

🔪 การปรับตัวของวงการวิจัยสู่การแข่งขันในระดับโลก

การประชุมโครงการ Chair Professor Grants ประจำปี 2561

ณ ห้องแกรนด์บอลรูม ชั้น 7 โรงแรมฮอลิเดย์ อินน์ แอนด์ สวีทส์ระยอง ซิตี้ เซ็นเตอร์ จังหวัดระยอง

วันเสาร์ที่ 30 มิถุนายน 2561 ดร.ไพรินทร์์ ชูโชติถาวร รัฐมนตรีช่วยว่าการกระทรวงคมนาคม

Phases of Human Society Evolution

ELECTRICITY

Thomas Edison

CONVERGENCE & MULTIDISCIPLINARY

Thomas Watson, Steve Job, Bill Gates, etc

AGRARIAN

INDUSTRIAL

Benjamin Franklin Michael Faraday

> 1897 1850

1975

2000

10,000 (years)

World 0.0

World 1.0

World 2.0

World 3.0

World 4.0 ?

Civilization and Education

Critical Thinking,
Debate
Philosophy

Education 0.0

Platonic Academy

e.g. Taxila, Nalanda

600 B.C. to 1200 A.D.

Pre-Religious

ปรัชญานิยม

Teaching, Catechism

Social Sciences

Education 1.0

Cathedral School, Religious Institution

e.g. Cambridge, Oxford, Harvard, Florence

1200-1950 A.D.

Religious

Teaching & Research

Social & Natural Sciences

Education 2.0

Public University, Polytechnics

e.g. MIT, TokyoTech, Tokyo Uni., Chulalongkorn

1950-2000 A.D. Industrial Revolution

· วัตถุนิยม

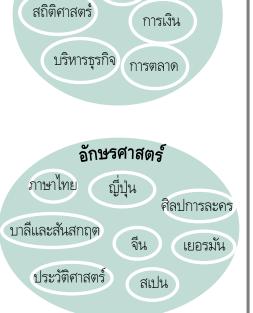
?

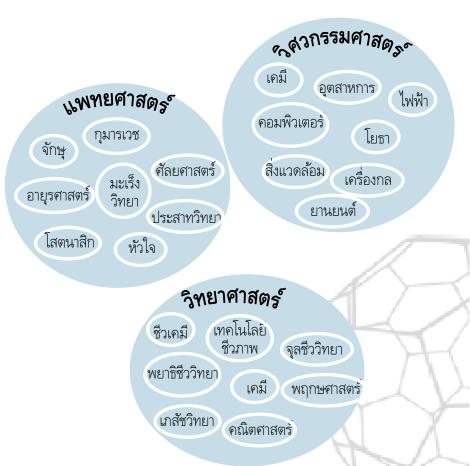
Education 3.0

?

hottaworr

3




Segregated Universe of Knowledge

Social Sciences

Natural Sciences

ดริยางคศิลป์

นาฏยศิลป

พัฒนาการทางด้านการศึกษา — ปรัชญาการศึกษาในปัจจุบัน (Education 2.0)

>> Primary Education

Conventional Education
A Reversed Silo

ระดับประถมศึกษา ตอนต้น - เพื่อการสื่อสาร ตอนปลาย - เพื่อการดำรงชีวิต

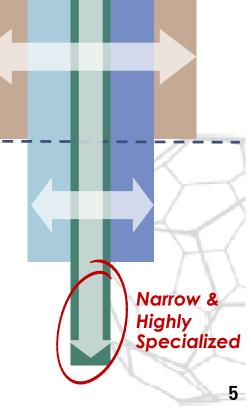
>> Secondary Education

ระดับมัธยมศึกษา ตอนต้น/ปลาย - เพื่อเตรียมความพร้อม สำหรับอุดมศึกษา

อาชีวะ

- เพื่อการเข้าสู่ตลาดแรงงาน (Job)

>> Tertiary Education


ระดับอุดมศึกษา

ตอนต้น (ตรี) - เพื่อเข้าสู่วิชาชีพขั้นสูง (Profession)

ตอนกลาง (โท) - เพื่อเรียนรู้วิธีการสร้างความรู้ใหม่ โดยวิธีการวิจัย

ตอนปลาย (เอก) - เพื่อสร้างองค์ความรู้ใหม่ ผ่านกระบวนการวิจัย

หลังปริญญาเอก (Post Doc) - เพื่อสร้างทักษะการสร้างองค์ความรู้ใหม่ ผ่านการทำวิจัยอย่างเชี่ยวชาญ

พัฒนาการทางด้านเทคโนโลยี (3)

Tech Creator vs. Tech Consumer

Tech Creator (Supply Side)

Tech Consumer (Demand Side)

Technology Community

"Product for Few"

Supply creates Demand

(Supply Push)

"Value for Many"

Demand creates Supply

(Demand Pull)

พัฒนาการทางด้านเทคโนโลยี (4)

Supply Push vs. Demand Pull

"New Technologies create NEW MARKET"

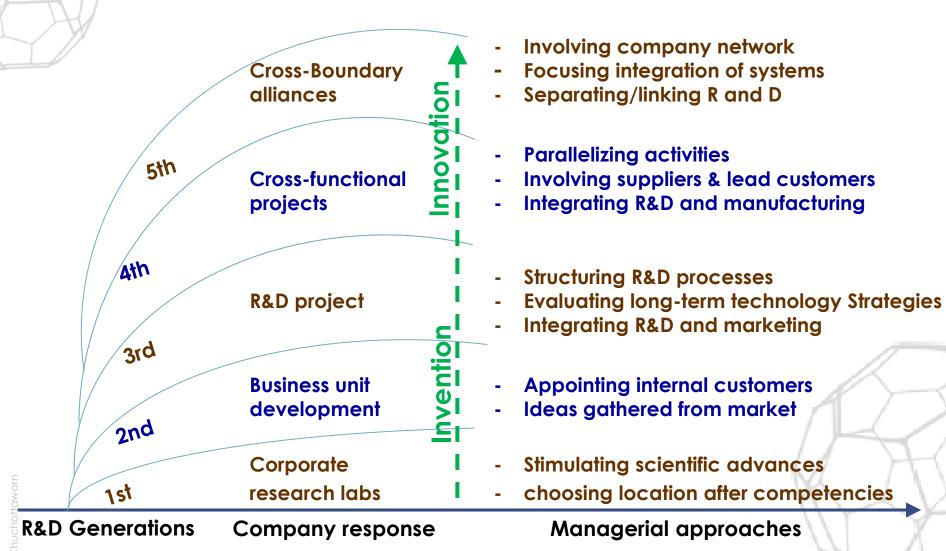
"Innoventor is King"

Market Lead ⇒Technology Follow

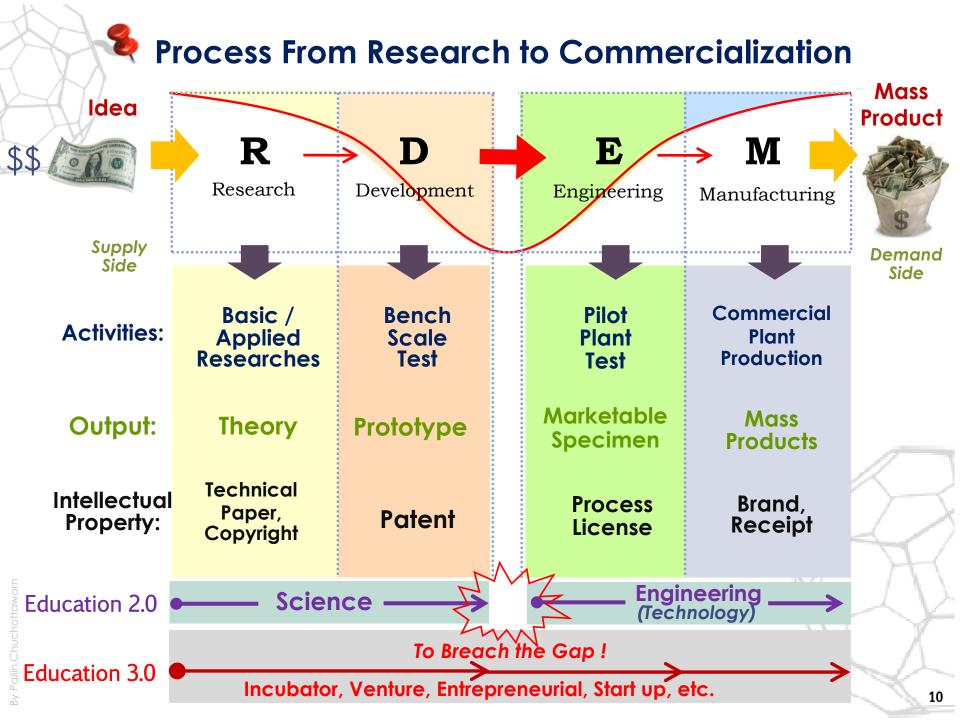
"Consumer's needs create INNOVATIVE products and services"

"Consumer is King"

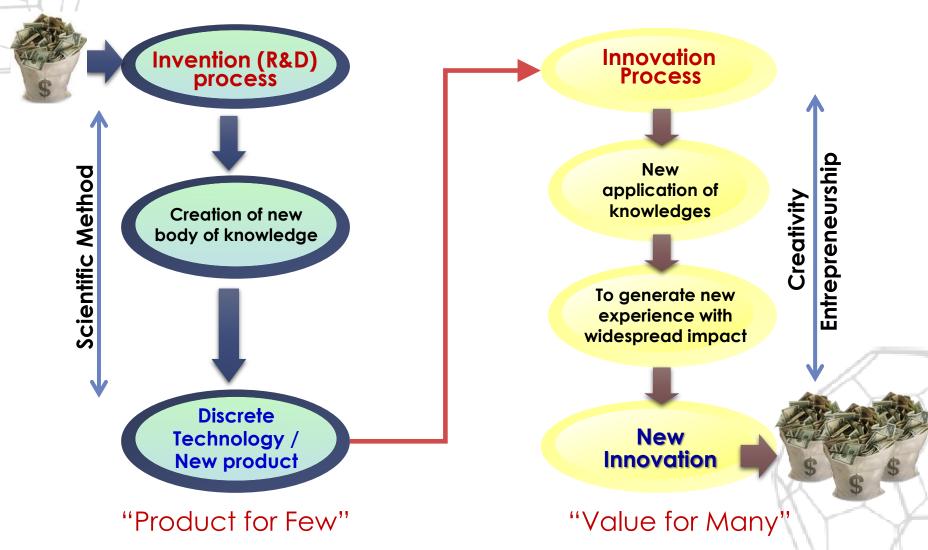
Five Generation of R&D (1)


	14/				
R&D Generations First Generation		Context	Process Characteristics		
		Black hole demand 1950 to mid-1960s	R&D as ivory tower , technology-push oriented, Seen as an overhead cost, having little or no interaction with the rest of the company or overall strategy. Focus on scientific breakthroughs		
		Market shares battle (mid-1960s to early 1970s)	R&D as business, market-pull oriented, and strategy-driven from the business side, all under the umbrella of project management and the internal customer concept.		
	Third Generation	Rationalization efforts (mid-1970s to mid 1980s)	R&D as portfolio , moving away from individual projects view, and with linkages to both business and corporate strategies. Risk-reward and similar methods guide the overall investments.		
	Fourth Generation	Time-based struggle (early 1980s to mid 1990s)	R&D as integrative activity, learning from and with customers, moving away from a product focus to a total concept focus, where activities are conducted in parallel by cross-functional teams.		
	Fifth Generation	Systems integration (mid 1990s onward)	R&D as network , focusing on collaboration within a wider system – involving competitors, suppliers, distributors, etc. The ability to control product development speed is imperative, separating R from D.		

product development speed is imperative, separating R from D.


Source: D. Nobelius, 2004

8


Five Generation of R&D (Visualization) (2)

Source: D.Nobelius, 2004

From Invention Process to Innovation Process

By Pailin Chuchottaw

"Innovation is a Journey not a Destination

Marketing 3.0 By Philip Kotler (2010) 1

Objective

Enabling Forces

How companies see the market

Key marketing concept

Company marketing guidelines

Value propositions

Interaction with consumers

MARKETING 1.0

Product-centric Marketing

Sell products

Industrial Revolution

Mass Buyers with Physical Needs

Product development

Product specification

Functional

One-to-Many Transaction

MARKETING 2.0

Customer-oriented Marketing

Satisfy and retain the consumers

Information Technology

Smarter Consumer with Mind and Heart

Differentiation

Corporate and Product
Positioning

Functional and Emotional

One-to-One Relationship

MARKETING 3.0

Value-driven Marketing

Make the world a better place

New Wave Technology

Whole Human with Mind, Heart, and Spirit

Values

Corporate , Vision, Values

Functional, Emotional, and Spiritual

> Many-to-Many Collaboration

Marketing 3.0 By Philip Kotler (2010) 2

THE WAY WE WILL DO BUSINESS

PAST	PRESENT	FUTURE	
Mind	Heart	Spirit	
Product-Centered	Customer-Oriented	Values-Driven Environment-Value	
Economic-Value	People-Value		
Profits	Social Progress	Sustainability	
Invention	In	novation	

Source: Thriving with Marketing 3.0, Philip Kotler

Example:

Aren't environmentally friendly?

MASLOW's Hierarchy of needs theory **VS.** Invention/Innovation

What we NEED

What we WANT

Self-Fulfilment

Esteem

Self-believe and satisfaction (reputation, power, respect)

Affiliation

Sense of belonging (affection and love)

Safety

Freedom from fear (certainty, stability, organization)

Physical Needs

Basic survival needs (food, rest, warmth)

MASLOW's Hierarchy of needs theory VS. Invention/Innovation

What we need

Self-Fulfilment

Esteem

Self-believe and satisfaction (reputation, power, respect)

Affiliation

Sense of belonging (affection and love)

Safety

Freedom from fear (certainty, stability, organization)

Physical Needs

Basic survival needs (food, rest, warmth)

Innovation
In response to
Spiritual Needs
(Education 4.0)

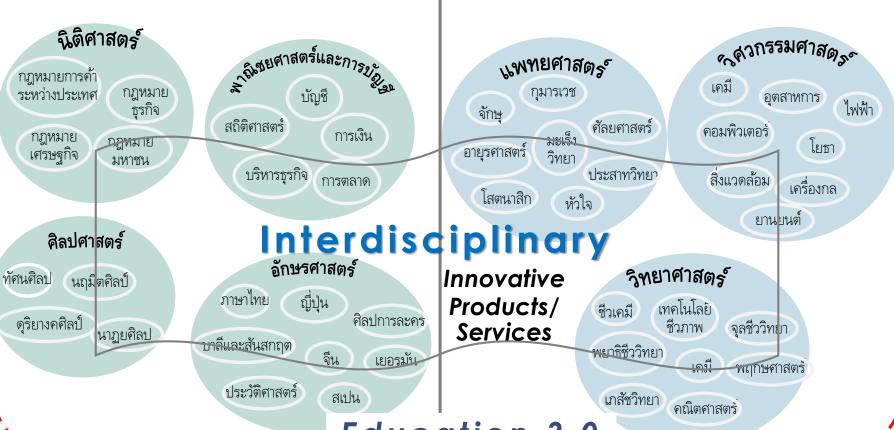
Invention

In response to Physical Needs (Education 2.0,3.0)

Thailand 4.

Start with

Thai 4.



Industry

Universe of Knowledge

Social + Natural Sciences

Education 3.0

Civilization and Education

Critical Thinking,
Debate
Philosophy

Education 0.0

Platonic Academy

e.g. Taxila, Nalanda

600 B.C. to 1200 A.D.

Pre-Religious **ปรัชญานิยม**

Teaching,
Catechism
Social Sciences

Education 1.0

Cathedral School, Religious Institution

e.g. Cambridge, Oxford, Harvard, Florence

1200-1950 A.D.

จิตนิยม

Religious

Teaching & Research
Social & Natural
Sciences

Education 2.0

Public University, Polytechnics

e.g. MIT, TokyoTech, Tokyo Uni., Chulalongkorn

1950-2000 A.D.

Industrial Revolution

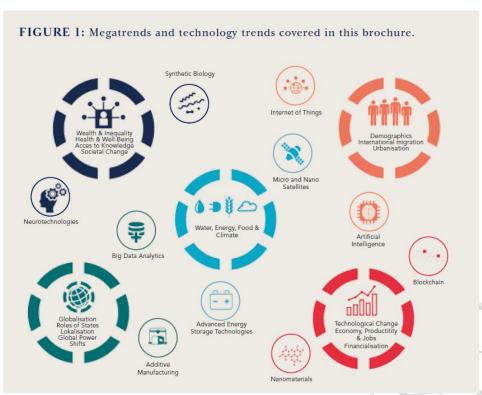
วัตถุนิยม

Innovation & Outreach & Entrepreneurial Interdisciplinary

Education 3.0

"New Model of Higher Education"

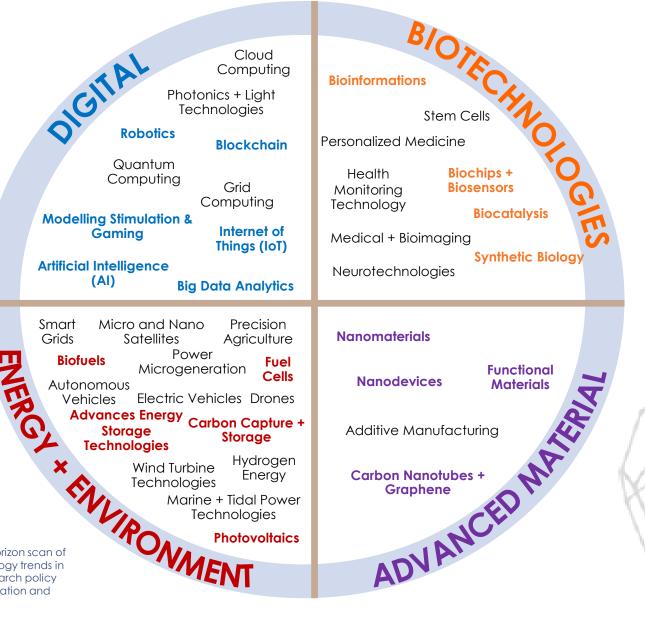
e.g. UNIST, OIST, KAIST, VISTEC


2000 A.D.

Knowledge base society

ปัจเจกนิยม

Reference: OECD 40 Key technologies for the future from Ministry of Higher Education and Science (www.ufm.dk)



7 Megatrends and technology trends

World 4.0 - World of interdisciplinary

OECD 40 Key technologies for the future

Pailin Chuchottaworr

Source: 2016 an OECD Horizon scan of megatrends and technology trends in the context of future research policy by Ministry of Higher Education and Science (www.ufm.dk)

A World of Interdisciplinary OECD 40 Key technologies for the future & V

& VISTEC

4 School of Information Science & Technology (IST)

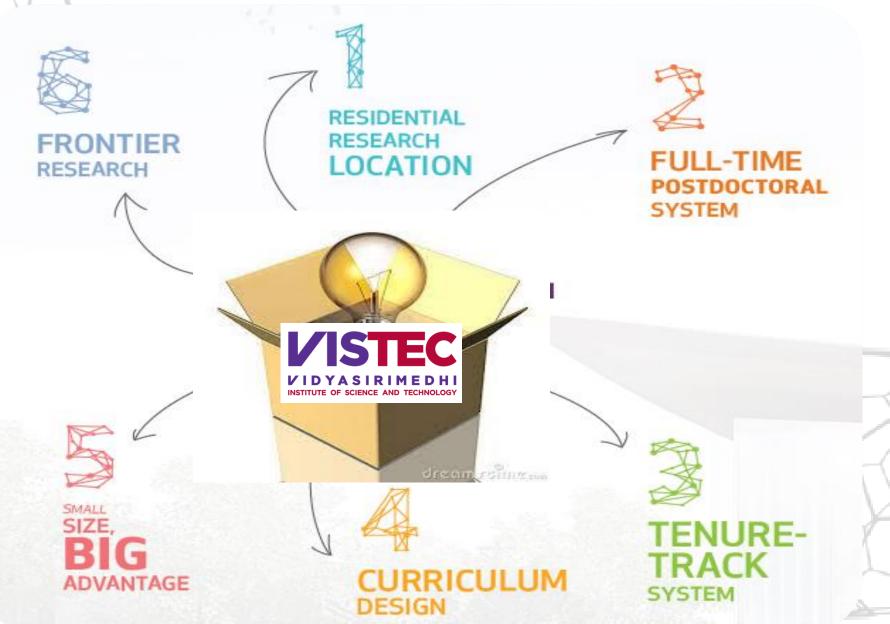
School of
Energy
Science&
Engineering
(ESE)

Cloud Computing Bioinformations Photonics + Light **Technologies** Personalized Medicine Blockchain Quantum Health Computing Grid **Biosensors** Monitorina Computina Technology Modelling Stimulation & Internet of Medical + Bioimaging Things (IoT) **Synthetic Biol** Artificial Intelligence **Neurotechnologies Big Data Analytics** Micro and Nano Precision **Nanomaterials Biofuels Functional Nanodevices Autonomous** Advances Energy Carbon Capture Additive Manufacturina Carbon Nanotubes + Marine + Tidal Powe **Technologies**

School of
Biomolecular
Science&
Engineering
(BSE)

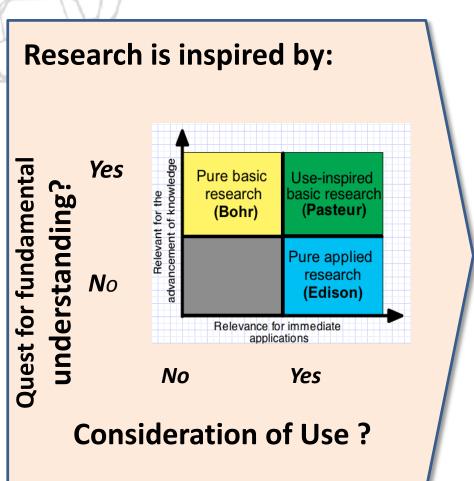
Thailand 4.0

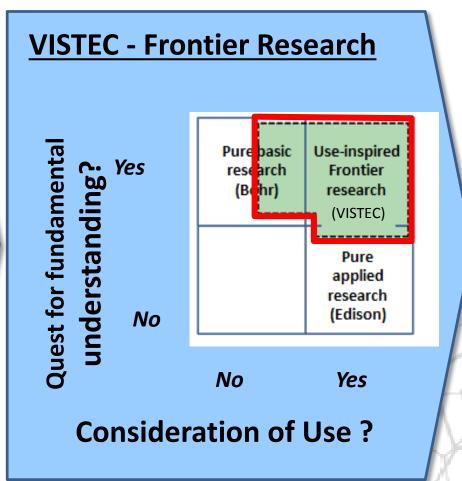
School of Molecular Science & Engineering (MSE)


School of Liberal Arts & Management Science (LMS)

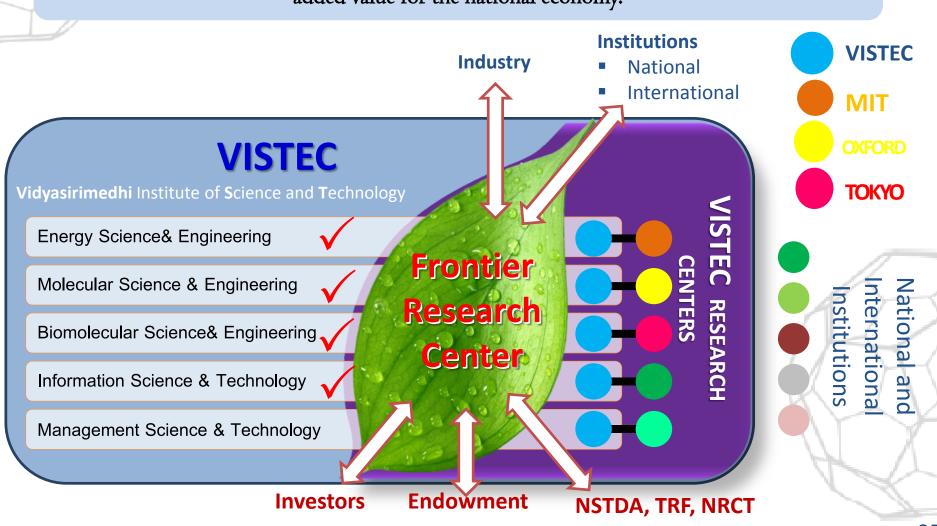
Frontier Research Center (FRC)

Soft Science


Source: 2016 an OECD Horizon scan of megatrends and technology trends in the context of future research policy by Ministry of Higher Education and Science (www.ufm.dk)


VISTEC 6 Distinctions

Frontier Research Center (FRC)



Frontier Research Center (FRC)

Establish of Scientific Research and technology foremost To mobilize researchers Collaborate with leading academic institutions and the business sectors. Research and create added value for the national economy.

Curriculum Design

Institute of
Energy Science and Engineering
Division of Chemical and Biomolecular Engineering

Institute of
Molecular Science and Engineering
Division of Materials Science and Engineering

Major Courses

- · Chemical and Statistical Thermodynamics
- · Chemical Kinetics and Reaction Engineering
- Transport Phenomena in Chemical and Biological Engineering
- · Molecular Modeling and Process Simulation

Elective Courses

Group A: Frontiers in Energy and Materials Technology

Group B: Petro-based Engineering and Advanced Materials

Group C: Bio-resource Engineering

Group D: Molecular Design and Functional Polymers

Group E: Green Process Engineering, Process Control and Others

Major Courses

- Thermodynamics and Kinetic Processes in Material
- · Molecular Design and Synthesis of Materials
- · Structure and Properties of Materials
- · Characterization of Materials

Elective Courses

Group A: Advanced Materials Science and Engineering Courses

Group B: Specialized Courses on Molecular Design and Synthesis

Processes

Group C: Advanced Courses on Cutting-edge Analysis

and Characterization

Group D: Novel Materials, New Processes and Applications

Group E: Frontiers in Materials Science and Technology

Major Courses Elective Courses

Seminar

Leadership Training Courses

Thesis

Core Data Science & Engineering Research

Data-Driven Experimental Design for Energy, Advance Meterial, Biotech Research **Domain-Specific Applications**

Visual Analytics

Simulation Control

Big Data Analytics for Business Intelligence

Algorithmic Trading

Intelligence Core Statistics Mining Data Data Science & Engineering Research **Data Systems Research** Oata Management

Speech Recognition

Electroencephalography (EEG) **Data Analysis**

Sentiment Analysis

Text Mining

Social Network Mining

Internet of Things: In-situ Query Processing

Internet of Things: **Data Acquisition**

Analytical Processing: Data Lake & Data Warehouse Cloud Computing: Wide-area **Analytical Processing**

HPC: Scalable Storage

Information Security: Query **Processing on Encrypted Data** **Cloud Computing: Elastic Resource Management**

HPC: Near Data Processing

NATURE INDEX: Asia Pacific

1 April 2017 - 31 March 2018 Subject/journal group: <u>All</u>

natureINDEX

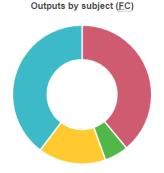
	Country	Article Count (AC)	Fractional Count (FC)
*;	China	12801	9303.28
2	Japan	4670	3025.08
** 3	South Korea	2032	1248.59
* . 4	Australia	2311	1047.38
® 5	India	1410	938.17
6	Singapore	1102	586.09
* 7	Taiwan	898	408
* 8	New Zealand	356	122.34
9	Thailand	192	33.61
* 10	Vietnam	76	11.55

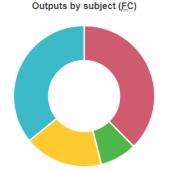
Note: Sort by FC

NATURE INDEX: Singapore vs. Thailand vs. Malaysia

(C)

natureINDEX


AC	FC
1102	586.09


AC	FC	
192	33.61	

AC	FC
142	8.77

Outputs by subject (FC)

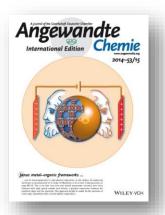
Published between 1 April 2017 - 31 March 2018 which are tracked by the Nature Index.

Subject/journal group: All

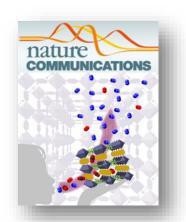
Country	Sing	apore	Tha	iland	Mal	aysia
All Subject	AC	FC	AC	FC	AC	FC
Life Sciences	269	110.27	41	6.43	21	2,62
Chemistry	451	272.99	34	13.42	10	2.67
Physical Sciences	504	278.24	116	12.79	100	1.21
Earth & Environment Sciences	78	38.88	9	3.01	17	2.99

Note: AC = Article Count | FC = Fractional Count

Academic Excellence (1):


natureINDEX

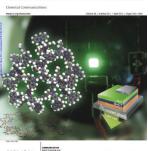
VISTEC EXCELLENCE Nature Index 's Publication:

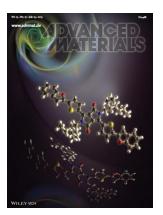

A global indicator of high-quality research

Note: Sort by FC

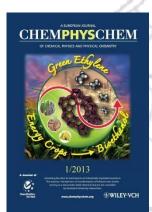
Academic Sector: Rank of <u>THAILAND - CHEMISTRY</u> As of 1 April 2017 - 31 March 2018		Fractional Count (FC)
1. VISTEC	10	5.09
2. Mahidol University (MU)	6	1.95
3. Chulalongkorn University (CU)	7	1.87
4. Suranaree University of Technology (SUT)	4	1.12
5. Walailak University	3	0.83

Academic Excellence (2):


VISTEC EXCELLENCE Nature Index 's Publication:


A global indicator of high-quality research

Note: Sort by FC


Academic Sector: Rank of <u>THAILAND - OVERALL</u> As of 1 April 2017 - 31 March 2018	Article Count (AC)	Fractional Count (FC)
1. Chulalongkorn University (CU)	90	7.05
2. VISTEC	13	5.60
3. Mahidol University (MU)	33	4.51
4. Naresuan University	12	4.15
5. Suranaree University of Technology (SUT)	29	2.56

ChemComm

Academic Excellence (3):

Publications in 2017 by the MRS Research Group at VISTEC

Vision : 20:50

Identity:

- Creativity Expands
- **Leadership Cultivated**
- A Catalyst for Change
- **Discovery Emerges**

THAILAND Research University

เป็นมหาวิทยาลัยวิจัย ้ชั้นนำด้านวิทยาศาสตร์ และเทคโนโลยี ระดับประเทศไทย

2563 (2020)

ASEAN Research University

เป็น 1 ใน 10 ขอมมหาวิทยาลัยวิจัย ชั้นนำระดับระดับภูมิภาค อาเซียน

2568 (2025)

WORLD Research University

เป็น 1 ใน 50 ขอมมหาวิทยาลัยวิจัย ชั้นนำระดับโลก

2578 (2035)

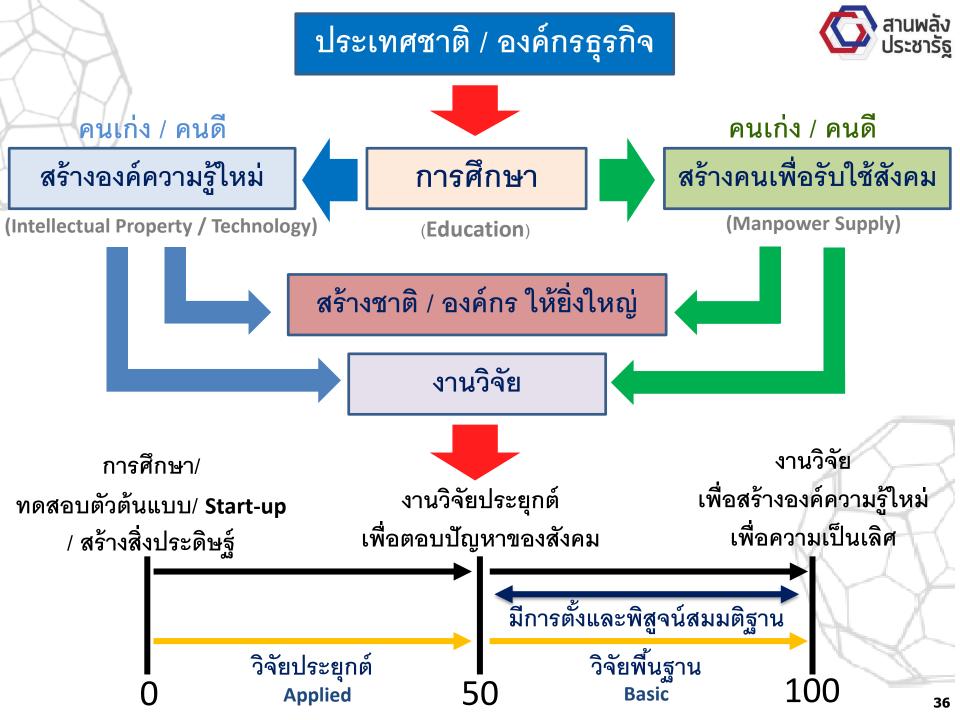
Rayong Advanced & Technology

เป็นสถาบันวิทยาศาสตร์ และเทคโนโลยีซั้นนำ เปิดการเรียนการสอน รุ่นที่ 1

2558 (2015)

Business Model

VISTEC KVIS of the World of the World in 2035


Government, Private

PTT Group's intention to create KVIS/VISTEC

- To create new type of tertiary education
- ✓ To create learning opportunity for the gifted
- ✓ To create scientist/researcher carrier path
- ✓ To create bond with industry
- ✓ To create new high tech industrial area
- ✓ To make Thailand a great country thru Science & Technology.....

That is RESEARCH (1)

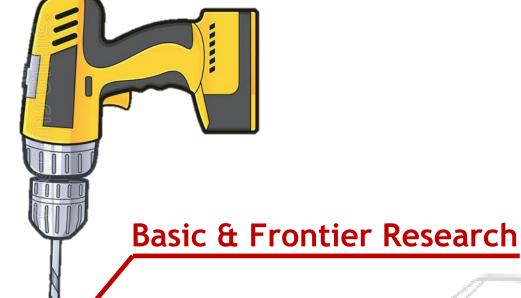
The more we know, the more we discover new things we don't know. Then, as someone else put it, there are the known unknowns, and the unknown unknowns.

[ME TOO RESEARCH]

There are known knowns; there are things we know we know.

[GOOD IDEA RESEARCH]

We also know there are known unknowns; that is to say, we know there some things we do not know.


[GROUND BREAKING RESEARCH]

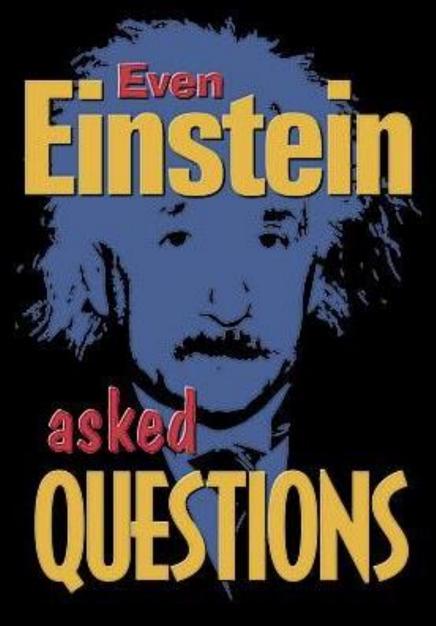
But there are also unknown unknowns; the ones we don't know we don't know'.

That is RESEARCH (2)

The Know Knowns

The Know Unknowns

The Unknow Unknowns


We should aim for the frontiers of science and technology, strengthen basic research, and make major breakthroughs in pioneering basic research and groundbreaking and original innovations.

By Xi Jinping

2017 was a momentous year for China in the field of science and technology.

From outer space to deep sea,
China broke physical barriers,
smashed scientific boundaries and pushed the limits of innovation.

It shattered records and set new ones, introduced the world to a handful of firsts and blazed many new trails in numerous fields.

Thank you