.001 1,783 3,853 6,050 31.05
0.01 1,185 3,855 2,833 28.28
0.1 1,573 3,592 3,473 29.97
1.0 257 5816 1,974 30.23
10 7 5,991 1,975 32.80
100 0 5,991 1,970 32.83
1000 0 ‘ 5,991 1,973 32.83

: Training: 6,000 samples, Fixing C = 1.0, rho=1, serch depth=50
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Table 4.7 The effects of y parameter to the efficiency of RBF kernel, C 10

Gamma (-y) No.of Total SVs SVs at Xi a error (%)
misclassification upper bound
0.001 1,696 3,745 3,714 34.03
0.01 1,482 3,443 3,241 41.82
0.1 860 3,426 1,991 42.82
1.0 10 5,614 36 33.07
10 0 6,000 0 31.80
100 0 6,000 0 31.53
1000 0 6,000 0 3152

: Training: 6,000 samples, Fixing C = 10, rho=1, serch depth=50

In case of C=10, when the values of y parameter increase, the number of misclassification
reduce but SVs increase. With the y value greater than 1.0 and fixied C value at 10, number
of misclassification become zero and all of training data become the SV.
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Figure 4.19 Influence of y parameter to the performance of RBF kernel

(2) Model vadiation

The goal of model selection is to identify the model that will give the best genearization
performance when appling to the test data and actual data. To validate the accuracy of
SVM model, they must be applied to the test dataset. 4,312 samples were classified by the
SVM model. The accuracy of each one was summarized in table 4.8.

Table 4.8 model validation performance trade-off

Model No.of No.of Accuracy E&o-estimator Ea-estimator
correct  incorrect (%) of precision of recall
Linear kernel
C 0.001 3,404 1,008 1715 62.60 212}
C0.01 30 1,039 76.45 58.38 28.62
€0.1 3,367 1,045 76.31 57.67 28.89
g 3,368 1,044 76.34 2l.7y 28.89
C10 3,368 1,044 76.34 Shdl 28.89
C 100 2,648 1,764 60.02 36.68 76.86
C 1000 1,275 3,137 28.90 18.66 52.74
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Model No.of No.of Accuracy Eo-estimator Ea-estimator

correct  incorrect (%) of precision of recall

Polynomial C =1

degree 1 117 3,275 272 25.69 100

degree 2 3,280 1,132 74.34 -1.4#) 0

degree 3 2,970 1,442 67.32 40.11 8357

degree 4 3,280 1,132 74.34 -1.#4] 0
Polynomial C =10

degree 1 1,891 2321 42.86 29.51 88.34

degree 2 2,285 212 51.79 21.06 61.98

degree 3 2,694 1,718 61.06 69.17 36.38

degree 4 1,812 2,600 41.07 17.64 35.34
Polynomial C =100

degree 1 115 2,637 40.23 27.18 19.15

degree 2 2,285 2.127 51.79 21.06 31.98

degree 3 2,694 1,718 61.06 69.17 36.38

degree 4 1,812 2,600 41.07 17.64 35.34
RBF C =1

v 0.001 3,316 1,096 75.16 56.77 13.34

v 0.01 3,202 1,210 Y57 43.56 23.32

v 0.1 3,111 1,301 70.51 38.18 2312

y1 2,994 1,418 67.86 27.8 15.81

y 10 3,279 L1355 74.32 0 0

y 100 3,280 1,132 74.34 -1.4#) 0

v 1000 3,280 1,132 74.34 -1.#) 0
RBF C =10

v 0.001 3,289 1,123 74.55 51.17 1731

v 0.01 3,187 1,225 1223 42.65 23.85

v 0.1 3,028 1,384 68.63 34.75 2335

y1 2,994 1,418 67.86 27.80 15.81

vy 10 3,268 1,144 74.07 16.67 0.27

vy 100 3,280 15132 74.34 -1.#) 0

y 1000 3,280 1,132 74.34 -1.4#) 0

According to the estimated accuracy, linear and RBF kernel function give comparable
accuracy. But polynomial shows the poor performance. Linear kernel with C 0.001
providedsthe best accuracy score and lowest Ea-estimator of recall. The scatter plot of SVs
in the figure 4.20 displays the probability score in x axis and number of pixel in y axis. It
show the position of SV by utilizaing the value a*y derived from the SVM model
calculation. The SVs that placed closed to the target line (-1, +1) have the probability to
classify belonging to the class (-1 or +1). While the SVs that were plotted around the zero
axis possible identifying as the case of unclassify. In the case of polynomial, degree 2 and 4
(C=1) returns the best. In RBF kernel, y = 0.001 is the best parameter both in C=1 and 10.
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Figure 4.20 Frequency distribution of probability score (left) linear C 0.001, (right) RBF
C10y0.001

(3) Apply the best model to the actual dataset

Referring to the results of above table, the eleven candidate models were adopted to
analyze the unseen data. For the linear kernel, model with the C value equal 0.001, 1, 10
and 1,000 were selected. While the polynomial models with degree 2, 3, 4 at C= 10 were
promoted. For the last group, RBF model with y 0.001, 10, 100 at C= 10 and y 0.001at C=
100 were considered.

As the results of SVM classify, the several hyperplanes were constructed to separate the
data into two classes based on the probability value which class it belong to. Therefore, to
achieve only two class results, the range of each class must be carefully considered. Some
frequency distribution charts shown in below must be concerned (See appendix for full
version).

Table 4.9 Statistics of probability scores in different types of SVM model

Kernel Model Maximum Minimum Mean Std Pixels Pixels
Score Score Score Score Class+1 Class-1

Linear kernel

C 0.001 -3.81 4.83 0.052 0.73 51,156 245,760

c10 -3.95 52 0.10 0.78 42,688 245,760

C 100 -1.23 2.63 0.27 0.38 66,146 245,760

C 1000 -3.14 2.47 -0.21 0.50 15,848 245,760
PolynomialC=10

degree 2 -5.11 1.81 -2.16 234 11,601 234,159

degree 3 -22.86 1.99 -0.45 1.27 62,653 183,107

degree 4 -6.40 1.50 -2.73 2.64 18,660 227,100
RBF C =10

v 0.001 -3.97 6.38 -0.56 123 34,485 211,275

vy 10 -1.0 - 0.88 -0.58 0.32 0 245,760

y 100 -1.0 0.18 -0.58 0.32 102 245,658
RBF C =100

v 0.001 -9.3 6.25 -2.37 322 37,445 208,315
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Table 4.10 Comparison of model performance based on spectral data

Model kernel Testing dataset Unseen dataset
(4,312 samples) (245,760 samples)
No.of SVs Accuracy  Accuracy (%) Kappa
()
Linear
C 0.001 3,966 215 56.32 0.26
C10 3,941 76.34 56.84 0.26
C 100 119 60.02 60.63 0.30
C 1000 185 28.90 . -0.51
Polynomial C =10
degree 2 664 51.79 42.44 -0.06
degree 3 540 61.06 56.56 0.18
degree 4 1183 41.07 34.22 -0.23
RBF C =10
v 0.001 3,745 74.55 57.89 0.22
y 10 6,000 74.07 - -
y 100 6,000 74.34 - -
RBF C =100
v 0.001 3,854 65.46 57.667 0.22

Table 4.10 refers the differences of SVM capacity when applying to the testing dataset and
unseen dataset. Classification accuracy decrease in almost kernel models when were
applying to the actual data. The large numbers of support vectors were not garuntee that
the classification performance must be perfect. The a*y value derived from SVM
algorithm is the critical value of support vector. For instance, 664 support vectors of
polynomial degree 2 respond the accuracy less than degree3 which has only 540. The
overall performances of SVM when analyzing to the spectral data were not quite well. The
maximum accuracy retieved by spectral data classification is approximately 60.63% (linear
kernel with C=100).

4.2.2 The second scenario: Classification with inclusion of texture data

Due to the poor performances of SVM models in the previous sections, texture data were
inclused into the classification procedure. Then the comparisons of classification accuracy
between spectral data only and integration of spectral and textures were performed.

(1) SVM Model evaluation

Candidate eleven models were considered in this part. The combinations of four channels
of spectral data and one texture resulting in five dimension input data were conducted.
Eight integrated dataset were transformed to the high dimensional feature space via the
three kernel functions. The numbers of support vectors which play the significant role to
determine the optimum hyperplane were summarized in each combined dataset.
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Table 4.11 Conclusion of number of SVs of each combined dataset

No.of SVs
Kernel SPEC Mean VAR HOM CON DIS ENT ASM COR
Linear
C0.001 3966 3944 3952 3969 3943 3937 3,958 3,968 3,960
c10 3,941 3,924 3,929 407 3,921 3,919 276 3,935 3,933
C 100 119 238 209 66 37 62 52 176 193
C 1000 185 42 56 66 39 0 51 48 154
Polynomial
C=10
degree 2 664 820 1,064 1,267 993 984 779 3,019 839
degree 3 540 827 741 1,242 854 1,091 542 971 1,160
degree4 1183 1,580 1,919 1,796 1,805 1,340 905 691 1,072
RBF C=10
v 0.001 3,745 3,635 3,666 3,688 3,668 3308 3,729 3,739 3,745
v 10 6,000 5,991 5992 5992 5990 5991 5991 5987 5,990
v 100 6,000 5991 5992 5991 5991 5991 5991 5987 5,991
RBFC=100 ,
v 0.001 3,854 3512 3,345 3,558 3,555 3,533 3,478 3,634 3,649

Training data = 6,000 samples

(2) SVM model validation
Investigated models were verified by applying to the testing data. The numbers of correct
and incorrect based on the model function were estimated. The classification accuracy (%
of pixls classified in the correct class) was summarized. In table 4.12, estimated accuracy
for each combined dataset was reviewed. After included the texture feature, the overall
performance of SVM algorithm were lightly adjusted. The combination of four spectral
bands and contrast texture returns the best accuracy score with 77.61% (77.15% only

spectral).
Table 4.12 Comparison of accuracy percentage of testing dataset
Accuracy Percentage (test data)
Kernel Mean VAR HOM CON DIS ENT ASM COR
Linear kernel
C 0.001 7749 70.14 7518 77.61 6321 7699 77.11 7743
C10 77.02 6523 6029 7745 63.79 31.14 76.52 76.98
C 100 22.64 56.88 66.58 7541 4552 2860 56.53 28.81
C 1000 23.73 3476 4464 25775 5430 4232 2865 3044
Polynomial C =10 ‘
degree 2 7407 6576 58.76 34.02 63.79 6797 53.56 71.60
degree 3 7434 6487 61.73 57.16 4774 62.19 53.13 74.54
degree 4 64.19 6133 5139 48.07 63.18 4148 63.83 39.55
RBF
C=10 y0.001 7523 7135 7131 7541 66.55 74.57 77.19 7455
C=100 y0.001 7423 7254 71.04 7437 64.07 7414 7434 73.82
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(3) SVM model assessment

To trade off the performance of texture, one texture was integrated with four spectral
bands. In this experiment, nine models with the differences of kernel functions and value
parameters were tested. The probability scores were considered to determaine the possible
range of each class (-1 or +1). Figure 4.21 illustrates the frequency distribution of
probability scores along x-y axis. The highest histogram displays the scores that the large
numbers of pixels that belong to. The dot line represents the boundary of the target class

(+1).
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Figure 4.21 Comparison the frequency distribution of probability score

Table 4.13 Comparison of classification accuracy when including texture data

Accuracy Percentage (actual data)

Kernel SPE  MEA VAR HOM CON DIS ENT ASM COR
Linear C 0.01 56.315 64.00 67.56 69.22 64.89 6433 67.89 69.33 67.56
Linear C 10 56.84 66.89 69.11 49.44 67.11 64.78 32.77 70.67 69.78

Linear C 100 60.63 20.78 50.44 46.11 4722 47.00 22.00 64.56 31.67

Linear C 1000 22.00 21.44 46.11 4644 45.11 4544 2544 22.00 29.33

Poly C 10 d2 4244 61.56 44.67 47.78 31.78 55.89 54.67 4422 47.00

Poly C 10 d3 56.56 - 44.67 5533 52.89 58.0 53.78 50.00 -

Poly C' 10 d4 3422 39.11 4422 67.11 63.00 52.11 47.78 60.22

RBF C17y0.001  57.89 60.00 60.67 58.11 59.22 57.78 58.44 57.89 58.33

RBF C 100 y 57.66 60.22 5833 5733 57.89 56.67 5844 5822 58.89
0.001

*- Inseapable case

The best combinated dataset that return the best performance in linear is the integration of
spectral ans second moment with 70.67%, in polynomial is spectral and contrast with 63%
and in RBF is spectral and variance with 60.67%.
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Table 4.14 Comparison of kappa coefficient in texture data

Kappa Coefficience (actual data)

Kernel SPE. MEA VAR HOM CON DIS ENT ASM COR
Linear C 0.01 026 - 033 038 ' 04} 034 033 040 042 0.39
Linear C 10 026 038 041 007 037 034 -031 044 042

Linear C 100 030 053 052 002 004 009 -051 032 -034

Linear C 1000 -0.51 -0.54 0.02 0.02 -0.16 0.004 -0.42 -0.50 -0.37

Poly C 10 d2 -0.06 028 0.004 0.05 -0.30 0.18 0.16 -0.02 0.04
Poly C 10 d3 0.18 - Ho4 016 D11 015 0.4 008 -
Poly C 10 d4 -023 -0.11 -0.04 037 0.30 0.10 -0.03 0.22

RBFEFC1y0.001 = e 025 - W# @ 022 024 022 023 022 023

RBF C 100 y e D 023 . 021 022 020 923 22 024
0.001

*- Inseapable case

(4) Integration of the best three texture dataset to the SVM classification

From the achieved results, performances of each texture were ranked by considereing the
accuracy percentage. At overall, linear kernel is the best. Table 4.15 concluded the
combination of input data for each type of kernel and parameter.

Table 4.15 Lists of combined dataset for SVM classification

Kernel Parameter Combined dataset

Linear C 0.01 : R:NIR : VAR (67.56) : ASM (69.33) : COR (67.56)

.

B .
€10 B:G:R:NIR: VAR (69.1) : ASM (70.67) : COR (69.78)

degree4 B :G:R:NIR: CON (63.00) : COR (60.22) : HOM (67.00)

G
G
Polynomial degree 3 B :G:R:NIR: DIS (58.00) : HOM (55.33) : CON (52.89)
G
G

RBFC10 v 0.001  B:G:R:NIR: VAR (60.67) : CON (59.22) : MEAN (60.00)

C100 y 0.001  B:G:R:NIR:COR (58.89) : HOM (57.33) : MEAN (60.22)

Table 4.16 Comparison of the accuracy of classification of the combined dataset

Kernel Parameter Spectral Texture

Accuracy Kappa Accuracy Kappa

Linear C0.01 56.32 0.26 58.00 0.27
C10 56.84 0.26 43.11 -0.49

Polynomial degree 3 56.56 0.18 44.00 -0.01

degree 4 34.22 -0.23 48.44 0.06

RBF C10 vy 0.001 57.89 0.22 59.88 0.25

C100 vy 0.001 57.67 0.22 59.56 0.25

After increase texture feature in the SVM classification, the classifier performances were
improved lightly. Linear and RBF kernel function return the better results when comparing
to that of pure spectral analaysis. However, the classification accuracy was degraded in
some cases of polynomial and linear.
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(5) Noise reduction and map results

In general, the results from the image classification include some noise by the effects of the
similarity of DN values. Filtering technice based on the majority value was applied to the
results to achieve the sound maps. The results of SVM classification based on the spectral
value show in figure 4.22. Results of SVM classification based on the combination of
spectral and one texture illustrate in figure 4.23 and three textures in 4.24.

Figure 4.22 Tree crown map by spectral data classification, (left) results of linear kernel
with C 10 (638 tree crowns) and (right) results of kernel with C 100 (507

Figure 4.23 Tree crown map by including texture (left) spectral and second moment by
Linear C10 (601 crowns) and (right) spectral and correlation by Linear C10
(657 crowns)
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Figure 4.24 Tree crown map by including three texture data (left) spectral and VAR
ASM COR by Linear C10 (387 crowns) and (right) spectral and VAR
CON MEAN by RBF C10 vy 0.001 (1,034 crowns)

4.2.3 The third scenario: The minimum spatial resolution for tree crown delineation
Another parameter evaluated was the image spatial resolution. The original image pixel
size was regarded. Then SVM classification based on the best model. Three spatial
resolution levels were investigated the capacities to discriminate tree genus. Linear kernel
with penalty 0.001 and 10 were tested. The combination of spectral data and three textures
including variance, second moment and correlation become the input data for this
secenario.

Table 4.17 Comparison of classification accuracy in 3 different spatial resolutions

Kernel Parameter 0.6 pixel size 1.2 pixel size 1.8 pixel size
Accuracy Kappa Accuracy Kappa Accuracy Kappa
Linear C=0001 86315 0.26 211 -0.5 - -
C=10 56.84 0.26 9222 0.04 50.55 0.01

*using only 4 spectral bands

Table 4.18 Comparison of classification accuracy in 3 different spatial resolutions

Kernel Parameter 0.6 pixel size 1.2 pixel size 1.8 pixel size
Accuracy Kappa Accuracy Kappa Accuracy Kappa

Linear C=0.001 58.00 027 4444 -0.11 38.33 -0.12

C=10 43.11 -0.49  35.55 -0.15 38.33 -0.12

*combining spectral and variance, second moment and correlation texture

According to the result in table 4.17 and 4.18, spatial resolution greatly influences to the
model performances. When utilizing only spectral data, with 1.8 m pixel size, crown
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classification was impossible. Ingegration of texture to the SVM classification the accuracy
was degraded. So, texture not plays the crutial role to improve the classification accuracy
when the spatial resolution is regraded. The minimum spatial resolution for genus
classification must be equal to the 0.6 m or better. The examples of results show in figure
4.25. Three results were obtained by applying linear kernel with C equal 0.001.The number
of tree crown for spectral classification at pixel 0.6 m, 1.2 m and 1.8 m is 608, 324, 111
tree crowns respectively.

Figure 4.25 Comparison of results from the different spatial resolutions. 0.6 m (left), 1.2 m
(middle) and 1.8 m (right)

4.2.4 Spcies Classification

Due to the poor performance of genus classification, species classification cannot be done.
Training data of each species in the study plot must be re-collected as much as possible to
create the more reliable training model.

63



CHAPTER Y
CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusion

Our understanding of TRF are terribly hindered by a lack of spatially and temporally
extensinve information tree. How does the boundary of individual tree crown in the dense
forest can be segmented and delineatated to genus or species? Does Remote Sensing
technology can be served? It’s the challenging task. So, this thesis was carried out to
persuit the possibilities for the tree crown image classification in the tropical rain forest
which comprises of the diversity of flora. Well, with the procedured proposed in this paper,
the applicabilities of Remote Sensing to this demanding task are fessible. The assumption
that the center of tree crown is brighter than the edge of the crown or the boundary
between crowns is very useful when applying to segment crown patches. Intillay, non-tree
crown must be eliminated to avoid misclassification and reduce the noices. To do forth,
eadge detection technique, Laplaciane filtering is the main instrument. Afterward, tree
crown regions were derived. The critical problem in the dense forest is the combination of
tree crowns. In this viewpoint, lower edge threshold filtering is adopted as the effective
approach to separate the joined crown. However, the large size of crown is impossible to
disconnect without the changes of crown shapes. So, it’s accepted as the limitations.

For image classification results, at first, SVM source code, namely SVMIight was used
because it’s available on the Internet, and is the powerful learning machine. Only spectral
data was utilized in the first scenario. Various transformed models constructed by the
kernel functions and marginal parameter were validated to find out the optimal separable
hyperplane. In this experiment, linear kernel provides the best proformance when
considereing the precision rate and error assessment. Linear kernel with the penalty
parameter (C' 100) gives the accuracy rate 60.63 % and kappa coefficience 0.3. The
numbers of support vector and their status determined by the value of alpha * gamma play
the considerable role to the SVM performances.

Next, the texture features were included in the analysis. The overall accuracy of SVM
algorithm were slightly adjusted. The combination of four spectral bands and argument
second moment texture by applying linear kernel returns the best probability score with
accuracy 70.67% and kappa coefficient 0.44. Variance, second moment and correlation
texture were ranked the best in the linear kernel. Homogeneity, correlation and contrast
return the sound performance for polynomial kernel. On the other hand, mean, contrast and
variance are the best for RBF kernel. However, the integration of spectral and groups of
the following best texture could not improve the classification accuracy. Considereing the
discussion, linear kernel with spectral and ASM texture was concluded to be the best
combination for genus classificatuion classification.

Although the spatial resolution of QB is much larger than the basic of each tree such as the
size of leaf, as desribed above, incorpolation of texture data gave some improvement of
chassificatin performance. As expected, texture data with 1.2, 1.8 m spatial resolution
showed degraded performance. Considering the new satellite program like Geoeye with the
higher quality, the method prepared in this papere will be more useful and practical.
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5.2 Recommendation for the futher works

e To adjust the classification accuracy, the higher resolution satellite image or aerial
photo must be available in the study site such as Worldview, Geoeye

e Texture features created by GLCM technique with other options such as differtent
window size (5x5, 7x7) or different direction should be considered.

e Another technique for texture extraction may be alternative way to improve the
classification accuracy such as wavelet analysis, Markov Random Fields, Fast
Fourier Transform

e Hyperspectral image with the high spatial and spectral resolution has great possible
to improve the performance

e Other information should be included into the classification procedure: digital
elevation medel, vegetation indics, image hue, image saturation, image intensity.

e Each tree speices in the nature is varied in ages, abundances, location, etc. So,
training area must be re-collected as much as possible to cover the various
properties of target class.
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APPENDIX A

TREE LOCATION IN THE STUDY PLOT

ID Easting Northing Accuracy DBH Crown Species Name
(m) (cm) width (m)

1 813464 641402 7 94 15.00 faguetiana

2 813622 641516 5 74 7.50 guiso

3 813602 641500 5 44 6.00 leprosura

4 813784 641398 6 58 7.50 leprosura

5 813796 641406 6 50 7.50 leprosura

6 813773 641457 7 88 7.00 stelata

7 813755 641488 6 108 8.00 borneensis

8 813771 641445 6 89 8.00 kerrii

9 813456 641386 7 100 10.00 excelsa
10 813502 641386 6 130 16.00 faguetiana
11 813264 641396 6 68 14.00 leprosura
12 813432 641383 7 90 18.00 leprosura
13 813737 641890 7 86 9.00 leprosura
14 813713 641748 7 95 12.00 leprosura
15 813750 641710 6 89 13.00 stelata
16 813686 641521 5 79 9.00 bracteolata
17 813620 641515 6 89 12.00 guiso
18 813757 641417 6 83 11.00 leprosura
19 813694 641651 6 87 11.00 assamica
20 813685 641650 5 105 15.00 costata
21 813667 641538 5 88 13.00 bracteolata
22 813495 641529 5 84 13.00 faguetiana
23 813454 641627 6 95 16.00 parvifolia
24 813459 641663 6 94 14.00 parvifolia
25 813410 641684 6 87 12.00 faguetiana
26 813434 641689 5 85 12.00 faguetiana
27 813413 641705 5 86 14.00 faguetiana
28 813395 641713 5 79 14.50 leprosura
29 813464 641402 5 94 16.00 leprosura
30 813324 641715 5 95 15.00 assamica
31 813345 641739 5 101 17.00 faguetiana
32 813341 641745 6 89 12.00 faguetiana
33 813288 641734 6 93 14.00 stelata
34 813263 641709 6 99 15.00 parvifolia
35 813251 641733 6 88 13.00 stelata
36 813297 641766 6 87 18.00 stelata
37 813283 641782 7 79 16.00 assamica
38 813280 641767 7 87 17.00 stelata
39 813245 641769 7 99 13.00 curtisii
40 813241 641774 6 87 12.00 leprosura
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ID | Easting | Northing | Accuracy | DBH Crown Name
(m) (cm) width (m)

41 | 813231 | 641818 6 89 12.00 leprosura
42 | 813217 | 641814 6 94 16.00 leprosura
43 | 813215 | 641803 6 93 17.00 assamica
44 | 813208 | 641821 7 86 11.00 stelata
45| 813195 | 641835 7 89 11.00 assamica
46 | 813185 | 641846 7 83 10.00 curtisii
47 | 813141 | 641780 7 87 11.00 assamica
48 | 813180 | 641788 8 105 14.00 assamica
49 | 813149 | 641802 8 89 13.00 leprosura
50| 813149 | 641769 9 90 16.50 curtisii
51| 813152 | 641767 8 87 12.00 leprosura
52| 813122 | 641758 6 79 14.00 leprosura
53| 813126 | 641753 6 87 12.00 curtisii
54| 813116 | 641800 6 99 18.00 curtisii
55| 813114 | 641817 6 89 16.00 curtisii
56| 813131 | 641816 5 93 17.00 curtisii
57| 813108 | 641854 6 78 11.00 leprosura
58| 813074 | 641844 5 93 11.00 leprosura
59| 813039 | 641842 5 80 11.00 leprosura
60 | 813025 | 641816 5 85 12.50 curtisii
61| 812975 | 641821 5 94 12.00 curtisii
62 | 813412 | 641644 6 92 13.00 curtisii
63 | 813828 | 641726 6 89 11.00 ochrophloia
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APPENDIX B
OPTIONAL PARAMETERS FOR SVM

¢ Parameter for SVM learn module
General options:
-? - this help
-v [0..3] - verbosity level (default 1)
Learning options:

-z {c,r,p} - select between classification (c), regression (r), and
preference ranking (p) (default classification)

-c float - C: trade-off between training error
and margin (default [avg. x*x]"-1)

-w [0..] - epsilon width of tube for regression
(default 0.1)

-j float - Cost: cost-factor, by which training errors on

positive examples outweight errors on negative examples
(default 1)

-b [0,1] - use biased hyperplane (i.e. x*w+b0) instead
of unbiased hyperplane (i.e. x*w0) (default 1)
-i[0,1] - remove inconsistent training examples
and retrain (default 0)
Performance estimation options:
-x [0,1] - compute leave-one-out estimates (default 0)
-0 10..2] - value of rho for XiAlpha-estimator and for pruning

leave-one-out computation (default 1.0)
-k [0..100] - search depth for extended XiAlpha-estimator

(default 0)
Transduction options
-p [0..1] - fraction of unlabeled examples to be classified

into the positive class (default is the ratio of
positive and negative examples in the training data)
Kernel options:
-t int - type of kernel function:
0: linear (default)
1: polynomial (s a*b+c)"d
2: radial basis function exp(-gamma |ja-b||"2)
3: sigmoid tanh(s a*b + ¢)
4: user defined kernel from kernel.h

-d int - parameter d in polynomial kernel
-g float - parameter gamma in rbf kernel
-s float - parameter s in sigmoid/poly kernel
-1 float - parameter ¢ in sigmoid/poly kernel
-u string - parameter of user defined kernel
Optimization options (see [Joachims, 1999a], [Joachims, 2002a]):
-q[2..] - maximum size of QP-subproblems (default 10)
-n [2..q] - number of new variables entering the working set

in each iteration (default n = q). Set n<q to prevent

zig-zagging.
-m [5..] - size of cache for kernel evaluations in MB (default 40)
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The larger the faster...

-¢ float - eps: Allow that error for termination criterion

[y [W*x+b] - 1] = eps (default 0.001)
-h [5..] - number of iterations a variable needs to be

optimal before considered for shrinking (default 100)
-£10,1] - do final optimality check for variables removed by

shrinking. Although this test is usually positive, there
is no guarantee that the optimum was found if the test

is omitted. (default 1)

-y string - if option is given, reads alphas from file with given
and uses them as starting point. (default 'disabled")

-# int - terminate optimization, if no progress after this
number of iterations. (default 100000)

Output options:

-1 char - file to write predicted labels of unlabeled examples
into after transductive learning

-a char - write all alphas to this file after learning (in the

same order as in the training set)
svm_learn is called with the following parameters:
svm_learn [options] example file model file

e Parameter for SVM classify module

-h Help.
-v [0..3] Verbosity level (default 2).
-£10,1] 0: old output format of V1.0

1: output the value of decision function (default)
svin_classify is called with the following parameters:

svmn_classify [options] example file model file output_file
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APPENDIX C

FREQUENCY DISTRIBUTION PROBABILITY SCORE OF SVM RESULTS

(1) Four bands of spectral data
Linear kernel: C = 0.001, 10, 100 and 1000
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Polynomial kernel: C =10, d=2, 3, 4
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RBF kernel y 0.001, C =10, 100

Frequency Distribution

Frequency Distribution

100,000 ] 100,000 g

80,000 . 80,000 H

60,000 60,000

40,000 40,000

20,000 20,000
0

=

19 34 49 6.3 Score
56

-40 -25 10 04
32 18 03 12 26 41

(2) Spectral and mean texture
Linear kernel: C = 0.001, 10, 100 and 1000
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e Polynomial kernel: C =10,d=2, 3, 4
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Frequency Distribution
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e RBF kernel y 0.001, C =10, 100
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(3) Spectral and variance texture
e Linear kernel: C =0.001, 10, 100 and 1000
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e Polynomial kernel: C =10, d=2, 3, 4

Frequency Distribution Frequency Distribution
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(4) Spectral and homogeneity texture
e Linear kernel: C=0.001, 10, 100 and 1000
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Frequency Distribution Frequency Distribution
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e Polynomial kernel: C =10, d=2, 3, 4
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(5) Spectral and contrast texture
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(6) Spectral and Dissimilarity texture
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e Linear kernel: C = 0.001, 10, 100 and 1000
Frequency Distribution
60,000 :
50,000 I
40,000
30,000
20,000
10,000 H
0
-383.228-20-14-08020.4 1.0 1.6 2.2 2.8 3.4 40 46
Frequency Distribution
50,000
40,000
30,000
20,000
10,000
0
-39 31 23 -16 08 00 07 15

-35 27 20 12 04 04 11

Polynomial kernel: C =10, d=2, 3, 4

Frequency Distribution

80,000
60,000
40,000
20,000

99 83 67 51 -35 19 03 1.3 Score

91 75 569 43 27 11 05

Frequency Distribution
60,000 5
50,000
40,000
30,000
20,000
10,000 H
=
Score 3832-262014070.1051.117 2330364248 Score
Frequency Distribution
50,000 2
40,000
30,000
20,000
10,000
0
Score 45 08 0.1 07 14 22 29 37 Score
42 44 63 11 18 28 33
Frequency Distribution
80 000
60,000
40,000
20,000
[ A== 7

-120 92 64 36 08 2|J 49 77 Score
-106-78 50 -22 06 35 63

82



Frequency Distribution
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(7) Spectral and Entropy texture
e Linear kernel: C =0.001, 10, 100 and 1000
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e Polynomial kernel: C=10,d=2, 3, 4

Frequency Distribution Frequency Distribution
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(8) Spectral and Second Moment texture
e Linear kernel: C = 0.001, 10, 100 and 1000
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(9) Spectral and correlation texture
Linear kernel: C = 0.001, 10, 100 and 1000
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Polynomial kernel: C =10, d=2, 3, 4
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e RBF kernel v 0.001, C =10, 100
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